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Abstract: The submarine camera system is one of the most effective detection methods for detecting
seabed hydrothermal sulfide. The position fixing of camera equipment is generally achieved by the
ultra-short baseline (USBL) positioning systems. The dynamic changes in the marine environment
and the loss of acoustic signals lead to many abnormal points in the USBL positioning data. The
existing methods cannot perform position fixing correction for USBL positioning data with many
scattered abnormal points. This paper selects and focuses on the seabed camera data of the XunMei
mineralization area acquired from the China South Atlantic voyage and employs the DTW opti-
mization algorithm to solve this problem. This method is implemented based on Python language
and an ArcGIS technical environment, and a total of 97,469 topographic profiles with 10 m spacing
are extracted from the topographic data of the object area with 1m accuracy. Moreover, the highest
similarity (95.9%) is obtained between the bathymetric profile of the camera survey line and the
above topographic profile. The results indicate that the proposed algorithm is fast and effective, and
the positioning correction accuracy of the deep-sea near-bottom camera data can reach the meter
level (determined by the topographic data accuracy). Moreover, the solution can provide services for
accurately position fixing near-bottom exploration equipment and its exploration data. It can also
solve the problem of underwater position fixing problem that a GPS cannot solve.

Keywords: deep-sea visualization; near-bottom photography; big data matching on topographic
profiles; position fixing method; DTW algorithm

1. Introduction

The USBL system has been employed to locate near-bottom survey equipment, such
as the “deep-sea camera recording system”, “ROV system”, and “towed acoustics system”,
which are essential for seafloor mineral resource surveys [1]. Near-bottom cameras are
one of the most effective tools to observe hydrothermal sulfide on the seafloor. The USBL
positioning system has been utilized to locate camera equipment for hydrothermal sulfide
exploration on the South Atlantic seafloor. However, due to factors such as dynamic
changes in the ocean environment, calibration deviations in the installation of measurement
instruments, measurement reliability of peripheral equipment, and accuracy of sound
velocity measurement and correction [2], USBL positioning can have significant coarse
differences and continuous abnormal errors [3]. This leads to incorrect and abnormal
positioning of marine survey equipment, thus seriously affecting the use of data at a later
stage. Thus, finding an effective method to correct USBL positioning is crucial to ensure
the validity and value of near-seabed resource survey data.

Several studies have been performed at home and abroad on the correction processing
of underwater positioning data from USBL positioning systems. Wu et al. [4] addressed
the rapid rejection of abnormal positioning data from USBL in hydrothermal sulfide field
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surveys. Accordingly, the direct judgment of USBL was avoided, the more intuitive process
data XYZ was chosen as the object of judgment for the first time, and the abnormal
positioning data were quickly and effectively eliminated. Mandt et al. [5], Steinke and
Buckham et al. [6], Li et al. [7], and Lee et al. [8] employed the Kalman filter and its
improved algorithm to process the USBL positioning data. Accordingly, they filtered out
the anomalies in the positioning data and obtained filtered data that were smoother and
more compatible with the original data. Zhang et al. [9] implemented a correlation analysis-
based algorithm for removing random outliers and correcting regression, achieving good
results. Xu et al. [10] proposed a new robust filter called the Huber M estimated delay
Kalman filter to cope with Gaussian noise caused by outliers. Liu et al. [11] employed a
modified Kalman filter gain value with an adaptive scaling factor for state noise to solve
low tracking accuracy caused by unknown state noise. Liu et al. [12] proposed a robust data
cleaning method using online support vector regression (OSVR) to handle measurement
outliers and missing values. This significantly reduced the root mean square error in
latitude and longitude directions. Mandić et al. [13] fused USBL with multibeam sonar
images to track underwater objects. However, this correction of USBL positioning data to
locate the underwater survey equipment and its detection data is suitable for positioning
data with a low dispersion of anomalies, relatively few error points, and good overall
quality. The above method cannot accurately perform the position fixing of the precious
data collected by the underwater survey equipment under defective USBL equipment or
even missing USBL data signals due to signal interference and environmental variations.

In order to enable the seafloor camera data to reproduce the true state of the exact
location of the target seafloor, this paper employs near-seabed high-precision topographic
data to propose a new method of locating visual data. Specifically, the DTW optimization
algorithm is constructed based on Python language and an ArcGIS technical environment.
This solution is based on the water depth profile obtained during the camera survey
line acquisition process (usually obtained through the pressure transducer), with the
corresponding parameters, such as the travel direction and the ship distance. It employs
the DTW optimization algorithm to retrieve and match the topographic profile with the
highest similarity to the water depth profile of the camera survey line in the high-precision
topographic data. Accordingly, it can determine the camera survey line’s position and
realize the camera data’s positioning.

The paper is organized as follows. Section 2 describes the employed data sources and
their nature. The proposed method, as the main contribution of this paper, is illustrated
in Section 3. This method solves the camera data localization problem under extremely
anomalous USBL data by matching and comparing the camera’s water depth profile of the
survey line with tens of thousands of high-precision topographic profiles. The details of
the positioning correction of the camera data using the proposed method are presented in
Section 4. Section 5 discusses the proposed positioning correction method for submarine
cameras. Finally, Section 6 provides concluding remarks on the subject and future aspects.

