Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = submarine hydrothermal sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9585 KB  
Article
The Small-Scale Fluid Heterogeneity in the Tongguan Hydrothermal Field (27.1° S, Mid-Atlantic Ridge): Evidence from Mineralogical and Sulfur Isotope Study of the Hydrothermal Sulfide
by Bing Li, Xuefa Shi, Chuanshun Li, Sai Wang, Quanshu Yan, Jun Ye, Yuan Dang and Xisheng Fang
Minerals 2025, 15(3), 264; https://doi.org/10.3390/min15030264 - 3 Mar 2025
Viewed by 912
Abstract
Hydrothermal activity on the modern seafloor varies depending on the tectonic setting. In particular, the neovolcanic zones (NVZs) along mid-ocean ridges, where magmatism is intense, generally host high-temperature hydrothermal activities. These high-temperature hydrothermal activities on the NVZs can promote the development of many [...] Read more.
Hydrothermal activity on the modern seafloor varies depending on the tectonic setting. In particular, the neovolcanic zones (NVZs) along mid-ocean ridges, where magmatism is intense, generally host high-temperature hydrothermal activities. These high-temperature hydrothermal activities on the NVZs can promote the development of many polymetallic sulfide deposits. Currently, many high-temperature hydrothermal activities and sulfide accumulations have been discovered on the NVZs of major mid-ocean ridges worldwide, but relatively few have been found in the Southern Mid-Atlantic Ridge (SMAR), which limits our understanding of the hydrothermal mineralization characteristics on the NVZs of SMAR. Fortunately, in 2015, a new hydrothermal field—Tongguan—developed on the NVZ of the SMAR was discovered. In this study, we conducted mineralogical and sulfur isotope studies on hydrothermal chimney and massive sulfide samples collected from the Tongguan field. We revealed the mineral composition and growth sequence in the chimney structures and sulfides and discovered two different chimney growth patterns featuring rhythmic banding and opal-filled structures. Additionally, sulfur isotopes suggest the presence of mixing between seawater within the oceanic crust and the upwelling hydrothermal fluid in this hydrothermal field. Our investigation revealed small-scale fluid heterogeneities during the submarine hydrothermal mineralization process, which is due to fluctuations in fluid temperatures and mineral deposition within individual vent frameworks. This work provides a reference for further understanding and comprehension of hydrothermal mineralization on the NVZs of SMAR. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

27 pages, 29442 KB  
Article
Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps
by Alexey A. Klyuvitkin, Marina D. Kravchishina, Dina P. Starodymova, Anton V. Bulokhov and Alla Yu. Lein
J. Mar. Sci. Eng. 2024, 12(12), 2339; https://doi.org/10.3390/jmse12122339 - 20 Dec 2024
Viewed by 1593
Abstract
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at [...] Read more.
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at the Jan Mayen hydrothermal vent field area at 71° N and 6° W of the southernmost Mohns Ridge in the Norwegian–Greenland Sea. This area is characterized by high magmatic activity, axial volcanic ridges, and mafic-hosted volcanogenic massive sulfide deposits. Data on sinking particle fluxes from two hydrothermal settings, the Troll Wall and Soria Moria vent fields, located about 4 km apart, are discussed in the article. In particular, the study emphasize the differences between two hydrothermal settings from each other that demonstrate the geodiversity of hydrothermal processes within the relatively shallow Jan Mayen hydrothermal vent field area affected by the Iceland and Jan Mayen hotspots. The fluxes of sinking hydrothermally derived particles (barite, gypsum, non-crystalline Fe-Si oxyhydroxides, and Fe, Zn, and Cu sulfides) obtained at the Jan Mayen hydrothermal vents made it possible to elucidate the characteristic features of their buoyancy plumes and compare them with similar data reported for other submarine hydrothermal systems. In terms of the composition of the deep-sea hydrothermal particles from buoyant plumes, the studied vent fields are most similar to the Menez Gwen and Lucky Strike vent fields affected by the Azores hotspot. The supply of hydrothermally derived matter is accompanied by normal pelagic/hemipelagic sedimentation, which is dominated by biogenic particles, especially in the upper water layers. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

