Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = styrene-butadiene block-copolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 293
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

20 pages, 10269 KiB  
Article
Viscoelasticity of PPA/SBS/SBR Composite Modified Asphalt and Asphalt Mixtures Under Pressure Aging Conditions
by Zongjie Yu, Xinpeng Ling, Ze Fan, Yueming Zhou and Zhu Ma
Polymers 2025, 17(5), 698; https://doi.org/10.3390/polym17050698 - 6 Mar 2025
Cited by 1 | Viewed by 748
Abstract
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber [...] Read more.
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber copolymer (SBR) composite modified asphalt (CMA) under rolling thin film oven test (RTFOT) and pressure aging (PAV) conditions, as well as to analyze the viscoelastic evolution of CMA mixtures. First, accelerated aging was conducted in the laboratory through RTFOT, along with PAV tests for 20 h and 40 h. Next, the microscopic characteristics of the binder at different aging stages were explored using Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) tests. Additionally, fundamental rheological properties and temperature sweep tests were performed to reveal the viscoelastic evolution characteristics of CMA. Ultimately, the viscoelastic properties of CMA mixtures under dynamic loading at different aging stages were clarified. The results indicate that the incorporation of SBS and SBR increased the levels of carbonyl and sulfoxide factors while decreasing the level of long-chain factors, which slowed down the rate of change of large molecule content and reduced the rate of change of LMS by more than 6%, with the rate of change of overall molecular weight distribution narrowing to below 50%. The simultaneous incorporation of SBS and SBR into CMA mixtures enhanced the dynamic modulus in the 25 Hz and −10 °C range by 24.3% (AC-13), 15.4% (AC-16), and reduced the φ by 55.8% (AC-13), 40% (AC-16). This research provides a reference for the application of CMA mixtures in the repair of pavement pothole damage. Full article
Show Figures

Figure 1

19 pages, 7596 KiB  
Article
Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures
by Jianguo Wei, Jing Mao, Yanlong Han, Ping Li, Wenjie Wu and Chengxi Yi
Appl. Sci. 2025, 15(1), 22; https://doi.org/10.3390/app15010022 - 24 Dec 2024
Viewed by 1025
Abstract
Thin-layer covers easily crack under traffic load, shortening their service life. Incorporating fiber materials into the mix can enhance crack resistance thanks to their abundance, affordability, and flexibility. However, different types of fibers have different performances in bitumen and mixtures due to different [...] Read more.
Thin-layer covers easily crack under traffic load, shortening their service life. Incorporating fiber materials into the mix can enhance crack resistance thanks to their abundance, affordability, and flexibility. However, different types of fibers have different performances in bitumen and mixtures due to different material properties. To explore this problem, basalt fiber, polypropylene fiber, and glass fiber were selected in this paper. The surface characteristics, internal structure, and adsorption capacity of oily substances were observed via scanning electron microscopy and oil absorption rate testing. The effects of fibers on the high-temperature and low-temperature properties of styrene-butadiene-styrene block copolymer-modified bitumen were investigated using the dynamic shear rheometer and the force ductility method. Ultimately, through indirect tensile testing and semi-circular bending tests, and the introduction of the toughness index and fracture toughness, a comprehensive evaluation was conducted on how varying fiber types and content affect the crack resistance and toughness of bitumen mixtures. The results show that the density and dispersion of the bundle fibers are the key to the oil absorption capacity under similar internal and external structural conditions. The oil absorption rate of polypropylene fiber is the best, reaching 5.423. Fiber incorporation can significantly improve the high-temperature rheological properties of bitumen. At 4% dosage, G*/sinδ increased by about 107.04% on average at 76 °C. At low temperatures, the increase in fiber content leads to a decrease in bitumen elasticity, and the influence of glass fiber is more obvious. The area of toughness did not reach 2000 N·mm at 4% dosage. After adding fibers, the toughness index and fracture toughness of the mixture increased by more than 2% and 35%, respectively. The maximum increases in fracture energy and crack initiation energy of the mixture are 14.29% and 47.29%, respectively. It shows that the fiber enhances the toughness, crack resistance, and crack propagation resistance of the mixture. The research results can provide some reference for the application of fiber-reinforced bitumen mixtures. Full article
(This article belongs to the Special Issue Fracture Mechanics of Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