2. Data
2.1. Source of Data

The Mid-Atlantic Ridge (MAR) is a slow-spreading ridge divided into Southern Mid-
Atlantic Ridge (SMAR) and Northern Mid-Atlantic Ridge (NMAR) by the equatorial Ro-
manche transform. The SMAR is an asymmetrically slow-spreading ridge segment with a
spreading rate of 17–19 mm/year [14]. The SMAR is divided from the north to south by the
large fracture zones, the Equatorial segment, the Central segment, the Austral Segment, and
the Falkland Segment [15]. In the Austral Segment, the Moore discontinuity between 25◦ S
and 27◦30′ S is subdivided into three ridge subsegments: 1 N, 2 N, and 3 N [14]. The SMAR
26◦ S segment is located within the 2 N subsegment (Figure 1). Several vent fields have
been discovered along the SMAR, including Zouyu (13.2◦ S) [16], Caifan (14◦ S) [16], Deyin
(15◦ S) [17], and Xunmei (26◦ S) [18]. The study area is placed in the Xunmei hydrothermal
field, located between 25◦40′ S, 13◦46′ W, and 26◦35′ S, 14◦05′ W of the South MidAtlantic
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Ridge (SMAR), and it was first discovered by Research Vessel (R/V) Dayang Yihao during
the Chinese DY22th cruise in 2011 [18]. The hydrothermal field is in a water depth of
approximately 2600 m [14], along a slow-spreading and sediment-free mid-ocean ridge [19].
The area marked with a star in Figure 1 is the typical 26◦ hydrothermal area.
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Figure 1. Study area (The red star represents the Xunmei hydrothermal field).

Scientists have discovered large metal sulfide debris, vent biota, chimney debris, and
inactive chimneys in this area using the electro-hydraulic grab with an underwater televi-
sion camera (TV-grab). Besides, the deep-sea towing system detected high temperature
and turbidity anomalies in the area, detected the presence of methane (CH4), and observed
high-temperature hydrothermal vents through the seafloor camera equipment [20].

As shown in Figure 2, during the near-bottom survey in this area, the survey ship with
Global Positioning System (GPS) sailed along with the preset survey line at a constant speed
of 1 to 1.5 knots in a straight line. The camera tow was kept at 3 to 5 m from the bottom
through winch operation. Its height from the bottom is measured by CTD (Conductivity,
Temperature, Depth) attached to the camera to obtain a water depth profile for camera
operation. Besides, it was utilized to perform near-bottom towing operations. It relied
on a new generation of high-performance cameras and high-definition video cameras to
obtain visual data (1080P resolution). The underwater position fixing of the camera tow
is realized using the Posidonia 6000 USBL positioning system fixed on it. The system
comprises three parts: transmitting array, transponder, and receiving array. The transceiver
array is installed on the survey ship. At the same time, the underwater target position is
measured using the transponder fixed on the underwater equipment.
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The Qianlong No. 3 (4500-m class) Autonomous Underwater Vehicle (AUV) was
adopted to accomplish hydrothermal sulfide related exploration operations, such as mi-
crotopography, thermohaline in-depth profile, methane detection, turbidity detection, and
REDOX potential detection. As an ideal platform for seabed exploration, Qianlong No. 3
AUV can approach the seabed to the maximum extent [21]. It can obtain high-precision and
small-scale topography-sounding data. This paper employs high-precision topographic
data with a resolution of 1 m × 1 m.

2.2. Data Analysis

A USBL fixed to the platform is generally employed to achieve the underwater position
fixing of the camera tow. However, not all lines were equipped with a USBL positioning
system. Only 18 of the 28 lines surveyed in this area were equipped with an ultrashort
baseline. Among them, 11 lines had UBSL data for the complete survey area and the
remaining 7 had UBSL data for only part of the survey area. Among several survey lines
acquired in the study area, some USBL positioning data were good. However, the USBL
positioning data quality for some lines was poor, as shown in Figure 3a. The blue dots
describe the camera’s USBL data, which can be very scattered along the way, and does not
reflect the camera’s actual position. This situation is inevitable in seabed exploration and is
not a minority.
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In order to solve the camera data positioning problem, the depth data of the camera
and the positioning data with better ultra-short baseline positioning signals were initially
analyzed. The following conclusions were drawn.

By carefully analyzing the camera’s depth data, the depth data of the camera equip-
ment is stable. During the detection operation, the up and down oscillation ranges are
within 6 m. The maximum and minimum height from the seabed is 9 m and 1 m, re-
spectively, basically stable at 5m, indicating a weak longitudinal oscillation of the camera.
Therefore, the stability of the camera in operation is reliable.