21 pages, 4181 KB  
Article
Detection of Harmful H2S Concentration Range, Health Classification, and Lifespan Prediction of CH4 Sensor Arrays in Marine Environments
by Kai Zhang, Yongwei Zhang, Jian Wu, Tao Wang, Wenkai Jiang, Min Zeng and Zhi Yang
Chemosensors 2024, 12(9), 172; https://doi.org/10.3390/chemosensors12090172 - 29 Aug 2024
Viewed by 1964
Abstract
Underwater methane (CH4) detection technology is of great significance to the leakage monitoring and location of marine natural gas transportation pipelines, the exploration of submarine hydrothermal activity, and the monitoring of submarine volcanic activity. In order to improve the safety of [...] Read more.
Underwater methane (CH4) detection technology is of great significance to the leakage monitoring and location of marine natural gas transportation pipelines, the exploration of submarine hydrothermal activity, and the monitoring of submarine volcanic activity. In order to improve the safety of underwater CH4 detection mission, it is necessary to study the effect of hydrogen sulfide (H2S) in leaking CH4 gas on sensor performance and harmful influence, so as to evaluate the health status and life prediction of underwater CH4 sensor arrays. In the process of detecting CH4, the accuracy decreases when H2S is found in the ocean water. In this study, we proposed an explainable sorted-sparse (ESS) transformer model for concentration interval detection under industrial conditions. The time complexity was decreased to O (n logn) using an explainable sorted-sparse block. Additionally, we proposed the Ocean X generative pre-trained transformer (GPT) model to achieve the online monitoring of the health of the sensors. The ESS transformer model was embedded in the Ocean X GPT model. When the program satisfied the special instructions, it would jump between models, and the online-monitoring question-answering session would be completed. The accuracy of the online monitoring of system health is equal to that of the ESS transformer model. This Ocean-X-generated model can provide a lot of expert information about sensor array failures and electronic noses by text and speech alone. This model had an accuracy of 0.99, which was superior to related models, including transformer encoder (0.98) and convolutional neural networks (CNN) + support vector machine (SVM) (0.97). The Ocean X GPT model for offline question-and-answer tasks had a high mean accuracy (0.99), which was superior to the related models, including long short-term memory–auto encoder (LSTM–AE) (0.96) and GPT decoder (0.98). Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

26 pages, 19538 KB  
Article
Numerical Simulation of Chemical Reactions’ Influence on Convective Heat Transfer in Hydrothermal Circulation Reaction Zones
by Yina Luo, Yuebo Feng, Da Zhang and Yan Li
Energies 2024, 17(11), 2442; https://doi.org/10.3390/en17112442 - 21 May 2024
Cited by 3 | Viewed by 1511
Abstract
Chemical reactions, mineral diffusion, and deposition are pivotal in understanding the mechanisms of mineral deposition and the formation of seafloor sulfides in the hydrothermal circulation process. To understand the formation process of anhydrite in submarine hydrothermal systems, a computational model that combined component [...] Read more.
Chemical reactions, mineral diffusion, and deposition are pivotal in understanding the mechanisms of mineral deposition and the formation of seafloor sulfides in the hydrothermal circulation process. To understand the formation process of anhydrite in submarine hydrothermal systems, a computational model that combined component transport and chemical reactions was established and simulated using the mass transport model. The deposition rate of calcium sulfate was defined, and the effects of factors such as porosity, ion concentration, and inflow velocity on the temperature field in the reaction zone were thoroughly investigated. The distribution of temperature, porosity, and velocity during the reaction process was obtained, allowing for the identification of the chemical reaction patterns of certain ions in the early stages of hydrothermal activity. The simulation revealed the occurrence of biochemical reactions between two types of ions, leading to their deposition on the solid framework of a porous medium. With the increase in inflow velocity and solute concentration, the average porosities of the porous medium decreased by 0.495% and 0.468%, respectively, which consequently altered the structure of the rock. Such findings contribute to the inference of formation and extinction mechanisms of seafloor crusts and hydrothermal chimneys. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