11 pages, 4752 KiB  
Article
Microscopic Interactions Between Different Block Ratios of Styrene–Butadiene–Styrene and Asphalt During Their Miscibility
by Jinyang Deng, Yu Chen, Ke Cheng, Ning Xu, Jiaxin Chang and Gang Duan
CivilEng 2024, 5(4), 1161-1171; https://doi.org/10.3390/civileng5040056 - 11 Dec 2024
Cited by 1 | Viewed by 1019
Abstract
Styrene–butadiene–styrene (SBS)-modified asphalt is widely used in the field of road construction because it helps asphalt pavements achieve good road performance. However, SBS-modified asphalt has problems of poor compatibility, leading to insufficient thermal storage stability. As a block copolymer of styrene and butadiene, [...] Read more.
Styrene–butadiene–styrene (SBS)-modified asphalt is widely used in the field of road construction because it helps asphalt pavements achieve good road performance. However, SBS-modified asphalt has problems of poor compatibility, leading to insufficient thermal storage stability. As a block copolymer of styrene and butadiene, the compatibility of SBS with asphalt is also influenced by its styrene-to-butadiene (S/B) ratios. To reveal the compatibility mechanisms of different S/B ratios of SBS and asphalt during system stabilization, the interactions of SBS with asphalt at the molecular level were investigated in this study. Based on the molecular dynamics simulation method, interfacial models of SBS and asphalt were constructed; the miscible process of SBS in asphalt was simulated, with the characteristics of phase structure evolution and molecular distribution being analyzed; and the binding energy of the SBS/asphalt miscible systems was calculated. The results show that a higher butadiene content benefits the miscibility of SBS in asphalt and that the S/B ratios affect the interaction of SBS with asphalt and its components. SBS with a 3:7 ratio of styrene to butadiene exhibits stronger adsorption with the resin component and has the highest binding energy and best compatibility with asphalt. The findings contribute to the understanding of the miscibility and compatibility mechanisms between different S/B ratios of SBS and asphalt. Full article
Show Figures

Figure 1

20 pages, 7368 KiB  
Article
Study on the Effect of SBS/HVA/CRM Composite-Modified Asphalt on the Performance of Recycled Asphalt Mixtures
by Haoming Li, Hongkui Wang, Junning Lin, Jiangang Yang and Yuquan Yao
Polymers 2024, 16(22), 3226; https://doi.org/10.3390/polym16223226 - 20 Nov 2024
Cited by 5 | Viewed by 998
Abstract
To investigate the feasibility of composite modification techniques in improving the performance of recycled asphalt mixtures, in this study, the high-viscosity agent (HVA) and crumb-rubber materials (CRM) were used to modify asphalt with a styrene-butadiene-styrene block copolymer (SBS), in order to prepare SBS-HVA [...] Read more.
To investigate the feasibility of composite modification techniques in improving the performance of recycled asphalt mixtures, in this study, the high-viscosity agent (HVA) and crumb-rubber materials (CRM) were used to modify asphalt with a styrene-butadiene-styrene block copolymer (SBS), in order to prepare SBS-HVA and SBS-CRM composite-modified asphalts. The virgin asphalt mixtures, as well as three asphalt types of recycled asphalt mixtures with 50% reclaimed asphalt pavement (RAP) content, were designed. The optimal asphalt content of the four types of asphalt mixtures was analyzed, and the rutting test, the asphalt bond strength test, the moisture-induced sensitivity test, and the low-temperature cracking resistance test were conducted to investigate the performance of the four types of asphalt mixtures. The results showed that the higher the asphalt kinematic viscosity, the higher the optimum asphalt content of the asphalt mixtures under the same air voids. HVA significantly improves the adhesion between SBS-modified asphalt and aggregate under dry conditions, while SBS-CRM composite-modified asphalt performs similarly to SBS-modified asphalt. Before and after water immersion, the degree of pull-out strength decay between the asphalts and aggregates follows the sequence of SBS-CRM- > SBS- > SBS-HVA-modified asphalts. Additionally, the residual pull-out work follows the sequence of SBS-HVA- > SBS-CRM- > SBS-modified asphalt. SBS-CRM composite-modified asphalt can significantly improve the moisture sensitivity of recycled asphalt mixtures, as well as low-temperature cracking resistance, while SBS-CRM composite-modified asphalt only improves the low-temperature cracking resistance of recycled asphalt mixtures, and does not improve the moisture sensitivity. Based on the results, it is recommended to select the appropriate composite modification method based on the climate and loading conditions, to maximize the value of asphalt, and to achieve sustainable and durable pavement. Full article
(This article belongs to the Special Issue Polymer Modified Asphalt for Sustainable Pavements)
Show Figures

