Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences
Abstract
1. Introduction
2. Geologic Setting
3. Samples and Methods
4. Results
5. Discussion
5.1. Fe Isotopes
5.2. Cu Isotopic Results and Discussion
5.3. Zn Isotopic Results and Discussion
5.4. Fe-Cu-Zn Isotopic System in the SWIR
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannington, M.D.; Thompson, G.; Rona, P.A.; Scott, S.D. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature 1988, 333, 64–66. [Google Scholar] [CrossRef]
- Hannington, M.D.; Scott, S.D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides; evidence from sulfide mineralogy and the composition of sphalerite. Econ. Geol. 1989, 84, 1978–1995. [Google Scholar] [CrossRef]
- Hanningron, M.D.; Tivey, M.K.; Larocque, A.C.; Petersen, S.; Rona, P.A. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. Can. Mineral. 1995, 33, 1285–1310. [Google Scholar]
- Herzig, P.M.; Hannington, M.D.; Fouquet, Y.; Von Stackelberg, U.; Petersen, S. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ. Geol. 1993, 88, 2182–2209. [Google Scholar] [CrossRef]
- Murphy, P.J.; Meyer, G. A gold-copper association in ultramafic-hosted hydrothermal sulfides from the Mid-Atlantic Ridge. Econ. Geol. 1998, 93, 1076–1083. [Google Scholar] [CrossRef]
- Moss, R.; Scott, S.D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the Eastern Manus Basin, Papua New Guinea. Can. Mineral. 2001, 39, 957–978. [Google Scholar] [CrossRef]
- Baker, E.T.; Edmonds, H.N.; Michael, P.J.; Bach, W.; Dick, H.J.B.; Snow, J.E.; Walker, S.L.; Banerjee, N.R.; Langmuir, C.H. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem. Geophys. Geosyst. 2004, 5, Q08002. [Google Scholar] [CrossRef]
- Tao, C.H.; Li, H.M.; Huang, W.; Han, X.Q.; Wu, G.H.; Su, X.; Zhou, N.; Lin, J.; He, Y.H.; Zhou, J.P. Mineralogical and geochemical features of sulfide chimneys from the 49°39′ E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin. Sci. Bull. 2011, 56, 2828. [Google Scholar] [CrossRef]
- Georgen, J.E.; Lin, J.; Dick, H.J.B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth Planet. Sci. Lett. 2001, 187, 283–300. [Google Scholar] [CrossRef]
- Sauter, D.; Patriat, P.; Rommevaux-Jestin, C.; Cannat, M.; Briais, A. The Southwest Indian Ridge between 49°15′ E and 57° E: Focused accretion and magma redistribution. Earth Planet. Sci. Lett. 2001, 192, 303–317. [Google Scholar] [CrossRef]
- Muller, M.R.; Minshull, T.A.; White, R.S. Segmentation and melt supply at the Southwest Indian Ridge. Geology 1999, 27, 867–870. [Google Scholar] [CrossRef]
- Ye, J.; Shi, X.; Yang, Y.; Liu, J.; Zhou, G.; Li, N. Mineralogy of sulfides from ultraslow spreading Southwest Indian Ridge 49.6 E hydrothermal field and its metallogenic significance. Acta Mineral. Sin. 2011, 31, 17–29. [Google Scholar]
- Ji, F.; Zhou, H.; Yang, Q.; Gao, H.; Wang, H.; Lilley, M.D. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep Sea Res. 2017, 122, 41–47. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulfides at the modern seafloor a review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- Meyer, G.; Cambon, P.; Etoubleau, J.; Fouquet, Y.; Henry, K.; Murphy, P. Gold-silver mineralization in submarine hydrothermal sulphides: INAA results after ten years of intense prospecting. J. Radioanal. Nucl. Chem. 2000, 244, 583–587. [Google Scholar] [CrossRef]
