
Citation: Wang, W.; Wang, Y.; Huang,

J.; Luo, L. Mathematical Model of

Surface Topography of Corroded

Steel Foundation in Submarine Soil

Environment. Coatings 2022, 12, 1078.

https://doi.org/10.3390/

coatings12081078

Academic Editors:

Matic Jovičević-Klug,
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Abstract: For the corrosion risk of steel structures in the marine environment, the topography
characteristics of corroded steel surfaces were paid little attention to, which has a significant effect on
the mechanical properties of the interface between steel foundation and soil medium. An effective
mathematical model for reconstructing the topography of corroded steel surface is very helpful for
numerically or experimentally studying the soil-corroded steel interaction properties. In this study,
an electrolytic accelerated corrosion experiment is conducted first to obtain corroded steel samples,
which are exposed to submarine soil and suffer different corrosion degrees. Then, the surface height
data of these corroded steel samples are scanned and analyzed. It is found that the height of surface
two-dimensional contour curves under different corrosion degrees obeys the Gaussian distribution.
Based on the spectral representation method, a mathematical model is developed for the profile
height of the corroded steel surface. By comparing the standard deviation, arithmetic mean height
and maximum height of reconstructed samples with those of experimental samples, the reliability of
the developed mathematical model is proved. The proposed mathematical model can be adapted to
reconstruct the surface topography of steel with different corrosion degrees for the following research
on the shearing behavior of soil-corroded steel interface.

Keywords: corrosion; surface topography; mathematical model; corroded steel surface; marine soil

1. Introduction

It is a common phenomenon during the service life of steel structures in the marine
environment. With the rapid development of exploitations of marine energy, the salt
corrosion research of steel structures has been focused on widely [1]. In design, the protective
layer and surplus design are often considered to reduce the effect of corrosion [2,3]. However,
as time goes on, the protection system may fail. Corrosion will happen and affect the
property of the steel structure. Therefore, it is important to study the corrosion characteristics
of steel structures in a marine environment.

At present, a large number of studies has been conducted on the corrosion characteris-
tics of steel material in a corrosive environment, with the aid of experiment methods and
modern analytical techniques. The relevant research can be found in the work of Kovend-
han et al. [4], James and Hattingh [5], Lv et al. [6], Wei et al. [7] and so on. The above
studies mainly focus on explaining the occurrence of metal corrosion in terms of lattice and
electrochemical mechanisms. However, civil engineers care more about the mechanical
properties and residual bearing capacity of steel members or structures after corrosion.
There are different methods to consider the effect of corrosion on steel structures. Some
researchers simulated the effect of corrosion on the mechanical behavior of steel structures
by decreasing the section thickness of steel members. Karagah et al. [8] investigated the
effect of corrosion on the axial capacity of short steel columns by reducing the localized
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thickness in a monotonic axial load experiment. Liu et al. [9] notched in the center zone of
steel columns to simulate the loss of section due to corrosion in axial loading tests. Wang
et al. [10,11] analyzed the ultimate strength of steel pipe piles in corrosion conditions by
converting corrosion effects into thickness loss in numerical simulations. Other similar
studies can be found in the literature by Yamamoto and Ikegami [12], Akpan et al. [13], Guo
et al. [14] and so on. The above research studies only consider the effect of section thickness
loss due to corrosion but ignore the effect of variation of the surface topography of steel
structures. To consider the effect of surface topography, Jiang and Soares [15] assumed
corrosion pits to be cylindrically shaped with various distributions and intensity or depth
in numerical analysis. Ahmmad and Sumi [16] considered the corrosion pit as conical pits
with different depth-to-diameter ratios. Nakai et al. [17,18] studied the effect of corrosion
on steel plate strength by artificially creating conical corrosion pits in experiments and
numerical simulations. Though some researchers have already begun to study the effect
of corroded surface topography on the mechanical properties of steel members or struc-
tures, the corroded surface topography is always considered simply by setting pits with
regular shape and distribution, which is difficult to describe the real surface topography
of corroded steel structure. Little research has been devoted to the shearing property of
soil-corroded steel surface, which has a significant influence on the bearing capacity of the
steel foundation of ocean structures. The main reason can be attributed to the lack of an
effective mathematical model of the surface topography of corroded steel.