Graphical abstract

19 pages, 6183 KiB  
Article
Effect of Moisture on the Fatigue and Self-Healing Properties of SiO2/SBS Composite Modified Asphalt
by Juzhong Wang, Shangjun Yu, Yihan Wang, Linhao Sun, Ruixia Li and Jinchao Yue
Materials 2024, 17(18), 4526; https://doi.org/10.3390/ma17184526 - 14 Sep 2024
Viewed by 1242
Abstract
Moisture accelerates the degradation of asphalt properties, significantly impacting the service life of roads. Therefore, this study uses simplified viscoelastic continuous damage theory and employs frequency scanning, linear amplitude scanning, and fatigue–healing–fatigue tests with a dynamic shear rheometer. The objective is to investigate [...] Read more.
Moisture accelerates the degradation of asphalt properties, significantly impacting the service life of roads. Therefore, this study uses simplified viscoelastic continuous damage theory and employs frequency scanning, linear amplitude scanning, and fatigue–healing–fatigue tests with a dynamic shear rheometer. The objective is to investigate the effects of aging time, moisture conditions, and aging temperature on the fatigue and self-healing performance of SBS (Styrene–Butadiene–Styrene block copolymer)-modified asphalt, nano-SiO2-modified asphalt, and nano-SiO2/SBS composite modified asphalt in a moisture-rich environment. The results indicate that nano-SiO2 powder enhances the low-temperature performance of modified asphalt, whereas the SBS modifier reduces temperature sensitivity and increases the recovery percentage after deformation. Compared to SBS-modified asphalt, the deformation resistance of nano-SiO2/SBS composite modified asphalt has increased by about 30%, while nano-SiO2-modified asphalt shows relatively poor deformation resistance. The fatigue performance of SBS-modified asphalt deteriorates under moisture, whereas the addition of nano-SiO2 powder improves its fatigue life. Nano-SiO2/SBS composite modified asphalt exhibits strong self-healing capabilities. Although self-healing can enhance the fatigue life of modified asphalt, moisture inhibits this improvement after self-healing. Full article
Show Figures