19 pages, 5678 KB  
Article
Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences
by Yan Wang, Zhongwei Wu, Yi Huang, Xiaoming Sun, Jinhui Yan, Fan Yang, Zhengxin Yin and Li Xu
Minerals 2023, 13(7), 843; https://doi.org/10.3390/min13070843 - 22 Jun 2023
Cited by 2 | Viewed by 2195
Abstract
Submarine hydrothermal sulfides from the ultraslow-spreading Southwest Indian Ridge (SWIR) were sampled from three hydrothermal fields, and the Fe-Cu-Zn isotopic compositions were analyzed in this study. The Fe isotopes ranged from −0.011‰ to −1.333‰. We believe the processes controlling the Fe isotope variability [...] Read more.
Submarine hydrothermal sulfides from the ultraslow-spreading Southwest Indian Ridge (SWIR) were sampled from three hydrothermal fields, and the Fe-Cu-Zn isotopic compositions were analyzed in this study. The Fe isotopes ranged from −0.011‰ to −1.333‰. We believe the processes controlling the Fe isotope variability in the hydrothermal systems include the sulfide precipitation process, the initial isotopic composition of the hydrothermal fluid, and the temperature during precipitation. Among these factors, the sulfide precipitation process is the dominant one. The Cu isotope compositions of the sulfides varied from −0.364‰ to 0.892‰, indicating that the hydrothermal fluid preferentially leached 65Cu in the early stages and that hydrothermal reworking led to decreases in the Cu isotopes in the later stages. In addition, because mass fractionation occurred during sulfide precipitation, the Zn isotope variations ranged from −0.060‰ to 0.422‰. Combined with the S isotopic compositions, these results also implied that different Fe-Cu-Zn isotopic fractionation mechanisms prevailed for the different sample types. Based on these results, we are sure that the metallic elements, including Fe, Cu, and Zn, were derived from the mantle in the SWIR hydrothermal field, and the Fe-Cu isotope results indicated that these metallic elements were provided by fluid leaching processes. Using the isotopic fractionation and sulfide results, we calculated that the Fe-Cu-Zn isotopic compositions of the hydrothermal fluid in this field were δ56Fe(fluid): −0.8~0.0‰; δ65Cu(fluid): 0.3~1.3‰; and δ66Zn(fluid): 0~0.48‰. Full article
(This article belongs to the Special Issue Geology and Geochemistry of Marine Mineral Resources)
Show Figures