We carefully analyzed the camera’s positioning data with better ultra-short baseline
detection and positioning quality. An experiment with a sample of 5000 points indicates
that the error range between the predicted positioning data and the original is within 5 m. It
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reflects that the lateral positioning error of the camera represented by the ultra-short baseline
can be accurate within 5 m, that is to say, the camera’s lateral swing error is within 5 m.

According to the above analysis, the near-seabed camera towed body will not be
disturbed too much during the operation of the seabed resource survey or it will not
produce violent oscillation under no particular circumstances.

Figure 3a shows the shipboard GPS navigation positioning data during the near-
bottom camera exploration operation. Figure 3b shows the USBL positioning data carried
by the corresponding camera tow. A total of 2338 USBL positioning points were recorded
for this survey line. When the USBL data were connected in chronological order, they could
not correctly show the onboard underwater camera’s actual position and working path.
The deviation of the displayed position information in the heading was also inaccurate
compared to Figure 3a. The distance between the previous and the following positioning
points varies up to 6 km in 1 s, which is impossible in practice.

Several analyses are performed to solve the position fixing camera data in this case.
First, the ship will generally maintain a certain speed to work along the set survey line
in the actual seabed resource survey operation. The ship will tow the camera tow for a
near-seabed filming operation. Accordingly, the actual operation path of the camera tow is
the same as the direction, path, and distance of the ship’s navigation in parallel, and the
difference is negligible in a small area. Second, the camera tow is bound with a pressure
sensor simultaneously, which can obtain high-precision distance data from the seabed and
the sea surface and calculate the water depth profile of the camera survey line. It can be
assumed that the water depth profile elevation data sequence recorded by the camera tow
reflects the topographic profile information of the geographical location while the camera
tow is working near the bottom. What is more, the area’s 1 m precision topographic data
was obtained during the preliminary AUV survey operation, which can be employed as a
background reference for the camera data. Since the area’s topography is highly variable
and recognizable, it is easier to implement and validate the positioning correction using
topographic alignment.

Therefore, subsequent attempts should be performed to match the water depth profile
of the camera survey line with the profiles extracted from the high-precision topographic
data of the study area acquired by the AUV. Accordingly, it is possible to find the most
similar profile positions, verify the validity of the solution by combining data, such as
shipboard and grab sampling records, and correct the positioning of the camera.

3. Methods

In order to match and correct the camera line, the following solution was adopted.
First, the bathymetry data of the camera line was acquired, and the water depth profile of
the camera survey line was generated. In order to facilitate the subsequent matching of
similarity between the profile sequences and improve efficiency and accuracy, the profile
segment sequence with greater undulation was selected as the camera line correction
segment profile A (position is unknown, and the bathymetry value is the water depth data
of the camera line). Second, the time record of profile A is checked, and the ship GPS data
synchronized with the camera line (i.e., the position data of the ship’s route) is acquired to
obtain the ship position “baseline” B, which is compatible with the time record of profile A.
B’s starting and ending positions are obtained. Its length and direction angle are calculated
to determine ship position B’s reference parameters. Then, according to the matching
and correction requirements and the accuracy of AUV topographic data and topographic
characteristics, the translation distance is adjusted to obtain topographic profiles with the
same distance and direction as the ‘baseline’ B in large quantities from AUV high-precision
topographic data. Accordingly, the profile set B {B1, B2, B3, . . . , Bn} is formed. Finally, the
DTW optimization algorithm matches the camera line correction section profile A with
the topographic profile set B. The position of the profile with the highest similarity, Bi, is
the geographic location of the camera tow in actual operation. Moreover, to realize the
positioning correction of the camera tow, the position information of the sequence of Bi is
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read into the corresponding position sequence of the camera data. Figures 4 and 5 show
the schematic diagram of the textual method and the flow diagram of data acquisition and
integration for fixing of camera data, respectively.
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3.1. Extracting Profiles Big Data from Topographic Data

Python3.7 and an ArcGIS10.6 technical environment are employed to extract big data
profiles from topographic data. The Technology Roadmap is shown in Figure 6. Within the
object area’s high-precision water depth topographic data, many topographic profiles with
the same direction and length as the object survey line (where the ship position profile B is
located) are extracted as densely as possible according to the data accuracy and calibration



Minerals 2022, 12, 1034 7 of 18

accuracy requirements. These profiles are labeled in the order of extraction, and the data of
each topographic profile is stored on the specified path to obtain a collection of profiles.
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First, the baseline parameter is extracted, and the baseline is moved in parallel with a
certain distance and direction so that the generated offset trajectory line set traverses the
entire study area. The specific implementation method is as follows:

(1) Import the acrpy, math, and pyproj modules required for data processing;
(2) Employ the SearchCursor in the arcpy module to establish read-only access rights

to return records from feature classes or tables, read the baseline parameters, and
generate vector data;

(3) Use the Transformer of the pyproj module to convert the baseline geographic coordi-
nate value and the projected coordinate value to each other;

(4) Use the Describe (lineFile) function of the arcpy module to obtain the baseline length
in the x and y directions, and combine the floor function of the math module with the
set translation parameters to ensure that the baseline is within the object area, east,
west, north, and south orientations. Set the maximum number of offsets according to
the batch translation direction;

(5) Record the translated trajectory node coordinates in the array of the arcpy module,
employ the Polyline function of the Arcpy module to convert the coordinate array
into line elements, and utilize the InsertCursor function of Arcpy to write the line
elements into the Shapefile;

(6) Use Arcpy’s Merge function to label the vector data files composed of all the translated
lines in the order of extraction and store the data of each offset track line on the
specified path to obtain an offset trajectory line set.