In this paper, the corrosion characteristics of Q235 steel in a submarine clay soil envi-
ronment are studied by electrolytic accelerated corrosion experiments. The electrochemical
process of corrosion and the law of mass loss are analyzed. To further characterize the
corroded steel surface, the surface topography is investigated. After the analysis of two-
dimensional profile height on a corroded surface, a mathematical model is constructed by
the spectral representation method. The reliability of the mathematical model is verified.
The developed model can be employed to generate the surface profile of corroded steel
structures as close as possible to the reality in the follow-up research. It is very helpful
for studying the corrosion characteristic of the steel surface and the soil-corroded steel
interaction properties.

2. Electrolytic Accelerated Corrosion Experiment

Electrolytic accelerated corrosion experiment is a common method for the investiga-
tion of the corrosion of metals [19–21]. The acceleration mechanism is to accelerate the
electrochemical reaction of the corroded metal by means of an applied current [22]. Com-
pared with natural exposure experiments, the electrolytic accelerated corrosion experiment
is more convenient and can save a lot of time. In this study, the electrolytic accelerated cor-
rosion experiment is conducted to investigate the corrosion characteristic of steel structure
foundation in submarine soil.

2.1. Experimental Principle

The electrolytic accelerated corrosion is a result of an artificial electrolytic cell reaction.
Figure 1a shows the electrochemical reaction process on the surface of the corroded speci-
men. The corroded electrode loses electrons and undergoes an oxidation reaction, while
the electrolyte solution gains electrons for a reduction reaction [19,21,23].

The anodic reaction can be represented as

Fe→ Fe2+ + 2e− (1)

Fe→ Fe3+ + 3e− (2)

The cathode reaction can be represented as

O2 + 2H2O + 4e− → 4OH− (3)



Coatings 2022, 12, 1078 3 of 16

The corrosion current is controlled by the applied current during experiments. Ac-
cording to Faraday law [19,21], the theoretical mass loss of electrochemical corrosion can
be calculated as

∆m =
MIT
zF

(4)

where M represents the molar mass of Fe (56 g·mol−1); I is the experimental current (A); t is
the experimental time (s); z is the number of electrons transferred by corrosion of Fe (z = 2
or 3); F is Faraday constant which has a value of 96,500 A·s−1.
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Figure 1. Electrolytic accelerated corrosion experiment: (a) electrochemical process; (b) experimen-
tal system.

2.2. Experimental Process

The experiment is mainly composed of a direct current (DC) power, a glass container,
clay soil, an electrolyte solution and a Q235 steel sample. The experiment system is shown
in Figure 1b. The Q235 steel is machined to circular samples with a diameter of 61.5 mm
and a thickness of 10 mm. In the experimental process, one sample is used as the corrosion
electrode connected to the positive pole of DC power; the other is connected to the negative
terminal of the power supply as an auxiliary electrode. Throughout the experiment, the
two electrodes are fixed in position by a wooden rod and kept 10 cm apart. Waterproof
tape is used to wrap the corrosion electrode, leaving only one side. By maintaining a
constant current of 3 A throughout the experiment, the corrosion process of the steel
sample connected to the positive pole is accelerated. Saturated clay soil is used to simulate
the submarine soil environment, which is derived from the coastal region. A 5% mass
concentration NaCl solution is added to the clay soil as an electrolyte solution.

After the experiment, the corroded steel sample is removed from the experimental
apparatus and cleaned. The whole experiments are set up with ten groups of working
conditions with a minimum experimental time of 1 h and a maximum experimental time
of 10 h. The duration of each group of experiments differs by one hour. In addition, the
uncorroded steel sample is used for a control group.

2.3. Mass Loss per Unit Area

After experiments, the corroded samples are removed from the soil and tore off the
waterproof tapes. Then the corrosion products are cleaned. The fragile corrosion products
stuck to the surface can be easily removed by flowing water. The rest of the corrosion
products are cleaned with ethyl alcohol and distilled water. After drying, the samples are
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weighed. The mass loss per unit area ma is employed to describe the corrosion degree of
the samples, which is calculated as

ma =
m0 −m1

A
=

m0 −m1

πr2 (5)

where ma is the mass loss per unit area (g/dm2); m0 is the original weight of the sample (g);
m1 is the weight of the corroded sample (g); A is the area of the corroded surface (dm2),
which can be given by the radius r of the circular surface as πr2.