Figure 1

13 pages, 5712 KB  
Article
Numerical Simulation-Based Analysis of Seafloor Hydrothermal Plumes: A Case Study of the Wocan-1 Hydrothermal Field, Carlsberg Ridge, Northwest Indian Ocean
by Kanghao Wang, Xiqiu Han, Yejian Wang, Yiyang Cai, Zhongyan Qiu and Xiaoquan Zheng
J. Mar. Sci. Eng. 2023, 11(5), 1070; https://doi.org/10.3390/jmse11051070 - 18 May 2023
Cited by 4 | Viewed by 2804
Abstract
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of [...] Read more.
Understanding the dynamics of deep-sea hydrothermal plumes and the depositional pattern of hydrothermal particles is essential for tracking the submarine hydrothermal venting site, prospecting polymetallic sulfide resources, as well as deciphering biogeochemistry cycling of marine elements. In this paper, a numerical model of the deep-sea hydrothermal plume is established based on the topography and long-term current monitoring data of the Wocan-1 hydrothermal field (WHF-1), Carlsberg Ridge, Northwest Indian Ocean. The model allows for a reconstruction of the hydrothermal plume in terms of its structure, velocity field, and temperature field. The relationships between the maximum height of the rising plume and the background current velocity, and between the height of the neutral-buoyancy layer and the background current velocity are established, respectively. The transport patterns of the hydrothermal particles and their controlling factors are revealed. Using hydrothermal particles with a density of ~5000 kg/m3 (i.e., pyrite grains) as an example, it is found that pyrite larger than 1 mm can only be found near the venting site. Those in the size 0.3–0.5 mm can only be found within 137–240 m from the venting site, while those smaller than 0.2 mm can be transported over long distances of more than 1 km. Using the vertical temperature profiling data of WHF-1 obtained during the Jiaolong submersible diving cruise in March 2017, we reconstruct the past current velocity of 10 cm/s, similar to the current data retrieved from the observational mooring system. Our model and the findings contribute to a better understanding of the hydrothermal system of WHF-1, and provide useful information for tracing the hydrothermal vents, prospecting the submarine polymetallic sulfide resources, designing the long-term observation networks, and relevant studies on element cycling and energy budget. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography II)
Show Figures

Figure 1

12 pages, 5041 KB  
Article
Using Apatite to Track Volatile Evolution in the Shallow Magma Chamber below the Yonaguni Knoll IV Hydrothermal Field in the Southwestern Okinawa Trough
by Zuxing Chen, Landry Soh Tamehe, Haiyan Qi, Yuxiang Zhang, Zhigang Zeng and Mingjiang Cai
J. Mar. Sci. Eng. 2023, 11(3), 583; https://doi.org/10.3390/jmse11030583 - 9 Mar 2023
Cited by 2 | Viewed by 2177
Abstract
The Yonaguni Knoll IV is an active seafloor hydrothermal system associated with submarine silicic volcanism located in the “cross back-arc volcanic trail” (CBVT) in the southwestern Okinawa Trough. However, the behavior of volatiles during magmatic differentiation in the shallow silicic magma chamber is [...] Read more.
The Yonaguni Knoll IV is an active seafloor hydrothermal system associated with submarine silicic volcanism located in the “cross back-arc volcanic trail” (CBVT) in the southwestern Okinawa Trough. However, the behavior of volatiles during magmatic differentiation in the shallow silicic magma chamber is unclear. Here, the volatile contents of apatite inclusions trapped in different phenocrysts (orthopyroxene and amphibole) and microphenocrysts in the rhyolite from the Yonaguni Knoll IV hydrothermal field were analyzed by using electron microprobe analysis, which aims to track the behavior of volatiles in the shallow magma chamber. Notably, the ‘texturally constrained’ apatites showed a decreasing trend of XCl/XOH and XF/XCl ratios. Based on the geochemical analyses in combination with thermodynamic modeling, we found that the studied apatites were consistent with the mode of volatile-undersaturated crystallization. Therefore, volatiles were not saturated in the early stage of magmatic differentiation in the shallow rhyolitic magma chamber, and consequently, the metal elements were retained in the rhyolitic melt and partitioned into crystalline magmatic sulfides. Additionally, previous studies suggested that the shallow rhyolitic magma chamber was long-lived and periodically replenished by mafic magma. The injection of volatile-rich and oxidized subduction-related mafic magmas can supply abundant volatiles and dissolve magmatic sulfide in the shallow magma chamber. These processes are important for the later-stage of volatile exsolution, while the forming metal-rich magmatic fluids contribute to the overlying Yonaguni Knoll IV hydrothermal system. Full article
Show Figures