Next, combine the high-precision water depth imaging data of the object area with the
geographic location data of the offset trajectory lines after the above steps to extract and
save the topographic profile data corresponding to each offset trajectory line in batches.
Specific implementation steps are:

(1) Use the Raster in the arcpy module to acquire the original raster data of the research area;
(2) Use the Raster (Rasterfile) function of the arcpy module to obtain the grid range of

the study area;
(3) Use the StackProfile_3d function of the arcpy module to extract the topographic

profile corresponding to each line in the line set according to the vector data file of the
translation line set and the original raster data of the study area, saving the extracted
profiles as a list;
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(4) In order to facilitate the calculation of the subsequent similarity, use the Table To Table
conversion function of the arcpy module to convert the profile information list into a
text file, and organize the data in the table to obtain the offline text file, which contains
the elevation value sequence of the profile set.

3.2. Calculation of the Similarity between the Topographic Profile Sequence and the Water Depth Profile

The DTW algorithm [22] is a similarity measure that better matches the mapping of
time series morphology by bending the time axis. Just such a technique, based on dynamic
programming, has long been known to the speech-processing community [23–25]. Berndt
and Clifford [26] employed the DTW algorithm to measure time series similarity. This
algorithm can be utilized for similarity measures of time series of different lengths with
good metric accuracy and robustness. It has been continuously improved [27–29] and is
widely utilized in several fields [30–33]. The DTW algorithm measures the similarity be-
tween two sequences by bending, stretching, or shrinking the time axis. It can handle both
equal-length and non-equal-length sequences. This algorithm overcomes the Euclidean dis-
tance problem for sequences that cannot be matched accurately after deformation. Lowe’s
efficiency is superior to Euclidean distance and triangular similarity [34,35]. Euclidean
distance data points can only be matched one-to-one. This algorithm compensates for this
drawback and can simultaneously match data points of equal-length and non-equal-length
sequences. Moreover, it supports appropriate stretching and bending operations on the
time axis. The dynamic programming approach can be employed to find the optimal
matching path with minimum bending cost while ensuring certain accuracy, thus forming
offsets between time series data points and quickly matching to similar time series to
achieve similarity metrics. The method is robust and can describe the specific shape of the
time series. It can be employed for line shape comparison between near-bottom sounding
bathymetric profiles and sea-level topographic profiles in the same region. In order to solve
the localization problem of the sounding data, this paper applies this algorithm to the field
of deep-sea solid resources for the first time.

In order to establish the DTW algorithm, two profile sequences A = (a1, a2, . . . ai, . . .
an) and B = (b1, b2, . . . bj, . . . bm) of length n and m are considered, where a1 and b1 denote
the data points on the profile data sequence greater than or equal to a1 and b1, and less
than or equal to an and bm in the profile data sequence A and B, respectively. The adjacency
distance matrix Dn×m = d (ai, bj) is constructed that the elements (i, j) in each matrix are
aligned, corresponding to the points ai and bj. A path is found from the top left corner
to the bottom right corner such that the sum of the values of the elements through which
the path passes is minimized to obtain the minimum value of the optimal matching path.
Accordingly, the twisted curve is obtained. This means that the correspondence of the k
points from the A sequence to the points in the B sequence is found. For example, if ϕ(t) =
(1,1), the first point in the A sequence corresponds to the first point in the B sequence. The
principle of the DTW similarity measurement method is shown in Figure 7.
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Further, the cumulative distance between the two time series can be obtained, as
shown in Equation (1). Eventually, the most suitable twist curve minimizes the path’s
cumulative distance, as shown in Equation (2).

Dϕ(A, B) = ∑k
i=1 d(ϕA(t), ϕB(t)) (1)

DTW(A, B) = minDϕ(A, B) (2)

The DTW distance allows sequence points to be self-replicated and then matched,
supporting time axis bending and scaling. In the actual calculation process, the ‘quasi-
symmetric step mode’ is utilized, and the loss matrix M is generated based on the distance
matrix D and the step mode to a certain extent. It covers different constraints. M[i][j] =
min(M[i− 1][j], M[i][j− 1], M[i− 1][j− 1] + D[i][j]. Then, the value of the last column of
the last row of the loss matrix is the minimum cumulative distance.

Based on the definition and the constraints, the DTW algorithm is established based
on Equation (3).