- Jiang, S.Y. Transition metal isotopes: Analytical methods and geological application. Earth Sci. Front. 2003, 10, 269–278. [Google Scholar]
- Maréchal, C.N.; Télouk, P.; Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 1999, 156, 251–273. [Google Scholar] [CrossRef]
- Belshaw, N.S.; Zhu, X.K.; Guo, Y.; O’Nions, R.K. High precision measurement of iron isotopes by plasma source mass spectrometry. Int. J. Mass Spectrom. 2000, 197, 191–195. [Google Scholar] [CrossRef]
- Zhu, X.K.; O’Nions, R.K.; Guo, Y.; Belshaw, N.S.; Rickard, D. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chem. Geol. 2000, 163, 139–149. [Google Scholar] [CrossRef]
- Beard, B.L.; Johnson, C.M.; Skulan, J.L.; Nealson, K.H.; Cox, L.; Sun, H. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 2003, 195, 87–117. [Google Scholar] [CrossRef]
- Rouxel, O.; Fouquet, Y.; Ludden, J.N. Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes 1 1Associate editor: S. Sheppard. Geochim. Cosmochim. Acta 2004, 68, 2295–2311. [Google Scholar] [CrossRef]
- John, S.G.; Rouxel, O.J.; Craddock, P.R.; Engwall, A.M.; Boyle, E.A. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet. Sci. Lett. 2008, 269, 17–28. [Google Scholar] [CrossRef]
- Liu, S.A.; Huang, J.; Liu, J.; Wörner, G.; Yang, W.; Tang, Y.J.; Chen, Y.; Tang, L.; Zheng, J.; Li, S. Copper isotopic composition of the silicate earth. Earth Planet. Sci. Lett. 2015, 427, 95–103. [Google Scholar] [CrossRef]
- Sharma, M.; Polizzotto, M.; Anbar, A.D. Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 2001, 194, 39–51. [Google Scholar] [CrossRef]
- Chu, N.C.; Johnson, C.M.; Beard, B.L.; German, C.R.; Nesbitt, R.W.; Frank, M.; Bohn, M.; Kubik, P.W.; Usui, A.; Graham, I. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet. Sci. Lett. 2006, 245, 202–217. [Google Scholar] [CrossRef]
- Beard, B.L.; Johnson, C.M.; Von Damm, K.L.; Poulson, R.L. Iron isotope constraints on Fe cycling and mass balance in oxygenated earth oceans. Geology 2003, 31, 629–632. [Google Scholar] [CrossRef]
- Severmann, S.; Johnson, C.M.; Beard, B.L.; German, C.R.; Edmonds, H.N.; Chiba, H.; Green, D.R.H. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′ N. Earth Planet. Sci. Lett. 2004, 225, 63–76. [Google Scholar] [CrossRef]
- Bennett, S.A.; Rouxel, O.; Schmidt, K.; Garbe-Schönberg, D.; Statham, P.J.; German, C.R. Iron isotope fractionation in a buoyant hydrothermal plume, 5° S Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2009, 73, 5619–5634. [Google Scholar] [CrossRef]
- Wang, S.; Sun, W.; Huang, J.; Zhai, S.; Li, H. Coupled Fe–S isotope composition of sulfide chimneys dominated by temperature heterogeneity in seafloor hydrothermal systems. Sci. Bull. 2020, 65, 1767–1774. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, X.; Chen, S.; De Jong, J.; Mattielli, N.; Qi, H.; Pearce, C.; Murton, B.J. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides. Mar. Geol. 2021, 436, 106491. [Google Scholar] [CrossRef]
- Teng, F.Z.; Dauphas, N.; Huang, S.; Marty, B. Iron isotopic systematics of oceanic basalts. Geochim. Cosmochim. Acta 2013, 107, 12–26. [Google Scholar] [CrossRef]