Figure 1

8 pages, 3022 KB  
Brief Report
Timescales of Magma Mixing Beneath the Iheya Ridge, Okinawa Trough: Implications for the Stability of Sub-Seafloor Magmatic Systems
by Yuxiang Zhang, Zuxing Chen and Zhigang Zeng
J. Mar. Sci. Eng. 2023, 11(2), 375; https://doi.org/10.3390/jmse11020375 - 8 Feb 2023
Cited by 3 | Viewed by 1757
Abstract
Submarine volcanic eruptions can be destructive for marine environments and resources. Magma mixing is considered to be an important trigger for volcanic eruptions. Determining the magma residence time from mixing to eruption is conducive to assessing the stability of magmatic systems, especially beneath [...] Read more.
Submarine volcanic eruptions can be destructive for marine environments and resources. Magma mixing is considered to be an important trigger for volcanic eruptions. Determining the magma residence time from mixing to eruption is conducive to assessing the stability of magmatic systems, especially beneath the seafloor where in situ volcano monitoring is inaccessible. Here, we estimated the timescale of magma mixing beneath the Iheya Ridge, Okinawa Trough, which is characterized by pervasive magma mixing. We focused on andesitic and rhyolitic magma generated by basalt–rhyolite mixing and rhyolite–rhyolite mixing, respectively. By taking advantage of the Mg diffusion chronometry, we showed that the andesitic magma resided in the magma chamber for very short time (~0.1–0.3 years), whereas the residence time of the rhyolitic magma was much longer (~80–120 years). The different times might be in part related to the different rheology of the mixed magmas. The short residence time of the andesitic magma suggested efficient magma mixing that allowed the andesites to be erupted, which may explain the appearance of scarce andesites in basalt–rhyolite dominant settings. However, the rapid mixing and eruption of magma is a disadvantage for the development and preservation of seafloor hydrothermal resources. Therefore, we suggest that the stability of sub-seafloor magma systems must be evaluated during the assessment of seafloor sulfide resources and mining prospects. Full article
Show Figures

Figure 1

20 pages, 5195 KB  
Article
A Correction Method of Positioning for Deep-Sea Camera Data
by Yue Zhao, Shijuan Yan, Gang Yang, Chuanshun Li, Dewen Du, Jun Ye, Xiangwen Ren, Qiukui Zhao and Xinyu Shi
Minerals 2022, 12(9), 1135; https://doi.org/10.3390/min12091135 - 7 Sep 2022
Cited by 2 | Viewed by 2104
Abstract
The deep-sea camera is the most intuitive and effective detection tool for seabed investigation, and the accuracy of camera positioning can ensure its data value. A bundled ultra-short baseline (USBL) positioning system is generally employed to realize the spatial positioning of an underwater [...] Read more.
The deep-sea camera is the most intuitive and effective detection tool for seabed investigation, and the accuracy of camera positioning can ensure its data value. A bundled ultra-short baseline (USBL) positioning system is generally employed to realize the spatial positioning of an underwater camera. The influence of the underwater acoustic environment and other factors cause USBL positioning data to become unstable, leading to abnormalities, or missing data, which creates difficulties for camera positioning. In order to solve the problem, this paper selects the seabed camera data of the “XunMei” mineralization area acquired from the China south Atlantic voyage. Moreover, the USBL positioning data, combined with high-precision terrain, bathymetry, and ship-borne GPS positioning data, were analyzed and mined comprehensively. In order to eliminate the abnormal data, a four-dimensional anomaly culling model of USBL positioning data is established based on the time and space scales through the ArcGIS tool. Then, modeling, simulation, and interpolation prediction are performed for the positioning data after anomaly elimination to achieve the geographic location correction of the hydrothermal sulfide near-bottom camera and its data. This method has achieved good results in practical applications. The corrected water depth profile of the camera survey line is compatible with the high-precision terrain detected at different times in the same area. The characteristics of the corrected video images are compatible with the sample characteristics of the TV grab sampling position. A set of high-quality positioning data (sampling test 5000 points) not participating in the correction model is compared with the corrected USBL data at the same position. The following results are obtained: in the case of a confidence interval of 95%, the correlation coefficient is 1, the significance is 0, there is no significant difference between the corrected data after the simulation and its original positioning data (not participating in the model), and the correction error is below 5 m. This shows that the problem of locating a submarine camera and its data can be solved using the proposed four-dimensional anomaly elimination model established based on the USBL positioning data, high precision terrain, bathymetry and GPS data, and the corresponding cubic polynomial least-squares correction model. Full article
(This article belongs to the Special Issue AI-Based GIS for Pinpointing Mineral Deposits)
Show Figures