Figure 1

13 pages, 1669 KiB  
Article
Analysis of Rheological Properties and Regeneration Mechanism of Recycled Styrene–Butadiene–Styrene Block Copolymer (SBS) Modified Asphalt Binder Using Different Rejuvenators
by Hongmei Ma, Fucheng Guo, Jihong Han and Pengfei Zhi
Materials 2024, 17(17), 4258; https://doi.org/10.3390/ma17174258 - 28 Aug 2024
Cited by 2 | Viewed by 987
Abstract
The regeneration performance of an aged styrene–butadiene–styrene block copolymer (SBS) will be significantly influenced by different rejuvenators. The objective of this study was to comparatively investigate the regeneration effect of different SBS-modified asphalt regenerators on aged SBS-modified asphalt. Four types of different regenerant [...] Read more.
The regeneration performance of an aged styrene–butadiene–styrene block copolymer (SBS) will be significantly influenced by different rejuvenators. The objective of this study was to comparatively investigate the regeneration effect of different SBS-modified asphalt regenerators on aged SBS-modified asphalt. Four types of different regenerant formulations were selected. The optimal rejuvenator content was determined firstly using conventional performance tests. The rheological properties of the aged SBS-modified asphalt binder were evaluated by multiple stress creep recovery (MSCR) experiments. Subsequently, the regeneration mechanism of the SBS-modified asphalt binder was investigated using thin-layer chromatography–flame ionization detection (TLC-FID) and Fourier transform infrared spectroscopy (FTIR). The results showed that the rejuvenator had a certain recovery effect on the penetration, softening point, and ductility of the SBS-modified asphalt binder after aging. The SBS-modified rejuvenating agent was the most favorable among the four types of rejuvenators, where a rejuvenator dosage of 12% showed the optimal rejuvenation effect. The addition of regenerators could appropriately improve the elastic deformation capacity of the aged asphalt binder. The epoxy soybean oil in the regenerant reacted with the aging SBS-modified asphalt binder, supplementing the lost oil in the aged SBS-modified asphalt binder, dispersing the excessive accumulation of asphaltene, and making the residual SBS swell again. The viscoelastic properties of the aging asphalt binder were improved by adjusting the content of components and functional groups to achieve the purpose of regeneration. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 5111 KiB  
Article
Thermoplastic Vulcanizates with an Integration of High Wear-Resistant and Anti-Slip Properties Based on Styrene Ethylene Propylene Styrene Block Copolymer/Styrene Ethylene Butylene Styrene Block Copolymer/Solution-Polymerization Styrene-Butadiene Rubber
by Zhicheng Li and Jianbin Xiao
Polymers 2024, 16(15), 2221; https://doi.org/10.3390/polym16152221 - 4 Aug 2024
Cited by 1 | Viewed by 2243
Abstract
Distinguished from traditional vulcanized rubber, which is not reusable, thermoplastic elastomer (TPV) is a material that possesses both the excellent resilience of traditional vulcanized rubber and the recyclability of thermoplastic, and TPVs have been widely studied in both academia and industry because of [...] Read more.
Distinguished from traditional vulcanized rubber, which is not reusable, thermoplastic elastomer (TPV) is a material that possesses both the excellent resilience of traditional vulcanized rubber and the recyclability of thermoplastic, and TPVs have been widely studied in both academia and industry because of their outstanding green properties. In this study, new thermoplastic elastomers based on solution polymerized styrene butadiene rubber (SSBR) and thermoplastic elastomers (SEPSs/SEBSs) were prepared by the first dynamic vulcanization process. The high slip resistance and abrasion resistance of SSBR are utilized to improve the poor slip resistance of SEPSs/SEBSs, which provides a direction for the recycling of shoe sole materials. In this paper, the effects of different ratios of the rubber/plastic phase (R/P) on the mechanical properties, rheological properties, micro-morphology, wear resistance, and anti-slip properties of SSBR/TPE TPVs are investigated. The results show that the SSBR/TPE TPVs have good mechanical properties. The tensile strength, tear strength, hardness, and resilience of the TPVs decrease slightly with an increasing R/P ratio. Still, TPVs have a tensile strength of 18.1 MPa when the ratio of R/P is 40/100, and this reaches the performance of the vulcanized rubber sole materials commonly used in the market. In addition, combined with microscopic morphology analysis (SEM), it was found that, with the increase in the R/P ratio, the size of the rubber particles gradually increased, forming a stronger crosslinking network, but the rheological properties of TPVs gradually decreased; crosslinking network enhancement led to the increase in the size of the rubber particles, and the increase in the size of rubber particles made the material in the abrasion of rubber particles fall easily, thus increasing its abrasion volume. Through dynamic mechanical analysis and anti-slip tests, when the R/P ratio was 40/100, the tan δ of TPVs at 0 °C was 0.35, which represents an ordinary vulcanized rubber sole material in the market. The viscoelasticity of TPVs increased with the increase in the R/P ratio, which improved the anti-slip performance of TPVs. SSBR/TPE TPVs are expected to be used in footwear and automotive fields due to their excellent abrasion resistance and anti-slip performance. Full article
(This article belongs to the Special Issue Advances in Structure-Property Relationship of Polymer Materials)
Show Figures