- Moeller, K.; Schoenberg, R.; Grenne, T.; Thorseth, I.H.; Drost, K.; Pedersen, R.B. Comparison of iron isotope variations in modern and Ordovician siliceous Fe oxyhydroxide deposits. Geochim. Cosmochim. Acta 2014, 126, 422–440. [Google Scholar] [CrossRef]
- Rouxel, O.; Fouquet, Y.; Ludden, J.N. Copper isotope systematics of the lucky strike, rainbow, and logatchev sea-floor hydrothermal fields on the mid-atlantic ridge. Econ. Geol. 2004, 99, 585–600. [Google Scholar] [CrossRef]
- Mason, T.F.D.; Weiss, D.J.; Chapman, J.B.; Wilkinson, J.J.; Tessalina, S.G.; Spiro, B.; Horstwood, M.S.A.; Spratt, J.; Coles, B.J. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem. Geol. 2005, 221, 170–187. [Google Scholar] [CrossRef]
- Markl, G.; Lahaye, Y.; Schwinn, G. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim. Cosmochim. Acta 2006, 70, 4215–4228. [Google Scholar] [CrossRef]
- Kim, J.; Moon, J.; Lee, I.; Kim, Y.; Larson, P. Copper isotope composition of seafloor hydrothermal vents in back-arc and arc settings, Western Pacific. In Proceedings of the Goldschmidt Conference Abstracts, Sacramento, CA, USA, 8–14 June 2014; Geochemical Society and European Association of Geochemistry. 2014; p. 1249. [Google Scholar]
- Fernandez, A.; Borrok, D.M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chem. Geol. 2009, 264, 1–12. [Google Scholar] [CrossRef]
- Doucet, L.S.; Mattielli, N.; Ionov, D.A.; Debouge, W.; Golovin, A.V. Zn isotopic heterogeneity in the mantle: A melting control? Earth Planet. Sci. Lett. 2016, 451, 232–240. [Google Scholar] [CrossRef]
- Samanta, M.; Ellwood, M.J.; Sinoir, M.; Hassler, C.S. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 2017, 192, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Chu, F.; Wang, H.; Li, Z.; Yu, X.; Bi, D.; He, Y. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges. J. Mar. Syst. 2018, 180, 191–196. [Google Scholar] [CrossRef]
- Georgen, J.E.; Kurz, M.D.; Dick, H.J.B.; Lin, J. Low 3He/4He ratios in basalt glasses from the Western Southwest Indian Ridge (10°–24° E). Earth Planet. Sci. Lett. 2003, 206, 509–528. [Google Scholar] [CrossRef]
- Grindlay, N.R.; Madsen, J.A.; Rommevaux-Jestin, C.; Sclater, J. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian Ridge (15°30′ E to 25° E). Earth Planet. Sci. Lett. 1998, 161, 243–253. [Google Scholar] [CrossRef]
- Li, X.; Chu, F.; Lei, J.; Zhao, J. Advances in slow-ultraslow-spreading Southwest Indian Ridge. Adv. Earth Sci. 2008, 23, 595–603. [Google Scholar] [CrossRef]
- Li, X.H.; Lei, J.J.; Zhao, J.R. Characteristics of seafloor ultramafic hosted hydrothermal systems and the implications. Mar. Geol. Quat. Geol. 2008, 28, 133–139. [Google Scholar]
- Tao, C.; Lin, J.; Guo, S.; Chen, Y.J.; Wu, G.; Han, X.; German, C.R.; Yoerger, D.R.; Zhou, N.; Li, H.; et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 2012, 40, 47–50. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Jin, X.; Zhou, J.; Wu, T.; He, Y.; Deng, X.; Gu, C.; Zhang, G.; Liu, W. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, J.; Gao, J. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts. Sci. China Earth Sci. 2011, 54, 1177–1188. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, J.; Gao, J. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge. Sci. China Earth Sci. 2013, 56, 2186–2197. [Google Scholar] [CrossRef]