M[i][j] =



(a[0]− b[0])2 i = 0, j = 0
(a[0]−b[0])2 + M[0][j− 1] i = 0
(a[0]−b[0])2 + M[i− 1][0] j = 0
(a[0]−b[0])2 + min(M[i− 1][j], [i][j− 1]
M[i− 1][j− 1]) i, j > 0

(3)

Equation (3) indicates that M[len(A)− 1][len(B)− 1] is the similarity distance DTW(A, B)
between sequences A and B. Then, the similarity distance can be transformed by similarity =

1
1+DTW(A,B) to obtain the similarity of sequences A and B.

3.3. Optimization of the DTW Algorithm

During the similarity calculation of topographic profile sequences with the DTW algo-
rithm, it is found that some topographic profile data sequences have periodic fluctuation
characteristics. At the same time, the monotonic advancement rates of their curves are
inconsistent. During the calculation process of the above algorithm, it can be found that the
path direction can only be adjusted to maintain the short-term monotonicity. This leads to
the ‘ill-conditioned matching’ phenomenon in which the trends of the peaks and troughs
are inconsistent while calculating the distance of the topographic profile sequence [37].

As shown in Figure 8, the distance between the two topographic profiles at the
locations shown by the dashed circles is too significant, which increases the average distance
between the two sequences, resulting in a ‘sick match’ during the matching process. The
similarity of the regional trends can be satisfied by shifting the curves forward or backward,
thus eliminating the effect of the ‘sick match’ on the similarity calculation. The longer the
longest common substring of two series, the smaller the deviation and the magnitude of
the required adjustment. Therefore, a penalty factor α is defined to adjust the original
algorithm. The specific algorithm is as follows.

(1) Calculate the maximum standard deviation sdmax. The mean values of the profile
sequence A and B are denoted by a and b, respectively; n and m denote the length of
profile sequences A and B, respectively. Equations (4) and (5) describe the formulas
for calculating the standard deviations of sequences A and B.

sdA =

√
∑n

i=1(ai − a)2

n
(4)
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Similarly, it follows that:

sdB =

√√√√∑m
j=1

(
bj − b

)
2

m
(5)

Therefore, we have:
sdmax = max(sdA, sdB) (6)
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(2) Solve for the longest common substring and its length l. Since A and B are sequences
of values in two profiles, the maximum standard deviation is set as the offset range,
while solving for the longest common substring. The two values are within this
standard deviation and are considered part of the common substring.

Let the length of sequences A and B be n and m, respectively. Define the matrix dp[i][j]
(0 ≤ i < n, 0 ≤ j < m) according to Equation (7), where

dp[i][j] =


0 A[i]− B[j] ≥ sdmax
1 A[i]− B[j] < sdmax i ‖ j = 0
dp[i− 1][j− 1] + 1 A[i]− B[j] < sdmax i, j > 0

(7)

The dynamic programming principle can be employed to find the optimal path of
dp[i][j] from the top left corner to the bottom right corner. Accordingly, the longest common
substring and its length l can be obtained.

(3) Calculate the penalty factor using Equation (8).

α = 1− l2

n×m
(8)

similarityupdate =
1

1 + αDTW(A, B)
(9)

In summary, this paper proposes an optimized DTW algorithm based on the principle
of the longest common substring. This algorithm can eliminate the “sick match” phe-
nomenon caused by the inconsistency of the peaks and troughs between two topographic
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profile sequences and facilitate the accurate calculation of the similarity between the two
profile sequences.

4. Position Fixing of Camera Data
4.1. Data Preparation

The ship’s trajectory is an adjusted long-distance survey line in the actual survey of
seabed resources. The video collected by the towed camera body during the ship’s journey
is utilized to understand the seabed conditions and to discover seabed resources. The
TV grab sampling can also determine whether to collect samples according to the video
situation and simultaneously verify the camera data. Besides, the seabed topography varies,
while some areas have apparent changes, and some are relatively gentle. According to
the above characteristics, a specific survey line segment should be appropriately selected
in the camera survey line as the calibration section of the camera line to achieve a better
correction effect and to improve the calculation efficiency. This means that a segment of
the mark is selected in the camera survey line to be corrected as the matching “baseline”.
The “baseline” should be selected as the best section with hydrothermal sulfide (there are
generally multiple ways to sample and provide validation), more pronounced topographic
variations, and large topographic inflection points. The orange dashed and the solid lines
in Figure 4 indicate the calibration section of the camera line and its corresponding ship
position GPS data, respectively.

The GCS_WGS 1984 was employed to process the raw data of the object area (AUV
high-precision topographic data of the study area) in ArcGIS to GRID raster format
with data ranges −13.85800~−13.845994 and −26.037005~−25.999996 and data accu-
racy of 1 m × 1 m. The selected ‘baseline’ data range is −26.016742~−26.019834 and
−13.852539~−13.851571 with a Shapefile spatial data type, using the GCS_WGS_1984
spatial reference coordinate system, whose datum is D_WGS_1984.