Based on Equation (4), the theoretical values of mass loss per unit area under different
corrosion times are calculated by taking z to be 2 and 3, respectively, wherein z represents
the number of electrons transferred by corrosion of Fe. When z equals 2, the corrosion
product is divalent iron, and when z equals 3, the corrosion product is trivalent iron.
The comparison between the experimental value and the theoretical value is shown in
Figure 2. One finds from Figure 2 that the mass loss per unit area measured by experimental
samples is between the theoretical values calculated with z being 2 and 3. It means the
experimental corrosion products included both trivalent iron and divalent iron. Another
phenomenon can be found in Figure 2 that the mass loss per unit area ma increases linearly
with the corrosion time t. It indicates that the rate of corrosion is uniform in the electrolytic
accelerated corrosion experiments. The variation of the mass loss per unit area ma (g/dm2)
with corrosion time t (h) is fitted with a linear function. The fitting formula is given as

ma = 6.6195× t (6)
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Figure 2. Mass loss per unit area.

By dividing the corrosion process into two electrochemical reaction processes, during
which the corrosion product is divalent iron and trivalent iron, respectively, the corrosion
mass loss rates of the two electrochemical reaction processes are calculated. The comparison
result is shown in Figure 3. In Figure 3, the orange color means the mass loss rate of the
electrochemical reaction process during which the corrosion product is divalent iron. The
purple color means the mass loss rate of the electrochemical reaction process during which
the corrosion product is trivalent iron. It can be found when the corrosion time is less
than 3 h, the mass loss rates of the two electrochemical reaction processes are similar.
With the increasing corrosion time, the corrosion products are mainly trivalent iron. This
phenomenon keeps step with the result of previous studies [10].
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3. Mathematical Model of Corroded Steel Surface
3.1. Surface Topography

To investigate the surface characteristic of corroded samples, a binocular laser scanner
is employed to measure the height data of the surface topography. In order to reduce the
measurement error at the edge of the circular samples, the square area with a 40 mm side
length at the center of the specimen is chosen to investigate the surface characteristic of
corroded steel. As the scanning interval is set as 0.1 mm, there are 401 contour curves in
each sample area. Each scanning curve has 401 data points. The data are stored on the
computer. The height coordinate of the data is the distance of the corroded sample surface
relative to the laser scanner. For the convenience of analysis, by subtracting the mean value
of the scanning height, a series of surface height data h(x,y) is obtained, which fluctuates
around 0. The schematic diagram of the surface height data is illustrated in Figure 4.
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Figure 4. Schematic diagram of surface topography.

The surface curve maps of the corroded surface are drawn in Figure 5. In Figure 5, the
corroded surface is composed of a series of uneven two-dimensional contour curves. When
the corrosion degree is light, the fluctuation of two-dimensional contour curves is small.
With the increasing corrosion degree, the corroded surface has obvious areas of corrosion
pits. The number and size of corrosion pits are increasing. Additionally, the fluctuation of
the two-dimensional contour curves also increases gradually.
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3.2. Surface Height Distribution

In order to analyze the distribution of surface height, the surface height probability
density of the two-dimensional contour curve is calculated and plotted in Figure 6. Consid-
ering that each sample has 401 contour curves, only one representative two-dimensional
contour curve is selected for each sample to draw the histogram of surface height, as
shown in Figure 6. It can be found from Figure 6 that the probability density of the two-
dimensional contour curve of each sample is almost symmetric on both sides of the surface
height of 0 mm. The closer the surface height equals 0, the larger the probability density is.
The shape of the histogram of surface height probability density is similar to the probability
density curve of the Gaussian distribution.
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To prove the surface height of the contour curve follows the Gaussian distribution,
based on the probability density function of the Gauss distribution, the mean value and
standard deviation of the surface height of contour curve are calculated. The probability
density curves following the Gaussian distribution are drawn in Figure 6 with calculated
mean value and standard deviation to compare with the histogram of probability density.
The probability density function of Gauss distribution can be written as

f (x; µ, σ) =
1

σ
√

2π

∫ x

−∞
exp

(
− (x− µ)2

2σ2

)
dx (7)
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where µ is the mean value of the surface height of a two-dimensional contour curve, and σ
is the standard deviation of the surface height of a two-dimensional contour curve.