- Ren, M.; Chen, J.; Shao, K.; Zhang, S. Metallogenic information extraction and quantitative prediction process of seafloor massive sulfide resources in the Southwest Indian Ocean. Ore Geol. Rev. 2016, 76, 108–121. [Google Scholar] [CrossRef]
- Zhao, M.; Qiu, X.; Li, J.; Sauter, D.; Ruan, A.; Chen, J.; Cannat, M.; Singh, S.; Zhang, J.; Wu, Z.; et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′ E). Geochem. Geophys. Geosyst. 2013, 14, 4544–4563. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Tao, C.; Ruan, A.; Zhang, G.; Guo, Z.; Huang, E. The deep structure of the Duanqiao hydrothermal field at the Southwest Indian Ridge. Acta Oceanol. Sin. 2018, 37, 73–79. [Google Scholar] [CrossRef]
- Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.; Long, J.; Ma, Z.; Wang, L. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Mar. Geophys. Res. 2017, 38, 71–83. [Google Scholar] [CrossRef]
- Han, X.; Wu, G.; Cui, R.; Qiu, Z.; Deng, X.; Wang, Y. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2 E. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2010; American Geophysical Union: Washington, DC, USA, 2010; p. OS21C–1531. [Google Scholar]
- Sauter, D.; Carton, H.; Mendel, V.; Munschy, M.; Rommevaux-Jestin, C.; Schott, J.J.; Whitechurch, H. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30′ E, 55°30′ E and 66°20′ E): Implications for magmatic processes at ultraslow-spreading centers. Geochem. Geophys. Geosyst. 2004, 5, Q05K08. [Google Scholar] [CrossRef]
- Sauter, D.; Cannat, M.; Meyzen, C.; Bezos, A.; Patriat, P.; Humler, E.; Debayle, E. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet hotspot? Geophys. J. Int. 2009, 179, 687–699. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z.; Sun, X.; Deng, X.; Guan, Y.; Xu, L.; Huang, Y.; Cao, K. He–Ar–S isotopic compositions of polymetallic sulphides from hydrothermal vent fields along the ultraslow-spreading Southwest Indian Ridge and their geological implications. Minerals 2018, 8, 512. [Google Scholar] [CrossRef]
- Pérez Rodríguez, N.; Engström, E.; Rodushkin, I.; Nason, P.; Alakangas, L.; Öhlander, B. Copper and iron isotope fractionation in mine tailings at the Laver and Kristineberg mines, Northern Sweden. Appl. Geochem. 2013, 32, 204–215. [Google Scholar] [CrossRef]
- Rodushkin, I.; Stenberg, A.; Andrén, H.; Malinovsky, D.; Baxter, D.C. Isotopic fractionation during diffusion of transition metal ions in solution. Anal. Chem. 2004, 76, 2148–2151. [Google Scholar] [CrossRef]
- Tang, S.; Yan, B.; Zhu, X.; Li, J.; Li, S. Iron, copper and zinc isotopic compositions of basaltic standard reference materials. Rock Miner. Anal. 2012, 31, 218–224. [Google Scholar]
- Rouxel, O.; Shanks, W.C.; Bach, W.; Edwards, K.J. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10° N. Chem. Geol. 2008, 252, 214–227. [Google Scholar] [CrossRef]
- Zhu, X.K.; O’Nions, R.K.; Guo, Y.; Reynolds, B.C. Secular variation of iron isotopes in North Atlantic deep water. Science 2000, 287, 2000–2002. [Google Scholar] [CrossRef]
- Johnson, C.M.; Beard, B.L.; Beukes, N.J.; Klein, C.; O’Leary, J.M. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib. Mineral. Petrol. 2003, 144, 523–547. [Google Scholar] [CrossRef]
- Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schulz, M.S. Demonstration of significant abiotic iron isotope fractionation in nature. Geology 2001, 29, 699–702. [Google Scholar] [CrossRef]