Figure 1

18 pages, 4362 KB  
Article
A Position Fixing Method for Near-Bottom Camera Data on the Seafloor
by Xinyu Shi, Shijuan Yan, Chuanshun Li, Gang Yang, Yue Zhao, Dewen Du, Qiukui Zhao, Xiangwen Ren and Fengdeng Shi
Minerals 2022, 12(8), 1034; https://doi.org/10.3390/min12081034 - 17 Aug 2022
Cited by 1 | Viewed by 2321
Abstract
The submarine camera system is one of the most effective detection methods for detecting seabed hydrothermal sulfide. The position fixing of camera equipment is generally achieved by the ultra-short baseline (USBL) positioning systems. The dynamic changes in the marine environment and the loss [...] Read more.
The submarine camera system is one of the most effective detection methods for detecting seabed hydrothermal sulfide. The position fixing of camera equipment is generally achieved by the ultra-short baseline (USBL) positioning systems. The dynamic changes in the marine environment and the loss of acoustic signals lead to many abnormal points in the USBL positioning data. The existing methods cannot perform position fixing correction for USBL positioning data with many scattered abnormal points. This paper selects and focuses on the seabed camera data of the XunMei mineralization area acquired from the China South Atlantic voyage and employs the DTW optimization algorithm to solve this problem. This method is implemented based on Python language and an ArcGIS technical environment, and a total of 97,469 topographic profiles with 10 m spacing are extracted from the topographic data of the object area with 1m accuracy. Moreover, the highest similarity (95.9%) is obtained between the bathymetric profile of the camera survey line and the above topographic profile. The results indicate that the proposed algorithm is fast and effective, and the positioning correction accuracy of the deep-sea near-bottom camera data can reach the meter level (determined by the topographic data accuracy). Moreover, the solution can provide services for accurately position fixing near-bottom exploration equipment and its exploration data. It can also solve the problem of underwater position fixing problem that a GPS cannot solve. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 4500 KB  
Article
Volcanic Gas Hazard Assessment in the Baia di Levante Area (Vulcano Island, Italy) Inferred by Geochemical Investigation of Passive Fluid Degassing
by Iole Serena Diliberto, Marianna Cangemi, Antonina Lisa Gagliano, Salvatore Inguaggiato, Mariana Patricia Jacome Paz, Paolo Madonia, Agnes Mazot, Maria Pedone and Antonino Pisciotta
Geosciences 2021, 11(11), 478; https://doi.org/10.3390/geosciences11110478 - 21 Nov 2021
Cited by 17 | Viewed by 4408
Abstract
In a volcanic area, the composition of air is influenced by the interaction between fluids generated from many different environments (magmatic, hydrothermal, meteoric, and marine). Any physical and chemical variation in one of these subsystems is able to modify the outgassing dynamic. The [...] Read more.
In a volcanic area, the composition of air is influenced by the interaction between fluids generated from many different environments (magmatic, hydrothermal, meteoric, and marine). Any physical and chemical variation in one of these subsystems is able to modify the outgassing dynamic. The increase of natural gas hazard, related to the presence of unhealthy components in air, may depend on temporary changes both in the pressure and chemical gradients that generate transient fluxes of gases and can have many different causes. Sometimes, the content of unhealthy gases approaches unexpected limits, without clear warning. In this case, an altered composition of the air can be only revealed after accurate sampling procedures and laboratory analysis. The investigations presented here are a starting point to response to the demand for a new monitoring program in the touristic area of Baia di Levante at Vulcano Island (Aeolian archipelago, Italy). Three multiparametric geochemical surveys were carried in the touristic area of Baia di Levante at Vulcano Island (Aeolian archipelago, Italy) in 2011, 2014, and 2015. Carbon dioxide (CO2) and hydrogen sulfide (H2S) are the main undesired components, usually present at the local scale. Anomalous CO2 and H2S outputs from soil and submarine bubbling vents were identified; the thermal anomaly of the ground was mapped; atmospheric concentrations of CO2 and H2S were measured in the air 30 cm above the ground surface. Atmospheric concentrations above the suggested limits for the wellbeing of human health were retrieved in open areas where tourists stay and where CO2 can accumulate under absence of wind. Full article
(This article belongs to the Special Issue Environmental Impact of Volcanic Emissions)
Show Figures