The comparison results are shown in Figure 6. It is evident that the height distribution
of the two-dimensional contour curve is in accord with the Gaussian distribution form.

The height standard deviation of each two-dimensional contour curve is calculated.
The results that corrosion degree ma equals 0 (i.e., no corrosion), 35.1 and 66.1 g/dm2 are
plotted in Figure 7. It is obvious that the discreteness of the standard deviation is small.
Therefore, the mean value of the standard deviation of every two-dimensional contour
curve can be adopted as the standard deviation of the surface height of one sample. The
variation curve of the standard deviation of surface height of steel samples with different
corrosion degrees is drawn in Figure 8. It can be found from this figure that the standard
deviation increases with the corrosion degree. It means that the corroded steel surface
becomes rougher.
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3.3. Development of Mathematical Model

The corroded surface is composed of a series of uneven two-dimensional contour
curves. These contour curves can be regarded as experimental results of the sample
function of a one-dimensional stochastic process. In previous studies, the Monte Carlo
method is the universal method to describe stochastic processes. However, it is usually
time-consuming [24]. Shinozuka and Deodatis [25] proposed a spectral representation
method to generate one-dimensional, uni-variate, stationary, Gaussian stochastic processes.
Considering this method is more efficient than the Monte Carlo method in calculation, the
spectral representation method is used to develop the mathematical model of corroded
surface in the following.

3.3.1. Verification of Stationarity

The corroded surface can be understood as consisting of a series of experimental
results of the sample function of the one-dimensional stochastic process. The concept of the
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stochastic process can be explained in Figure 9. In Figure 9, hk(x) denotes k-th sample of
a one-dimensional stochastic process, where k = 1, 2, . . . , N. xi means the i-th data point
of any sample of one-dimensional stochastic process along x-axis direction, where I = 1, 2,
. . . , n. Theoretically, when the numbers of samples (N) and data points (n) both tends to be
infinity, the precise corroded surface topography can be obtained.
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Figure 9. Schematic diagram of stochastic process on corroded surface.

The arbitrary sample of one-dimensional stochastic process consists of a series of
stochastic data points along the length x direction, which can be expressed as

{h(x)} = {h(x1), h(x2), · · · , h(xi), · · · , h(xn)} (8)

where x is the coordinate along the length direction; h(xi) is the surface height of i-th data
point of the one-dimensional stochastic process.

In order to develop the mathematical model of the stochastic process with the spectral
representation method, the stationary of the one-dimensional stochastic process needs to
be verified. According to the above analysis in Section 3.2, the stochastic process {h(x)} is a
Gaussian stochastic process, which is also a secondary moment process. For a secondary
moment process {h(x)}, if the following conditions are satisfied, the process is a stationary
stochastic process.

(1) ∀x ∈ X, mh(x) = constant;

(2) ∀τ ∈ R, x, x + τ ∈ X, Rh(x, x + τ) = Rh(τ).

where mh(x) is the mean value of the stochastic process when the position coordinates equal
x; τ is the sampling interval along the length direction; Rh(x,x+τ) is the correlation function
when the sampling interval is τ.

The above conditions mean that if the mean value of the stochastic process is a constant
independent of position coordinates and the correlation function is a function of sampling
interval τ independent of position coordinates, the secondary moment process can be seen
as a stationary stochastic process.