Figure 1

19 pages, 4159 KiB  
Article
High-Temperature Characteristics of Polyphosphoric Acid-Modified Asphalt and High-Temperature Performance Prediction Analysis of Its Mixtures
by Meiyan Huang, Jianguo Wei, Yuming Zhou, Ping Li, Jinming Li, Haolong Ju and Song Shi
Sustainability 2024, 16(12), 4922; https://doi.org/10.3390/su16124922 - 8 Jun 2024
Viewed by 1550
Abstract
To promote the application of economical and sustainable polyphosphoric acid (PPA)-modified asphalt in road engineering, styrene-butadiene block copolymer (SBS), styrene-butadiene rubber (SBR), and PPA were used to prepare PPA/SBS and PPA/SBR composite-modified asphalts, which were tested and the data analyzed. Fourier transform infrared [...] Read more.
To promote the application of economical and sustainable polyphosphoric acid (PPA)-modified asphalt in road engineering, styrene-butadiene block copolymer (SBS), styrene-butadiene rubber (SBR), and PPA were used to prepare PPA/SBS and PPA/SBR composite-modified asphalts, which were tested and the data analyzed. Fourier transform infrared spectroscopy (FTIR) tests and thermogravimetric analysis (TG) tests were carried out to study the modification mechanisms of the composite-modified asphalts, and the high-temperature performance of the PPA-modified asphalt and asphalt mixtures was analyzed by dynamic shear rheology (DSR) tests and wheel tracking tests. A gray correlation analysis and a back-propagation (BP) neural network were utilized to construct a prediction model of the high-temperature performance of the asphalt and asphalt mixtures. The test results indicate that PPA chemically interacts with the base asphalt and physically integrates with SBS and SBR. The PPA-modified asphalt has a higher decomposition temperature than the base asphalt, indicating superior thermal stability. As the PPA dosage increases, the G*/sinδ value of the PPA-modified asphalt also increases. In particular, when 0.6% PPA is combined with 2% SBS/SBR, it surpasses the high-temperature performance achieved with 4% SBS/SBR, suggesting that PPA may be a good alternative for polymer modifiers. In addition, the creep recovery of PPA-modified asphalt is influenced by the stress level, and as the stress increases, the R-value decreases, resulting in reduced elastic deformation. Furthermore, the BP neural network model achieved a fit of 0.991 in predicting dynamic stability, with a mean percentage of relative error (MAPE) of 6.15% between measured and predicted values. This underscores the feasibility of using BP neural networks in predictive dynamic stability models. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