4.2. Method Application

A Python script was written based on the above method to batch the calibration section
of the camera survey line in the study object area at 10 m intervals from east to west and
north to south. Accordingly, all the trajectory lines generated after the offset were parallel
to the object survey lines traversing the raster layers of the object area. Due to many offset
trajectory lines, a Shapefile was generated for every 10,000 offset trajectory lines and saved
for processing in batches, considering the efficiency of the single machine calculation.

Figure 9, shows that 47,627 offset trajectory lines parallel to the object survey line were
obtained after offsetting. The file was named offLines_merge, a Shapefile spatial data type,
geographic coordinate system GCS_WGS_1984, and datum D_WGS_1984.
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The corresponding elevation data sequences of 47,627 topographic profiles are ex-
tracted in batches from the AUV high-precision topographic data of the object area accord-
ing to the geographic location data of the above offset trajectory lines. Table 1 presents
the elevation data sequences of some topographic profiles, the full data is available in the
Supplementary Materials.

Table 1. Sequential list of elevation data for selected topographic profiles (partial).

Euclidean Distance from
the Start of the Profile/m

Elevation Value of the Profile Sequence/m

Profile_1 Profile_2 Profile_3 . . . . . . Profile_47626 Profile_47627

0 −2593.4 −2637.1 −2638.5 . . . . . . −2604.5 −2605.3
1.1 −2593.8 −2637.1 −2638.6 . . . . . . −2604.4 −2605.2
2.2 −2593 −2638.1 −2638.5 . . . . . . −2604.6 −2605.1
3.2 −2591.9 −2637 −2638.7 . . . . . . −2604.6 −2605
4.3 −2591.8 −2637.1 −2638.8 . . . . . . −2604.3 −2604.8
5.4 −2591.3 −2637.2 −2638.9 . . . . . . −2604.4 −2604.7
6.5 −2591.5 −2637.3 −2639.1 . . . . . . −2604.3 −2604.5
7.6 −2591.5 −2637.4 −2639.3 . . . . . . −2604.1 −2604.9
8.6 −2592.7 −2637.6 −2639.6 . . . . . . −2603.9 −2604.5
9.1 −2594.9 −2638 −2639.9 . . . . . . −2603.7 −2604.6
9.7 −2592.7 −2638.4 −2640.2 . . . . . . −2603.5 −2604.7

10.8 −2592.9 −2638.8 −2640.4 . . . . . . −2603.4 −2604.8
11.9 −2591.9 −2639.1 −2640.6 . . . . . . −2603.3 −2604.9
13 −2592.7 −2639.3 −2640.7 . . . . . . −2603.3 −2604.9
14 −2596.7 −2639.4 −2640.7 . . . . . . −2603.3 −2604.7

15.1 −2597 −2639.5 −2640.8 . . . . . . −2603.3 −2604.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
338.2 −2623 −2651.6 −2650.4 . . . . . . −2583.9 −2585.2
339.3 −2623.7 −2651.8 −2650.5 . . . . . . −2583.7 −2585.1
340.4 −2623.7 −2651.9 −2650.6 . . . . . . −2583.5 −2585
341.5 −2623.8 −2652 −2650.8 . . . . . . −2583.3 −2584.7
342.5 −2623.9 −2652.1 −2651 . . . . . . −2583.1 −2584.3
343.6 −2623.7 −2652.1 −2651.1 . . . . . . −2582.9 −2583.9
344.7 −2623.6 −2652.2 −2651.3 . . . . . . −2582.8 −2583.5
345.8 −2624 −2652.3 −2651.5 . . . . . . −2582.7 −2583.1

In order to calculate the similarity between 47,627 topographic profile elevation data
sequences and the camera’s water depth profile sequence of the camera survey line correc-
tion section, the DTW optimization algorithm is constructed based on Python language, and
the similarity calculation results are stored in a text file. The specific implementation steps
include: (1) import the NumPy, math, and panda modules required for data processing;
(2) take the water depth data sequence of the matching calibration section profile A as the
matching object, and calculate the similarity with the profile set B {B1, B2, B3, . . . . . . , Bn}
profile elevation data sequences; (3) calculate the maximum standard deviations between
profile A and the sequences in profile set B; (4) calculate the longest common substring and
its length between profile A and the sequences in profile set B; (5) calculate the optimization
penalty coefficient α between profile A and the sequences in profile set B; (6) combine the
penalty coefficient α and calculate the minimum distance and the optimized similarity
between camera profile A and the sequences in profile set B; (7) repeat steps (2) to (6); and
(8) rank the calculated optimized similarity and output the result.

4.3. Camera Data Position Fixing

Table 2 shows the partial similarity matching results for sequences of profiles spaced
ten meters apart, the full data is available in the Supplementary Materials. It was found
that the profile elevation data sequence of profile_4331 has the highest similarity to the
water depth data sequence of the object survey line (91.3%).

