Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Airborne Data Collection
2.2. Field Validation Surveys
3. Results
3.1. Mapped SGD Plumes
3.2. Airborne and Boat-Based SGD Temperatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connell, J.H. Diversity in tropical rainforests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.H.; Gurney, G.G.; Hughes, T.P.; Álvarez-Romero, J.G.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Grigg, R.W. Community structure, succession and development of coral reefs in Hawaii. Mar. Ecol. Prog. Ser. 1983, 11, 1–14. [Google Scholar] [CrossRef]
- Murray, J. 1. On the Structure and Origin of Coral Reefs and Islands. Proc. R. Soc. Edinb. 1880, 10, 505–518. [Google Scholar] [CrossRef]
- Cabioch, G.; Davies, P.; Done, T.; Gischler, E.; Macintyre, I.; Wood, R.; Woodroffe, C. Encyclopedia of Modern Coral Reefs: Structure, Form and Process; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lowe, R.J.; Falter, J.L. Oceanic forcing of coral reefs. Annu. Rev. Mar. Sci. 2015, 7, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Munday, P.; Leis, J.; Lough, J.; Paris, C.; Kingsford, M.; Berumen, M.L.; Lambrechts, J. Climate change and coral reef connectivity. Coral Reefs 2009, 28, 379–395. [Google Scholar] [CrossRef]
- McLaughlin, C.; Smith, C.; Buddemeier, R.; Bartley, J.; Maxwell, B. Rivers, runoff, and reefs. Glob. Planet. Chang. 2003, 39, 191–199. [Google Scholar] [CrossRef]
- Paytan, A.; Shellenbarger, G.G.; Street, J.H.; Gonneea, M.E.; Davis, K.; Young, M.B.; Moore, W.S. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 2006, 51, 343–348. [Google Scholar] [CrossRef]
- Street, J.H.; Knee, K.L.; Grossman, E.E.; Paytan, A. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawaiʻi. Mar. Chem. 2008, 109, 355–376. [Google Scholar] [CrossRef]
- Silbiger, N.J.; Donahue, M.J.; Lubarsky, K. Submarine groundwater discharge alters coral reef ecosystem metabolism. Proc. R. Soc. B 2020, 287, 20202743. [Google Scholar] [CrossRef]
- Moosdorf, N.; Stieglitz, T.; Waska, H.; Dürr, H.H.; Hartmann, J. Submarine groundwater discharge from tropical islands: A review. Grundwasser 2015, 20, 53–67. [Google Scholar] [CrossRef]
- Gove, J.M.; Williams, G.J.; Lecky, J.; Brown, E.; Conklin, E.; Counsell, C.; Davis, G.; Donovan, M.K.; Falinski, K.; Kramer, L. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 2023, 621, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Oehler, T.; Bakti, H.; Lubis, R.F.; Purwoarminta, A.; Delinom, R.; Moosdorf, N. Nutrient dynamics in submarine groundwater discharge through a coral reef (western Lombok, Indonesia). Limnol. Oceanogr. 2019, 64, 2646–2661. [Google Scholar] [CrossRef]
- Tait, D.R.; Santos, I.R.; Lamontagne, S.; Sippo, J.Z.; McMahon, A.; Jeffrey, L.C.; Maher, D.T. Submarine groundwater discharge exceeds river inputs as a source of nutrients to the Great Barrier Reef. Environ. Sci. Technol. 2023, 57, 15627–15634. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Review of the role of remote sensing for submarine groundwater discharge. New Water Policy Pract. 2015, 2, 30–50. [Google Scholar] [CrossRef]
- Moore, W.S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [PubMed]
- McGowan, M.P. Submarine Groundwater Discharge: Freshwater and Nutrient Input into Hawaii’s Coastal Zone. Master’s Thesis, University of Hawaii at Mānoa, Honolulu, HI, USA, 2004. [Google Scholar]
- Caineta, J.; Thomas, B.F.; Bain, D.J. Submarine groundwater discharge detection through remote sensing: An application of Landsat 7 and 8 in Hawaiʻi and Ireland. Remote Sens. Environ. 2022, 279, 113109. [Google Scholar] [CrossRef]
- MacDonald, G.A.; Abbot, A.T.; Peterson, F.L. Volcanoes in the Sea: The Geology of Hawaii; University of Hawaii Press: Honolulu, HI, USA, 1983; p. 517. [Google Scholar]