Figure 1

12 pages, 2252 KB  
Article
Rapid Extraction Chemistry Using a Single Column for 230Th/U Dating of Quaternary Hydrothermal Sulfides
by Li-Sheng Wang, Ye-Jian Wang, Jun Ye, Xue-Feng Wang, Ju-Le Xiao and Zhi-Bang Ma
Minerals 2021, 11(9), 983; https://doi.org/10.3390/min11090983 - 9 Sep 2021
Cited by 3 | Viewed by 2612
Abstract
230Th/U dating can provide high-precision age constraints on Quaternary hydrothermal sulfides. However, low content of U and Th often involves extraction chemistry for the separation and enrichment of U and Th, but these chemical processes are very complex. We developed a simplified [...] Read more.
230Th/U dating can provide high-precision age constraints on Quaternary hydrothermal sulfides. However, low content of U and Th often involves extraction chemistry for the separation and enrichment of U and Th, but these chemical processes are very complex. We developed a simplified procedure consisting of total sample dissolution and single-column extraction chemistry, which can reduce the time and improve the accuracy of the dating. Concentrated HCl-HF followed by HNO3 was added to ensure complete dissolution. A single column filled with 0.4 mL of AG 1-X8 anion resin was used, then 8 M HNO3, 8 M HCl and 0.1 M HNO3 were used to elute most of the matrix metals, Th and U. This process provided more than 95% recoveries for U and Th, and negligible blanks. Meanwhile, Pb and Bi interferences were tested and showed no effect on the U and Th isotope ratio. The 230Th/238U activity of the Geological Survey of Japan geochemical reference material JZn-1 in secular equilibrium was determined and showed a radioactive equilibrium (1.00 ± 0.01, n = 5, all errors 2σ) and an in-house standard QS-1 was consistent to 0.0078 ± 0.0001 (n = 8, ±2σ) with an average age of 705 ± 10 yrs BP (n = 8, ±2σ). The technique greatly shortens the sample preparation time and allows more concise and effective analysis of U-Th isotopes. It is ideally suited for the high-precision 230Th/U dating of Quaternary submarine hydrothermal sulfides and sulfides from other settings. Full article
(This article belongs to the Topic Advances in Separation and Purification Techniques)
Show Figures