In order to determine the location of the camera survey line, a range of 550 m north-
south and 300 m east-west is taken as the center of the location of the profile_4331, a
profile matched by the above method operation. Within this range, the object line’s raster
data is offset in batches at 1 m intervals from east to west and north to south. All the
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offset trajectory lines parallel to the object line are generated after traversing the offset
within the raster layers of the object area. After offsetting, 49,842 offset trajectory lines
parallel to the object survey line are obtained. The geographic location data of the offset
trajectory lines are then combined with the high-precision water depth data of the object
area in the above step. Then, the 49,842 topographic profiles corresponding to the offset
trajectory lines are extracted. The DTW optimization algorithm is employed to calculate the
sequence of 49,842 topographic profiles in batch and the water depth profile data sequence.
Table 3, shows that the partial similarity between the profile elevation data sequence of
profile_4331_26581 and the water depth data sequence of the object survey line is the
highest, 95.9%. What’s more, the full data is available in the Supplementary Materials.
It can then be judged that the geographical location of profile_4331_26581 is the actual
location of the camera survey line.

Based on profile_4331_26581, the entire camera survey line is matched to this posi-
tion using the camera survey line calibration section profile. The position information of
profile_4331_26581 is acquired from the profile sequence to the position sequence corre-
sponding to the camera data using the above method. The camera data positioning is
corrected to extract the position corresponding to the entire camera survey line in the AUV
topographic data. This allows the camera data to be positioned within the topographic
accuracy of the submarine camera data, as shown in Figure 10.
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Table 2. Similarity matching results for 10 m interval topographic profiles sequence(partial).

Serial Number of the Profile Similarityupdate

profile_4331 91.30%
profile_4332 85.00%
profile_4333 83.30%
profile_4330 82.50%
profile_5147 82.40%
profile_23966 82.00%
profile_36114 81.90%
profile_40218 81.60%
profile_4795 80.90%
profile_10625 80.20%

profile_376 79.20%
profile_29874 73.40%
profile_33647 73.40%
profile_5603 72.60%
profile_19852 71.30%
profile_41597 67.10%
profile_11963 66.90%
profile_26149 66.40%
profile_33065 65.80%
profile_2063 64.40%

. . . . . . . . . . . .

Table 3. Similarity matching results for 1-m interval topographic profiles sequence (partial).

Serial Number of the Profile Similarityupdate

profile_4331_26851 95.90%
profile_4331_28652 93.10%
profile_4331_26850 92.70%
profile_4331_26853 91.30%
profile_4331_39723 88.60%

profile_4331_891 87.90%
profile_4331_29047 86.30%
profile_4331_47829 86.00%
profile_4331_5182 85.70%

profile_4331_83 85.50%
profile_4331_39021 85.30%
profile_4331_11548 84.60%
profile_4331_17406 84.40%
profile_4331_28749 82.60%
profile_4331_27910 82.30%
profile_4331_33905 82.10%
profile_4331_14803 81.90%
profile_4331_9201 81.40%
profile_4331_8493 80.80%

profile_4331_44920 80.40%
. . . . . . . . . . . .

5. Discussion

At present, the positioning of near-bottom camera data, as the most intuitive and
effective means of detecting hydrothermal sulfide on the seafloor, is the most critical issue
to avoid compromising the use and value of the camera data. In the South Atlantic mid-
ridge seafloor hydrothermal surveys, equipment position fixing is achieved using a USBL
positioning system (USBL) attached to the camera tow. High-quality USBL data can be
utilized to locate underwater survey equipment and its detection data by correcting the
USBL positioning data to solve the position fixing problem [38–44]. These methods are
suitable for positioning data with low dispersion of anomalies, relatively few error points,
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and good overall quality. If the USBL data signal is extremely poor or even missing, the
above methods cannot be helpful.

Thus, by correcting the USBL positioning data to locate the underwater survey equip-
ment and its detection data, the positioning data with fewer discrete outliers, fewer error
points, and better comprehensive quality can be obtained. The above method cannot
accurately locate and correct the precious data collected by the submarine detection equip-
ment under extremely poor or missing USBL data signal due to signal interference and
environmental state changes.

As explained by the above analysis (2.2), the near-seabed camera towed body will
not be disturbed too much during the operation of the seabed resource survey or it will
not generate violent oscillation under no particular circumstances. Besides, topographic
variations cannot lead to abrupt changes in morphological characteristics. Therefore, the
DTW algorithm can perform subsequent similarity matching. Based on Python language
and an ArcGIS technology environment, this paper constructs the background informa-
tion of the camera survey line and AUV high-precision topographic data. The typical
matching calibration section profile is selected in the camera survey line to be calibrated.
It is employed as the profile shape reference, with the parameters of position, direction,
and distance extracted based on the GPS position fixing information on board the ship
simultaneously. The topographic profile in the AUV topographic is extracted according to
specific density rules, and the optimized DTW algorithm is utilized to traverse all the topo-
graphic profiles and calculate the similarity between the bathymetric profile of the camera
survey line calibration section and the topographic profile. Accordingly, the profile with
the highest matching degree is the correct position of the camera survey line calibration
section. Moreover, the camera survey line’s position matching and positioning correction
are performed, thus realizing the positioning correction of the camera data. In addition,
the position fixing problem of the survey data has been solved using an optimized DTW
algorithm, leaving aside the USBL positioning data in the near-bottom survey. Furthermore,
the underwater position fixing problem that cannot be solved by GPS and USBL positioning
systems is solved.