17 pages, 7654 KiB  
Article
The Effects of Aging on Microstructures and Rheological Properties of Modified Asphalt with GO/SBS Composite
by Haiwei Xie, Yixuan Jia, Weidong Liu, Zhipeng Huang, Hanyu Wang, Zuzhong Li and Chunsheng Zhu
Polymers 2024, 16(11), 1504; https://doi.org/10.3390/polym16111504 - 25 May 2024
Cited by 3 | Viewed by 1319
Abstract
This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene–butadiene–styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind [...] Read more.
This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene–butadiene–styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind of modifier, were prepared via the solution-blending method. GO/SBS composites with varying GO contents were employed to prepare the GO/SBS-compound-modified asphalt (GO/SBS-MA). Then, the GO/SBS-MA underwent PAV (pressure aging vessel) or UV (ultraviolet) aging tests to simulate different aging circumstances. The microstructures of the asphalt binders were studied using FTIR (Fourier-transform infrared spectroscopy) and AFM (atomic force microscope) tests. Moreover, DSR (dynamic shear rheometer) and BBR (bending beam rheometer) experiments were carried out to investigate the rheological properties of the GO/SBS-MA. The results showed that the addition of GO improved the high-temperature stability of the asphalt binder while slightly impairing its performance at low temperatures. GO restrained the formation of carbonyl and sulfoxide groups as well as the breakdown of C=C bonds in the polybutadiene (PB) segment, promoting the anti-aging performance of GO/SBS-MA. Furthermore, the interactions between the GO/SBS and the asphalt binder resulted in the formation of needle-like aggregates, enhancing the stability of the asphalt binder. The asphalt binders with a higher content of graphene oxide (GO) exhibited not only a better high-temperature performance, but also a better aging resistance. It was concluded that the macroscopic properties and microstructures were significantly affected by GO, and a moderate increase in the amount of GO could contribute to a better aging resistance for GO/SBS-MA. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 9080 KiB  
Article
Influence of Biogenic Material Content on the Biodegradability of Styrene-Butadiene Composites with Incorporated Chlorella vulgaris Biomass
by Marius Bumbac, Cristina Mihaela Nicolescu, Traian Zaharescu, Costel Bumbac, Elena Elisabeta Manea, Ioana Alexandra Ionescu, Ion Valentin Gurgu, Bogdan-Catalin Serban, Octavian Buiu and Crinela Dumitrescu
Polymers 2024, 16(9), 1241; https://doi.org/10.3390/polym16091241 - 29 Apr 2024
Cited by 2 | Viewed by 2099
Abstract
Bio-fillers are intensively studied for advanced polymer composite circular design and production. In this context, the algal biomass may be considered an important and relatively low-cost resource, when harvested as a by-product from wastewater treatment plants. The biomass of the algal species Chlorella [...] Read more.
Bio-fillers are intensively studied for advanced polymer composite circular design and production. In this context, the algal biomass may be considered an important and relatively low-cost resource, when harvested as a by-product from wastewater treatment plants. The biomass of the algal species Chlorella vulgaris is frequently used in this type of environmental process, and its macro constituents’ composition ranges from around 15–25% carbohydrates, 10–20% lipids, and 50–60% proteins. Poly (styrene-butadiene-styrene) (SBS) copolymers have a matrix composed of glassy polystyrene domains connected by flexible polybutadiene segments. Although the physical-mechanical properties of SBS copolymers recommend them for many industrial applications, they have the drawback of low biodegradability. This study aimed to assess the aerobic biodegradability of polymer composites by integrating biomass from Chlorella vulgaris at varying mass percentages of 5, 10, and 20% into SBS copolymer composites. Biodegradation tests were conducted under industrial composting conditions (58 °C and 50% relative humidity) for 180 days. The biodegradability of materials was evaluated by measuring the CO2 produced in each vessel during the study period. Potential correlations between the amount of carbon dioxide released and the percentage of biomass added to the polymer matrix were examined. Structural and morphological changes were assessed using Fourier Transform infrared spectroscopy (FTIR), thermal analysis (DSC), and scanning electron microscopy (SEM). Physical and chemical testing revealed a decrease in sample density after the industrial composting test, along with noticeable changes in melt flow index (MFI). The observed physical and chemical changes, coupled with FTIR, SEM, and DSC data, indicate increased cross-linking and higher porosity in biodegraded polymer structures with higher biomass content. This behavior is likely due to the formation of cross-linked connections between polymer chains and polypeptide chains resulting from protein degradation, enhancing connections between polystyrene units facilitated by peptide bonds with the benzene units of the styrene blocks within the polymer matrix. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites: Fabrication and Applications II)
Show Figures

Figure 1

21 pages, 28016 KiB  
Article
Biodegradation Study of Styrene–Butadiene Composites with Incorporated Arthrospira platensis Biomass
by Marius Bumbac, Cristina Mihaela Nicolescu, Traian Zaharescu, Ion Valentin Gurgu, Costel Bumbac, Elena Elisabeta Manea, Ioana Alexandra Ionescu, Bogdan-Catalin Serban, Octavian Buiu and Crinela Dumitrescu
Polymers 2024, 16(9), 1218; https://doi.org/10.3390/polym16091218 - 26 Apr 2024
Cited by 1 | Viewed by 1824
Abstract
The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and [...] Read more.
The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and high tolerance to different types of culture media with higher production yields than those provided by the biomass of terrestrial crops. On the other hand, algal biomass can be a secondary product in wastewater treatment processes. For the present study, an SBS polymer composite (SBSC) containing 25% (w/w) copolymer SBS1 (linear copolymer: 30% styrene and 70% butadiene), 50% (w/w) copolymer SBS2 (linear copolymer: 40% styrene and 60% butadiene), and 25% (w/w) paraffin oil was prepared. Arthrospira platensis biomass (moisture content 6.0 ± 0.5%) was incorporated into the SBSC in 5, 10, 20, and 30% (w/w) ratios to obtain polymer composites with spirulina biomass. For the biodegradation studies, the ISO 14855-1:2012(E) standard was applied, with slight changes, as per the specificity of our experiments. The degradation of the studied materials was followed by quantitatively monitoring the CO2 resulting from the degradation process and captured by absorption in NaOH solution 0.5 mol/L. The structural and morphological changes induced by the industrial composting test on the materials were followed by physical–mechanical, FTIR, SEM, and DSC analysis. The obtained results were compared to create a picture of the material transformation during the composting period. Thus, the collected data indicate two biodegradation processes, of the polymer and the biomass, which take place at the same time at different rates, which influence each other. On the other hand, it is found that the material becomes less ordered, with a sponge-like morphology; the increase in the percentage of biomass leads to an advanced degree of degradation of the material. The FTIR analysis data suggest the possibility of the formation of peptide bonds between the aromatic nuclei in the styrene block and the molecular residues resulting from biomass biodegradation. It seems that in industrial composting conditions, the area of the polystyrene blocks from the SBS-based composite is preferentially transformed in the process. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites: Fabrication and Applications II)
Show Figures