Since the two-dimensional contour curves of corroded surface are regarded as a series
of samples of a one-dimensional stochastic process, the mean values of surface height of 401
contour curves with different position coordinates are calculated. The variation of mean
value with x-coordinate for three corrosion degrees is drawn in Figure 10 as examples. It
is obvious that the mean value of the surface height of contour curves is almost equal to
zero when the sampling length is greater than 30. When the sampling interval is a unit
interval, the correlation function of surface height of 401 contour curves with different
position coordinates is calculated. The variation of correlation function with x-coordinate
for three corrosion degree are plotted in Figure 11 as an example, too. It can be found that
the correlation function tends to be a constant when the sampling length is greater than 30.
Figures 10 and 11 show that the mean value and correlation function of surface height of
contour curves is independent of position coordinates when the sampling length is greater
than 30. Therefore, the contour curves can be regarded as the samples of a one-dimensional
stationary Gaussian stochastic process [26,27].
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3.3.2. Mathematical Model

After verification of stationarity, the mathematical model of the corroded surface is
developed with the spectral representation method in this subsection. According to the
study of Shinozuka and Hu [25,28], a one-dimensional stationary stochastic process {h(x)}
can be simulated by the following series as N→ ∞:

h(x) =
√

2
N−1

∑
n=0

Ancos(wnx + φn) (9)

where
An = (2Sh(wn)∆w)1/2, n = 0, 1, 2, . . . , N − 1 (10)

wn = n×4w, n = 0, 1, 2, . . . , N − 1 (11)

∆w =
wn

N
(12)

and
A0 = 0 or Sh(w0 = 0) = 0 (13)

In Equation (9), wn represents an upper cut-off frequency beyond which the power
spectral density function Sh(wn) can be assumed to be zero. Φn is an independent random
phase angle uniformly distributed in the range [0,2π]. The stochastic process {h(x)} is
periodic with period T0:

T0 = 2π/∆w (14)
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For a one-dimensional stationary stochastic process, the power spectrum function
Sh(w) and the autocorrelation function R(τ) are a pair of Fourier transform pairs. They have
the form as {

Sh(w) =
∫ +∞
−∞ R(τ)e−iwτdτ

R(τ) = 1
2π

∫ +∞
−∞ Sh(w)eiwτdw

(15)

Equation (15) is called the Wiener–Khintchine formula, which reveals the connection
between the statistical law describing the stationary process from the time perspective and
the statistical law describing the stationary process from the frequency perspective.

Since Sh(w) and R(τ) are even functions, Equation (15) could be rewritten in the form
of Equation (16) using Euler’s formula as{

Sh(w) = 2
∫ +∞

0 R(τ)eiwτdτ

R(τ) = 1
π

∫ +∞
0 Sh(w)eiwτdw

(16)

The autocorrelation function of surface height is an important parameter to character-
ize the variation of the parameter space points. The cosine exponential model is always
used to fit the autocorrelation function [29,30]. The fitting formula has the form as

R(τ) = exp(−k|τ|)(cos(wτ)) (17)

where τ is the sampling interval; k and w are the parameters of the fitting formula.
If the unit sampling interval is τ0, the sampling interval can be expressed as j·τ0.

Therefore, the different values of j are selected, and the length of the sampling interval
is different. For two-dimensional contour curves, the maximum sampling interval is the
length of the contour curve along the length direction.

According to the definition of autocorrelation function [31], the autocorrelation func-
tion of surface height of two-dimensional contour curves could be calculated as

R(τ) = R(i · τ0) = E[h(x)h(x + τ)]

=
∫ +∞
−∞ x1x2 f2(x1, x2; τ)dx1dx2 = 1

n−i

n−i
∑

k=0
h(xk)h(xk+i)

(18)

Based on Equations (17) and (18), the autocorrelation function of surface height of
two-dimensional contour curves is calculated and fitted. The fitting diagrams for three
corrosion degrees are shown in Figure 12. In Figure 12, the black points are the calculated
values of the autocorrelation function of contour curves. The red curves are the fitting
curves fitted with Equation (17).
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the statistical law describing the stationary process from the frequency perspective. 

Since Sh(w) and R(τ) are even functions, Equation (15) could be rewritten in the form 
of Equation (16) using Euler’s formula as 

⎩⎪⎨
⎪⎧𝑆ℎ 𝑤 = 2 𝑅 𝜏 𝑒 𝑑𝜏∞

𝑅 𝜏 = 1𝜋 𝑆ℎ 𝑤 𝑒 𝑑𝑤∞  (16)

The autocorrelation function of surface height is an important parameter to charac-
terize the variation of the parameter space points. The cosine exponential model is always 
used to fit the autocorrelation function [29,30]. The fitting formula has the form as 𝑅 𝜏 = 𝑒𝑥𝑝 −𝑘|𝜏| 𝑐𝑜𝑠 𝑤𝜏  (17)

where τ is the sampling interval; k and w are the parameters of the fitting formula. 
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different. For two-dimensional contour curves, the maximum sampling interval is the 
length of the contour curve along the length direction. 