Figure 1

21 pages, 9634 KB  
Article
Reconstruction of Hydrothermal Processes in the Cyprus Type Fe-Cu-Zn Deposits of the Italian Northern Apennines: Results of Combined Fluid Inclusion Microthermometry, SEM-CL Imaging and Trace Element Analyses by LA-ICP-MS
by Gabriella B. Kiss, Zsolt Bendő, Giorgio Garuti, Federica Zaccarini, Edit Király and Ferenc Molnár
Minerals 2021, 11(2), 165; https://doi.org/10.3390/min11020165 - 5 Feb 2021
Cited by 7 | Viewed by 3972
Abstract
Quartz from the stockwork zone of various Cyprus type volcanogenic massive sulfide deposits (Boccassuolo, Reppia, Campegli, Bargone and Vigonzano) from the unmetamorphosed, Jurassic Northern Apennine ophiolites was studied in order to provide details on the submarine hydrothermal conditions and the characteristics for ore [...] Read more.
Quartz from the stockwork zone of various Cyprus type volcanogenic massive sulfide deposits (Boccassuolo, Reppia, Campegli, Bargone and Vigonzano) from the unmetamorphosed, Jurassic Northern Apennine ophiolites was studied in order to provide details on the submarine hydrothermal conditions and the characteristics for ore formation. Our detailed SEM-CL investigation of quartz contributed to a robust characterization and interpretation of primary fluid inclusions and microthermometry data. SEM-CL imaging was also useful for reconstructing the consecutive steps of quartz precipitation. The determination of trace element contents according to growth zoning in quartz by LA-ICP-MS constrained the compositional variations of parent fluids during the hydrothermal activity. A continuously cooling fluid regime characterized each studied volcanogenic massive sulfide (VMS) occurrence although the minimum formation temperatures were different (Bargone: 110–270 °C; Boccassuolo: 60–360 °C; Campegli: 110–225 °C; Reppia: 50–205 °C; Vigonzano: 260–330 °C), the range of temperature most probably depends on the original position of sampling in relation to the centers of the hydrothermal systems. Compositional changes are reflected by variations in the methane content (0.13–0.33 mol/kg) and salinity (2.6–9.3 NaCl equiv. wt. %) in the fluid inclusions of quartz and calcite as well as a changeable Al content (11–1526 ppm) in quartz. This study demonstrates that the combined use of SEM-CL imaging and LA-ICP-MS analyses, coupled with fluid inclusion microthermometry, can constrain the different fluid conditions of ore forming and the barren stages of evolving submarine hydrothermal systems. Full article
Show Figures

Figure 1

29 pages, 18948 KB  
Article
Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater?
by Irina Melekestseva, Valery Maslennikov, Gennady Tret’yakov, Svetlana Maslennikova, Leonid Danyushevsky, Vasily Kotlyarov, Ross Large, Victor Beltenev and Pavel Khvorov
Minerals 2020, 10(9), 743; https://doi.org/10.3390/min10090743 - 22 Aug 2020
Cited by 17 | Viewed by 3992
Abstract
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the [...] Read more.
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the mode of TE occurrence, in sulfides is important, since they are potential sources for byproduct TEs. Isocubanite has the highest Co contents). Chalcopyrite concentrates most Au. Bornite has the highest amounts of Se, Sn, and Te. Crystalline pyrite is a main carrier of Mn. Covellite after isocubanite is a host to the highest Sr, Ag, and Bi contents. Covellite after pyrite accumulates V, Ga and In. The isocubanite+chalcopyrite aggregates in altered gabrro contain the highest amounts of Ni, Zn, As, Mo, Cd, Sb (166 ppm), Tl, and Pb. The trace element geochemistry of sulfides is mainly controlled by local formation conditions. Submarine oxidation results in the formation of covellite and its enrichment in most trace elements relative to primary sulfides. This is a result of incorporation of seawater-derived elements and seawater-affected dissolution of accessory minerals (native gold, galena and clausthalite). Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

19 pages, 654 KB  
Article
Origin of Life’s Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents
by Paul B. Rimmer and Oliver Shorttle
Life 2019, 9(1), 12; https://doi.org/10.3390/life9010012 - 24 Jan 2019
Cited by 74 | Viewed by 12777
Abstract
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV [...] Read more.
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 10 3 1 M concentrations of diacetylene (C4H2), acetylene (C2H2), cyanoacetylene (HC3N), hydrogen cyanide (HCN), bisulfite (likely in the form of salts containing HSO3), hydrogen sulfide (HS) and soluble iron in vent water. One key feedstock molecule, cyanamide (CH2N2), is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation. Full article
Show Figures

Graphical abstract

Back to TopTop