- Beard, B.L.; Johnson, C.M.; Cox, L.; Sun, H.; Nealson, K.H.; Aguilar, C. Iron isotope biosignatures. Science 1999, 285, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Brantley, S.L.; Liermann, L.; Bullen, T.D. Fractionation of Fe isotopes by soil microbes and organic acids. Geology 2001, 29, 535–538. [Google Scholar] [CrossRef]
- Luther, G.W.; Rozan, T.F.; Taillefert, M.; Nuzzio, D.B.; Di Meo, C.; Shank, T.M.; Lutz, R.A.; Cary, S.C. Chemical speciation drives hydrothermal vent ecology. Nature 2001, 410, 813–816. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.M.; Xu, L.; Liang, Y.H.; Wu, Z.W.; Fu, Y.; Huang, Y. In situ analysis of element geochemistry in submarine basalt in hydrothermal areas from ultraslow spreading Southwest Indian Ridge. Spectrosc. Spectr. Anal. 2015, 35, 796–802. [Google Scholar] [CrossRef]
- Butler, I.B.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Marechal, C.; Albarede, F.; Telouk, P. Natural copper and zinc isotopic compositions measured by Plasma-Source Mass Spectrometry. Mineral. Mag. A 1998, 62, 947–948. [Google Scholar] [CrossRef]
- Bermin, J.; Vance, D.; Archer, C.; Statham, P.J. The determination of the isotopic composition of Cu and Zn in seawater. Chem. Geol. 2006, 226, 280–297. [Google Scholar] [CrossRef]
- Savage, P.S.; Moynier, F.; Chen, H.; Shofner, G.; Siebert, J.; Badro, J.; Puchtel, I. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem. Perspect. Lett. 2015, 1, 53–64. [Google Scholar] [CrossRef]
- Dekov, V.; Rouxel, O. Cu-and Zn-isotope systematics of seafloor hydrothermal vent fluids from a back-arc setting (Manus Basin). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; European Geosciences Union: Munich, Germany, 2012; p. 13020. [Google Scholar]
- Vance, D.; Archer, C.; Bermin, J.; Perkins, J.; Statham, P.J.; Lohan, M.C.; Ellwood, M.J.; Mills, R.A. The copper isotope geochemistry of rivers and the oceans. Earth Planet. Sci. Lett. 2008, 274, 204–213. [Google Scholar] [CrossRef]
- Little, S.H.; Vance, D.; Walker-Brown, C.; Landing, W.M. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim. Cosmochim. Acta 2014, 125, 673–693. [Google Scholar] [CrossRef]
- Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining. Geochim. Cosmochim. Acta 2008, 72, 329–344. [Google Scholar] [CrossRef]
- Larson, P.B.; Maher, K.; Ramos, F.C.; Chang, Z.; Gaspar, M.; Meinert, L.D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem. Geol. 2003, 201, 337–350. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Zhu, X.; Hou, Z.; Li, S.; Li, Z.; Wang, Y. Cu isotope composition of Qulong porphyry Cu deposit, Tibet. Acta Geol. Sin. 2009, 83, 1985–1996. [Google Scholar]
- Jiang, S.; Woodhead, J.; Yu, J.; Pan, J.; Liao, Q.; Wu, N. A reconnaissance of Cu isotopic compositions of hydrothermal vein-type copper deposit Jinman, Yunnan, China. Chin. Sci. Bull. 2001, 47, 249–251. [Google Scholar] [CrossRef]
- Lu, J.J.; Guo, W.M.; Chen, W.F.; Jiang, S.Y.; Li, J.; Yan, X.R.; Xu, Z.W. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province. Acta Petrol. Sin. 2008, 24, 1857–1864. [Google Scholar]
- Wang, Y.; Zhu, X. Applications of Cu isotopes on studies of mineral deposits: A status report. J. Jilin Univ. (Earth Sci. Ed.) 2010, 40, 739–751. [Google Scholar]