According to the definition of autocorrelation function [31], the autocorrelation func-
tion of surface height of two-dimensional contour curves could be calculated as 
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Based on Equations (17) and (18), the autocorrelation function of surface height of 
two-dimensional contour curves is calculated and fitted. The fitting diagrams for three 
corrosion degrees are shown in Figure 12. In Figure 12, the black points are the calculated 
values of the autocorrelation function of contour curves. The red curves are the fitting 
curves fitted with Equation (17). 

   
(a) ma = 0 g/dm2 (b) ma = 35.1 g/dm2 (c) ma = 66.1 g/dm2 

Figure 12. Sample autocorrelation function fitting diagram. 

It can be found from Figure 12 that the autocorrelation function varies with the in-
crease in corrosion degree. For the statistical analysis of the parameters k and w of the 
fitting curves, it is found that the mean values of parameters k and w of all fitting curves 

Figure 12. Sample autocorrelation function fitting diagram.

It can be found from Figure 12 that the autocorrelation function varies with the increase
in corrosion degree. For the statistical analysis of the parameters k and w of the fitting
curves, it is found that the mean values of parameters k and w of all fitting curves for
every sample have an S-logistic function form and exponential function form, respectively,
with the increasing of corrosion degree. Therefore, the S-logistic function and exponential
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function are used to fit the variations of parameters k and w, respectively. The fitting
formulas are given as

k = 0.05665 +
1.57188

1 + (ma/27.5374)8.14368 (19)

w = 0.00402× 0.3864(ma/6.6195) (20)

The fitting diagrams of parameters k and w are plotted in Figure 13. It can be found
that the parameter k decreases slowly when corrosion degree ma is smaller than 20 g/dm2.
The rate of reduction increases when corrosion degree ma increases from 20 to 40 g/dm2.
The parameter k tends to be stable when corrosion degree ma is larger than 40 g/dm2. The
variation of parameter w differs from that of parameter k. Parameter w decreases when
corrosion degree ma is smaller than 20 g/dm2. Then with the increasing of corrosion degree
ma, parameter w tends to be stable.
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Combining Equations (17), (19) and (20), the function for the variation of the autocor-
relation function with the corrosion degree ma can be obtained. According to Equation (16),
the Fourier transform of the autocorrelation function is the power spectrum function.
Therefore, the function for the variation of the power spectrum function with the corrosion
degree ma can be expressed as

Sh(w)= 2
∫ +∞

0 R(τ)eiwτdτ
R(τ) = exp(−k|τ|)(cos(wτ))
k = 0.05665 + 1.57188

1+(ma/27.5374)8.14368

w = 0.00402× 0.3864(ma/6.6195)

(21)

Based on Equations (9)–(10), the stochastic function of one-dimensional stationary
stochastic process {h(x)} can be written as

h(x) =
√

2
N−1

∑
n=0

√
2Sh(wn)∆w cos(wnx + φn) (22)

Substituting Equation (21) into Equation (22), the stochastic process {h(x)} with different
corrosion degrees can be simulated.

3.4. Stochastic Result Validation

Based on the above mathematical model of one-dimension stochastic process, the
two-dimensional contour curves of corroded surfaces with different corrosion degrees can
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be generated, as shown in Figure 14. These sample curves fluctuate around 0. With the
increase in corrosion degree, the fluctuation amplitude of the sample curve increases. It
represents the corroded surface becoming rougher.
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In order to prove the reliability of the mathematical model, the standard deviation σ,
arithmetic mean height Sa and maximum height Sz of randomly generated two-dimensional
contour curves and experimental samples are compared [32,33]. Standard deviation σ
represents the dispersion degree of surface height of the two-dimensional contour curve. It
can be calculated as

σ =

√√√√√ n
∑

i=1
h(xi)

2

n
(23)

where n is the number of points of the two-dimensional contour curve; h(xi) is the surface
height when the coordinate is xi.