Figure 1

21 pages, 6919 KiB  
Article
Study of the Properties and Modification Mechanism of SBS-Modified Asphalt by Dry Process
by Ying Wang, Shaohua Guo, Zhongshi Pei, Shizuo Zhan, Senlin Lin, Kezheng Ma, Junwen Lei and Junyan Yi
Materials 2024, 17(7), 1454; https://doi.org/10.3390/ma17071454 - 22 Mar 2024
Cited by 6 | Viewed by 1938
Abstract
SBS (styrene-butadiene-styrene block copolymer) is a thermoplastic elastomer with properties most similar to rubber. SBS asphalt modifier is mainly composed of a styrene-butadiene-styrene block copolymer with a certain amount of additives and stabilizers. SBS-modified asphalt binder has always been the most commonly used [...] Read more.
SBS (styrene-butadiene-styrene block copolymer) is a thermoplastic elastomer with properties most similar to rubber. SBS asphalt modifier is mainly composed of a styrene-butadiene-styrene block copolymer with a certain amount of additives and stabilizers. SBS-modified asphalt binder has always been the most commonly used pavement material both domestically and internationally. However, conventional wet-process SBS-modified asphalt binder requires manufacturers to produce it in advance and transport it to a mixing plant for blending. This has provided an opportunity for unscrupulous businesses to reduce the amount of SBS by adding other substances, allowing inferior asphalt binder to pass inspections undetected. At the same time, conventional wet-process SBS-modified asphalt tends to undergo phase separation and experience a decline in performance as the storage time increases. However, dry-process SBS-modified asphalt can be directly added at the mixing plant, effectively addressing the issues associated with conventional wet-process SBS-modified asphalt. It also helps to reduce environmental pollution to a certain extent. This study investigates the extraction process of dry-process SBS-modified asphalt binder. It clarifies the performance and modification mechanisms of two types of dry-process SBS-modified asphalt binder at different dosages through various testing methods, including basic indicators, rheological properties, infrared spectroscopy, and fluorescence microscopy. The results indicate that due to the incorporation of oil, crosslinker, solubilizer, and other substances into dry-process SBS modifier, there is a small amount of chemical reaction with asphalt in the melting process. The high- and low-temperature properties and fatigue properties of the two dry-process SBS-modified asphalt binders at a 7% dosage are close to wet SBS-modified asphalt binder at a 5% dosage. Full article
(This article belongs to the Special Issue Design, Application and Performance Improvement of Pavement Materials)
Show Figures