- Oberle, F.K.; Prouty, N.G.; Swarzenski, P.W.; Storlazzi, C.D. High-resolution observations of submarine groundwater discharge reveal the fine spatial and temporal scales of nutrient exposure on a coral reef: Faga’alu, AS. Coral Reefs 2022, 41, 849–854. [Google Scholar] [CrossRef]
- Gove, J.M.; Whitney, J.L.; McManus, M.A.; Lecky, J.; Carvalho, F.C.; Lynch, J.M.; Li, J.; Neubauer, P.; Smith, K.A.; Phipps, J.E. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. USA 2019, 116, 24143–24149. [Google Scholar] [CrossRef]
- Johnson, A.G. Groundwater discharge from the leeward half of the Big Island, Hawaii. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2008. [Google Scholar]
- Carlson, R.R.; Crowder, L.B.; Martin, R.E.; Asner, G.P. The effect of reef morphology on coral recruitment at multiple spatial scales. Proc. Natl. Acad. Sci. USA 2024, 121, e2311661121. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Martin, R.E.; Foo, S.A.; Heckler, J.; Neilson, B.J.; Gove, J.M. Mapped coral mortality and refugia in an archipelago-scale marine heat wave. Proc. Natl. Acad. Sci. USA 2022, 119, e2123331119. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Heckler, J.; Knapp, D.E.; Balzotti, C.; Shafron, E.; Martin, R.E.; Neilson, B.J.; Gove, J.M. Large-scale mapping of live corals to guide reef conservation. Proc. Natl. Acad. Sci. USA 2020, 117, 33711–33718. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012, 124, 454–465. [Google Scholar] [CrossRef]
- Tamborski, J.J.; Rogers, A.D.; Bokuniewicz, H.J.; Cochran, J.K.; Young, C.R. Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sens. Environ. 2015, 171, 202–217. [Google Scholar] [CrossRef]
- Williams, E.L. Multi-Scale Thermal Mapping of Submarine Groundwater Discharge in Coastal Ecosystems of Volcanic Islands. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2023. [Google Scholar]
- Knee, K.L.; Street, J.H.; Grossman>, E.E.; Boehm, A.B.; Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, USA). Limnol. Oceanogr. 2010, 55, 1105–1122. [Google Scholar] [CrossRef]
- Bishop, J.M.; Glenn, C.R.; Amato, D.W.; Dulai, H. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol. Reg. Stud. 2017, 11, 194–218. [Google Scholar] [CrossRef]
- Mezzacapo, M.; Donohue, M.J.; Smith, C.; El-Kadi, A.; Falinski, K.; Lerner, D.T. Hawaiʻi’s Cesspool Problem: Review and Recommendations for Water Resources and Human Health. J. Contemp. Water Res. Educ. 2020, 170, 35–75. [Google Scholar] [CrossRef]
- Abaya, L.M.; Wiegner, T.N.; Beets, J.P.; Colbert, S.L.; Kaile’a, M.C.; Kramer, K.L. Spatial distribution of sewage pollution on a Hawaiian coral reef. Mar. Pollut. Bull. 2018, 130, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Foo, S.A.; Walsh, W.J.; Lecky, J.; Marcoux, S.; Asner, G.P. Impacts of pollution, fishing pressure, and reef rugosity on resource fish biomass in West Hawaii. Ecol. Appl. 2021, 31, e2213. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res. Ocean. 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asner, G.P.; Vaughn, N.R.; Heckler, J. Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans 2024, 5, 547-559. https://doi.org/10.3390/oceans5030031
Asner GP, Vaughn NR, Heckler J. Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans. 2024; 5(3):547-559. https://doi.org/10.3390/oceans5030031
Chicago/Turabian StyleAsner, Gregory P., Nicholas R. Vaughn, and Joseph Heckler. 2024. "Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island" Oceans 5, no. 3: 547-559. https://doi.org/10.3390/oceans5030031
APA StyleAsner, G. P., Vaughn, N. R., & Heckler, J. (2024). Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans, 5(3), 547-559. https://doi.org/10.3390/oceans5030031