The arithmetic mean height Sa is the arithmetic mean of the surface offset within the
sampling area, which reflects the fluctuation of surface height. The calculation formula is
expressed as

The maximum height Sz is the distance between the maximum surface peak height
Sp and the maximum surface valley depth Sv within the sampling range. The calculation
formula is written as

Sz = Sp − Sv (24)

where Sp is the maximum surface peak height; Sv is the maximum surface valley depth.
The comparison results are shown in Figure 15. It can be found that the standard

deviation, arithmetic mean height and maximum height of randomly generated two-
dimensional contour curves are similar to those of the experiment samples. It proves
that the mathematical model of corroded surface topography is reliable. The randomly
generated two-dimensional contour curves can be used to represent the corroded surfaces.
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4. Discussion

For any point on the corroded surface, it is crossed by a lot of two-dimensional contour
curves. For the convenience of computation, any point on the corroded surface is regarded
as the mean value of the height of randomly generated two-dimensional contour curves
through that point in x-direction and y-direction. Therefore, the surface height of any point
of the corroded surface h(x,y) can be expressed as

h(x, y) =
h(x) + h(y)

2
(25)

h(x) =
√

2
N−1

∑
n=0

√
2Sh(wn)∆w cos(wnx + φnx) (26)

h(y) =
√

2
N−1

∑
n=0

√
2Sh(wn)∆w cos

(
wny + φny

)
(27)

According to the sum to product formula of trigonometric functions, Equation (25)
can be written as Equation (29).

cos α + cos β = 2 cos
α + β

2
cos

α− β

2
(28)

h(x, y) = h(x)+h(y)
2

=
√

2


N−1
∑

n=0

√
2Sh(wn)∆w cos

(
(wnx+wny)+(φnx+φny)

2

)
cos
(

(wnx−wny)+(φnx−φny)
2

)
 (29)

Based on the mathematical model of a three-dimensional surface, the stochastic surface
topography of different corrosion degrees is generated, as shown in Figure 16. It is evident
that the corroded surface is rough, and corrosion pits appear randomly on the surface.
In fact, the three-dimensional surface can be regarded as a two-dimensional stochastic
field based on the position coordinates. Generating a three-dimensional surface with
the mathematical model of a one-dimensional stochastic process is a simplified method.
Compared with the simplified method in past works that assumes the corrosion pit is cylin-
drical shaped pits or conical pits, the reconstructed surface topography is more effective in
describing the property of corroded steel surface [15,16].
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5. Conclusions

In this paper, the corrosion characteristics in the submarine soil environment of steel
structure are studied by electrochemical accelerated corrosion experiments. The corrosion
characteristics are summarized through the analysis of electrochemical reactions and mass
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loss. The variation rules of surface topography of corroded steel samples are investigated
by scanning tests. The following conclusion can be drawn:

(1) The mass loss per unit area increases linearly with the corrosion time. Based on
Faraday’s law, the experimental value and theoretical value of mass loss are compared.
The result indicates that when the corrosion time is less than 3 h, the mass loss rates of
two electrochemical reaction processes during which the corrosion product is divalent
iron and trivalent iron, respectively, are similar. With the increasing corrosion time,
the corrosion products of experiments are mainly trivalent iron.

(2) With the increasing corrosion degree, the corroded steel surface becomes rougher, and
the number and size of corrosion pits increase. The height of surface two-dimensional
contour curves under different corrosion degrees obeys the Gaussian distribution.

Based on the spectral representation method, a mathematical model is developed for
a one-dimensional profile of a corroded steel surface. The reliability of the mathematical
model is proved by comparing the standard deviation, arithmetic mean height and maxi-
mum height of reconstructed samples with those of experimental samples. By assuming
that the height of any point on the corroded surface equals the mean value of heights of
randomly generated two-dimensional contour curves through that point along x-direction
and y-direction, the three-dimensional surface can be reconstructed. The mathematical
model can be adapted to reconstruct the surface topography of steel with different corrosion
degrees in the following research on the shearing behavior of soil-corroded steel interface.
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