Besides, while calculating the similarity of topographic profile sequences using the
DTW algorithm, the monotonicity of their curves advances at inconsistent rates due to
the periodic undulating characteristics of specific topographic profile sequences. The
“sick match” phenomenon with inconsistent peak and trough trends appears, as shown in
Figure 8. This paper improves and optimizes the original algorithm. A penalty coefficient α
is defined to eliminate the “sick match” phenomenon and facilitate an accurate calculation
of the similarity between two profile sequences.

The effectiveness of the presented solution can be validated in two ways.
Firstly, it can be seen from the above calculation (4.1, 4.2) that the matching results of

two degrees of precision are unique. The matched profile similarity of the profile extracted
with a 10 m data interval is 91.3%. Based on the matching result, the precise matching of the
1 m data interval is performed, and the similarity is improved to 95.9%, indicating that the
actual matching result is within the range indicated by the target. The remaining 4% of the
similarity difference may be due to other uncertainties. Moreover, the comparison through
station sampling is also compatible with the actual situation. Therefore, the proposed
method is feasible and can solve the camera data locating problem under uncertain ultra-
short baseline location data. Secondly, the method’s validity can be further verified based
on data, such as shipboard and grab sampling records. Data calculations show that the
calibration section of the camera tow is approximately 1523 m away from the mother ship’s
GPS position in the north-south direction and 109m away in the east-west direction, with
the mother ship being 99.8 m long and 17.8 m wide. Since the GPS positioning device of the
mother ship is located at the bow and the cable hanging the optical camera tow is located
at the stern, the actual calibration position of the camera tow and the position of the cable
hanging from the mother ship should be approximately 1423 m and 109 m apart in the
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north-south and east-west directions, respectively. The projection distance between the
camera tow and the ship’s suspension cable position is approximately 1427.2 m.

According to the towing operation records of the voyage, when the ship traveled to the
section selected for the experiment, it maintained a uniform speed of 1.0 Kn. The average
cable length of the camera tow was approximately 2921 m, and the average depth of the
optical camera tow was approximately 2610 m.

Based on the average depth of the optical camera tow during operation (approximately
2610 m) and the projected distance between the calibration position of the camera tow
and the position of the ship’s suspended cable (approximately 1427.2 m) calculated in
the previous section, the spatial distance between the position of the ship’s suspended
cable and the calibration position of the camera tow is obtained as approximately 2974.7 m.
Accordingly, after the positioning calibration of the camera tow by the proposed method,
the length of the cable towed by the ship during operation is approximately 2974.7 m. This
calculation results in a cable length that differs by approximately 53.7 m from the cable
length recorded in the operational shift report for the voyage. The resultant positioning
fixing position is credible, considering the effects of wind and waves, systematic errors,
manual measurements, and other factors. It also further demonstrates the feasibility and
effectiveness of the proposed method.

In terms of the efficiency of the proposed method, it took approximately 16 h to
compute and initially match tens of thousands of profiles extracted at 10 m intervals over
a 7 km area using a dual-core general office computer. Moreover, it took approximately
18 h to match nearly 50,000 profiles in further precision matching. Based on this efficiency
estimate, processing with a high-performance server can be performed in less than an hour,
a task that cannot be performed manually. Validation has indicated that the algorithm is
fast, effective, and accurate, with the correction accuracy being the topographic accuracy. It
can effectively solve the problem of not being able to perform accurate positioning based on
USBL positioning data when it is highly abnormal. It also solves the problem of underwater
position fixing that GPS and other global positioning systems cannot resolve.

6. Conclusions

This paper addresses the problem of complex positioning data in near-seabed sound-
ing, especially for the confusing USBL positioning data, and corrects the visual data
positioning using extensive data of near-seabed high-precision topographic profiles. Ac-
cordingly, it can solve the seabed position fixing problem that cannot be solved by GPS,
USBL, and other positioning methods.

The DTW algorithm is first introduced into a seabed data location application. It is
optimized with penalty coefficients to calculate the similarity between the camera line
correction section profile and the topographic profile. The method is implemented based
on Python language and an ArcGIS technical environment. The maximum similarity in
the experiments is 95.9% and the topographic accuracy determines the correction error
size, which is compatible with topographic accuracy. The verification and test results
demonstrate that the algorithm is fast, effective, and accurate and can solve the position
fixing problem of towed exploration equipment and its acquired data. The proposed
algorithm is expected to be promoted, while fixing subsequent seabed survey equipment.

The conditions or limitations of this solution are the requirements for the near-bottom
survey equipment to simultaneously acquire bathymetric data during the survey operation
and the requirement to accomplish high-precision topographic surveys of the same area
(performed for an unlimited period).
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