- Asael, D.; Matthews, A.; Bar-Matthews, M.; Halicz, L. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem. Geol. 2007, 243, 238–254. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.M.; Wu, Z.W.; Deng, X.G.; Dai, Y.Z.; Lin, Z.Y. The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultra-slow-spreading SWIR. Spectrosc. Spectr. Anal. 2014, 34, 3327–3332. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, S.K.; Lee, I. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem. Geol. 2007, 243, 225–237. [Google Scholar] [CrossRef]
- Nie, L.; Li, Z.; Fang, X. Cu isotope fraction-ation during magma evolution process of Qulong Por-phyry copper deposit, Tibet. Miner. Depos. 2012, 31, 718–726. [Google Scholar]
- Yang, K.; Scott, S.D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the Eastern Manus Back-Arc Basin, Western Pacific. Econ. Geol. 2002, 97, 1079–1100. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Ling, H.F.; Yang, J.H.; Zhao, K.D.; Ni, P. New isotopic tracers for hydrothermal mineralization and ore genesis studies and direct dating methods of ore deposits. Miner. Depos. 2002, 21, 974–976. [Google Scholar]
- Maréchal, C.N.; Nicolas, E.; Douchet, C.; Albarède, F. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophys. Geosyst. 2000, 1, 1015. [Google Scholar] [CrossRef]
- John, S.; Bergquist, B.; Saito, M.; Boyle, E. Zinc isotope variations in phytoplankton and seawater. Geochim. Cosmochim. Acta Suppl. 2005, 69, A546. [Google Scholar]
- Debret, B.; Beunon, H.; Mattielli, N.; Andreani, M.; Ribeiro da Costa, I.; Escartin, J. Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36°14′ N). Earth Planet. Sci. Lett. 2018, 503, 170–180. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Liu, S.A.; Liu, J.; Huang, J.; Xiao, Y.; Chu, Z.Y.; Zhao, X.M.; Tang, L. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim. Cosmochim. Acta 2017, 198, 151–167. [Google Scholar] [CrossRef]
- Zhao, Y.; Vance, D.; Abouchami, W.; De Baar, H.J.W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 2014, 125, 653–672. [Google Scholar] [CrossRef]
- Archer, C.; Vance, D.; Butler, I.; Butler, I. Abiotic Zn isotope fractionations associated with ZnS precipitation. Geochim. Cosmochim. Acta 2004, 68, A325. [Google Scholar]
- Wilkinson, J.J.; Weiss, D.J.; Mason, T.F.D.; Coles, B.J. Zinc isotope variation in hydrothermal systems: Preliminary evidence from the Irish Midlands Ore Field. Econ. Geol. 2005, 100, 583–590. [Google Scholar] [CrossRef]
Vent Field | Sample ID | Longitude/Latitude | Depth (m) | Sample Description | Mineralogy | Isotopic Analysis |
---|---|---|---|---|---|---|
Yuhuang | S35-22 | 49.2° E/37.9° S | 1445 | Fe-Cu-rich massive sulfide | Py-Cpy-Po | Fe-Cu-Zn |
Longqi | S27-4 | 49.6° E/37.8° S | 2781 | Zn-rich massive sulfide | Sp-Wur-Py | Fe-Cu-Zn |
S7-4 | 49.6° E/37.8° S | 2755 | Fe-rich relict chimney debris | Py-Mrc-Sp | Fe-Cu-Zn | |
S6-3 | 49.6° E/37.8° S | 2777 | Metalliferous sediment | Py-Gth-Hem | Fe-Cu-Zn | |
S35-17 | 49.6° E/37.8° S | 2783 | Black smoker chimney fragment | Py-Sp-Cpy | Fe-Zn | |
Tianzuo | S25-21 | 63.5° E/37.7° S | 3666 | Fe-Cu-rich relict sulfide talus | Py-Bn-Iso | Fe-Cu-Zn |
EPR 13° N | EPR-1 | EPR 13° N | 2628 | Fe-rich massive sulfide | Py-Mrc-Sp | Fe-Cu |