Figure 1

12 pages, 3087 KiB  
Article
Flame-Retardant GF-PSB/DOPO-POSS Composite with Low Dk/Df and High Thermal Stability for High-Frequency Copper Clad Applications
by Ke Zheng, Yizhi Zhang, Jiaxiang Qiu, Guanqun Xie, Zengbiao Huang, Wei Lin, Zhimeng Liu, Qianfa Liu and Xiaoxia Wang
Polymers 2024, 16(4), 544; https://doi.org/10.3390/polym16040544 - 17 Feb 2024
Cited by 2 | Viewed by 2154
Abstract
In the field of high-frequency communications devices, there is an urgent need to develop high-performance copper clad laminates (CCLs) with low dielectric loss (Df) plus good flame retardancy and thermal stability. The hydrocarbon resin styrene-butadiene block copolymer (PSB) was modified with the flame-retardant [...] Read more.
In the field of high-frequency communications devices, there is an urgent need to develop high-performance copper clad laminates (CCLs) with low dielectric loss (Df) plus good flame retardancy and thermal stability. The hydrocarbon resin styrene-butadiene block copolymer (PSB) was modified with the flame-retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide/polyhedral oligomeric silsesquioxanes (DOPO-POSS) to meet the demands of high-frequency and high-speed applications. The resulting DOPO-POSS-modified PSB was used as the resin matrix along with other additives to fabricate PSB/DOPO-POSS laminates. At a high-frequency of 10 GHz, the laminates containing 20 wt.% of DOPO-POSS and with a thickness of 0.09 mm exhibited a Df of 0.00328, which is much lower compared with the commercial PSB/PX-200 composite (Df: 0.00498) and the PSB without flame retardancy (Df: 0.00453). Afterwards, glass fiber cloth (GF) was used as a reinforcing material to manufacture GF-PSB/DOPO-POSS composite laminates with a thickness of 0.25 mm. The flame retardancy of GF-PSB/DOPO-POSS composite laminate reached vertical burning (UL-94) V-1 grade, and GF-PSB/DOPO-POSS exhibited higher thermal and dynamic mechanical properties than GF-PSB/PX-200. The results of a limited oxygen index (LOI) and self-extinguishing time tests also demonstrated the superior flame-retardant performance of DOPO-POSS compared with PX-200. The investigation indicates that GF-PSB/DOPO-POSS composite laminates have significant potential for use in fabricating a printed circuit board (PCB) for high-frequency and high-speed applications. Full article
(This article belongs to the Special Issue Development in Flame-Retardant Polymer Composites)
Show Figures

Graphical abstract

21 pages, 5546 KiB  
Article
Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt
by Xiangjie Niu, Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Jing Wang and Lihui Jin
Coatings 2023, 13(12), 2003; https://doi.org/10.3390/coatings13122003 - 25 Nov 2023
Cited by 5 | Viewed by 1403
Abstract
In order to address the high preparation cost of styrene–butadiene–styrene block copolymer (SBS) modified asphalt, four kinds of polyphosphoric acid (PPA) content (0%, 0.5%, 0.75%, and 1% PPA by weight of the matrix asphalt) were selected to prepare composite modified asphalt with better [...] Read more.
In order to address the high preparation cost of styrene–butadiene–styrene block copolymer (SBS) modified asphalt, four kinds of polyphosphoric acid (PPA) content (0%, 0.5%, 0.75%, and 1% PPA by weight of the matrix asphalt) were selected to prepare composite modified asphalt with better high-temperature performance. The physical properties of composite modified asphalt were evaluated by conventional performance tests. The rheological properties of composite modified asphalt were evaluated by dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test. The synergistic modification mechanism of PPA and SBS was revealed by the Fourier transform infrared spectroscopy test. The results show that with the increase of PPA content, the penetration of PPA/SBS composite modified asphalt is reduced by 20.92%, 25.07% and 28.94%, respectively, compared with matrix asphalt, and the softening point is increased by 5.46%, 22.69% and 34.03%, respectively. In addition, PPA can improve the thermal oxidative aging resistance of asphalt. PPA can improve the shear resistance, high-temperature performance and temperature sensitivity of asphalt. At 82 °C, compared with SBS modified asphalt, the phase angle of PPA/SBS composite modified asphalt can be decreased by 8.63%, 13.23% and 19.24%, respectively, and G*/sinδ can be increased by 41.97%, 67.62% and 70.97%, respectively. SBS mainly exists in asphalt in the form of physical blending, and PPA has a new chemical reaction with asphalt, which increases the macromolecules and chain hydrocarbon components in asphalt, and the macroscopic performance is the improvement of high-temperature performance of asphalt. However, PPA has a negative effect on the low-temperature performance of the SBS modified asphalt. Full article
(This article belongs to the Special Issue Recent Development in Novel Green Asphalt Materials for Pavement)
Show Figures

Figure 1

Back to TopTop