EPR-2 | EPR 13° N | 2633 | Fe-rich massive sulfide | Py-Mrc-Sp | Fe-Cu | |
Niaochao | S4-1 | Nearby EPR 0° | 2747 | Fe-Cu-rich massive sulfide | Py-Mrc-Cpy | Fe-Cu-Zn |
Sample | No. | Analyzed Mineral 2 | δ56Fe (‰) | ±1 sd | δ57Fe (‰) | ±1 sd | δ65Cu (‰) | ±1 sd | δ66Zn IRMM-3702 (‰) | ±1 sd | δ68Zn IRMM-3702 (‰) | ±1 sd | δ68Zn JMC (‰) | δ34S (‰) 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S35-22 | S35-22-1 | Py | −0.011 | 0.031 | −0.024 | 0.049 | 0.892 | 0.042 | −0.040 | 0.068 | 0.051 | 0.074 | 0.290 | 4.8 |
S35-22-2 | W.R. | −0.028 | 0.028 | −0.059 | 0.064 | 0.803 | 0.021 | −0.022 | 0.054 | −0.034 | 0.068 | 0.308 | 4.9 | |
S27-4 | S27-4-1 | Sph | −0.376 | 0.084 | −0.587 | 0.104 | 0.782 | 0.040 | −0.306 | 0.062 | −0.603 | 0.057 | 0.024 | 3.4 |
S27-4-2 | W.R. | −0.405 | 0.048 | −0.608 | 0.060 | 0.798 | 0.038 | −0.390 | 0.047 | −0.789 | 0.086 | −0.060 | 3.2 | |
S35-17 | S35-17-1 | Py | −1.298 | 0.046 | −1.959 | 0.105 | - | - | −0.278 | 0.031 | −0.561 | 0.052 | 0.052 | 4.1 |
S35-17-2 | Sph | −1.333 | 0.031 | −2.021 | 0.088 | - | - | −0.217 | 0.051 | −0.419 | 0.068 | 0.113 | 4.3 | |
S7-4 | S7-4 | W.R. | −0.747 | 0.022 | −1.131 | 0.086 | 0.634 | 0.021 | −0.220 | 0.079 | −0.154 | 0.071 | 0.110 | 5.5 |
S6-3 | S6-3 | W.R. | −0.355 | 0.055 | −0.536 | 0.063 | 0.316 | 0.032 | −0.075 | 0.049 | −0.438 | 0.068 | 0.255 | 7.5 |
S25-21 3 | S25-21-1 a | Py | −0.716 | 0.070 | −1.065 | 0.086 | −0.300 | 0.036 | −0.246 | 0.038 | −0.499 | 0.063 | 0.084 | 9.3 |
S25-21-1 b | Py | −0.731 | 0.055 | −1.056 | 0.073 | −0.349 | 0.042 | −0.259 | 0.044 | −0.514 | 0.039 | 0.071 | 9.8 | |
S25-21-2 a | W.R. | −0.760 | 0.074 | −1.146 | 0.098 | −0.364 | 0.033 | −0.334 | 0.024 | −0.641 | 0.036 | −0.004 | 8.4 | |
S25-21-2 b | W.R. | −0.691 | 0.088 | −1.074 | 0.112 | −0.341 | 0.033 | −0.347 | 0.040 | −0.655 | 0.054 | −0.017 | - | |
EPR-1 | EPR-1 | Py | −0.395 | 0.038 | −0.629 | 0.052 | 0.150 | 0.038 | - | - | - | - | 3.5 | |
EPR-2 | EPR-2 | Py | −0.293 | 0.056 | −0.472 | 0.080 | −0.537 | 0.030 | - | - | - | - | - | |
S4-1 | S4-1-1 | Py | −0.248 | 0.022 | −0.383 | 0.047 | −0.008 | 0.036 | 0.092 | 0.032 | 0.159 | 0.068 | 0.422 | 5.5 |
S4-1-2 a | W.R. | −0.404 | 0.053 | −0.577 | 0.071 | −0.127 | 0.030 | 0.020 | 0.044 | 0.087 | 0.061 | 0.350 | 3.8 | |
S4-1-2 b | W.R. | −0.405 | 0.061 | −0.596 | 0.077 | −0.132 | 0.031 | 0.056 | 0.042 | 0.101 | 0.050 | 0.386 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, Z.; Huang, Y.; Sun, X.; Yan, J.; Yang, F.; Yin, Z.; Xu, L. Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences. Minerals 2023, 13, 843. https://doi.org/10.3390/min13070843
Wang Y, Wu Z, Huang Y, Sun X, Yan J, Yang F, Yin Z, Xu L. Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences. Minerals. 2023; 13(7):843. https://doi.org/10.3390/min13070843
Chicago/Turabian StyleWang, Yan, Zhongwei Wu, Yi Huang, Xiaoming Sun, Jinhui Yan, Fan Yang, Zhengxin Yin, and Li Xu. 2023. "Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences" Minerals 13, no. 7: 843. https://doi.org/10.3390/min13070843
APA StyleWang, Y., Wu, Z., Huang, Y., Sun, X., Yan, J., Yang, F., Yin, Z., & Xu, L. (2023). Fe-Cu-Zn Isotopic Compositions in Polymetallic Sulfides from Hydrothermal Fields in the Ultraslow-Spreading Southwest Indian Ridge and Geological Inferences. Minerals, 13(7), 843. https://doi.org/10.3390/min13070843