Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Scanning Electron Microscopy
2.2.2. Oil Absorption Rate Test
2.2.3. The Dynamic Shear Rheometer
2.2.4. The Force–Ductility Method
2.2.5. Indirect Tensile Testing
2.2.6. The Semi-Circular Bending Test
3. Results and Discussion
3.1. Fiber Performance Analysis
3.1.1. Microscopic Morphology
3.1.2. Fiber Adsorption Properties
3.2. Performance Analysis of Fiber Bitumen Mortar
3.2.1. High-Temperature Rheological Property
3.2.2. The Force–Ductility Method
3.3. Performance Analysis of Fiber Bitumen Mixture
3.3.1. Indirect Tensile Testing
3.3.2. The Semi-Circular Bending Test
4. Conclusions
- (1)
- The microscopic surface morphology of the three fibers is bundle-like and the interior is a solid structure. The oil absorption rate of polypropylene fiber is high, reaching 5.423. It shows that the dispersion and density of bundled fibers with similar morphology will have a significant impact on the oil absorption rate.
- (2)
- The addition of fiber can effectively improve the high-temperature rheological properties of SBS bitumen, but the elasticity at low temperatures is reduced. When the fiber content reaches 4%, the G*/sinδ of SBS bitumen increases by about 107.04% on average, while S decreases by 89%. This means that the combination of fiber and free bitumen has a double-sided effect on the binder.
- (3)
- The incorporation of fiber significantly improves the crack resistance and toughness of bitumen mixtures, and the improvement effect of 4% polypropylene fiber is the most significant. According to the results of IDT, RT and TFAC of P-4 increased by 29.14% and 4.59%, respectively. The SCB test showed that the Gf and FI of P-4 increased by 78% and 84.32%, respectively. These findings underscore the importance of fiber dispersion in achieving a uniform distribution within the mixture, which subsequently influences the effectiveness of the fiber network structure and its bridging properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Transport of the People’s Republic of China. Statistical Bulletin of Transportation Industry Development in 2023. Available online: https://xxgk.mot.gov.cn/2020/jigou/zhghs/202406/t20240614_4142419.html (accessed on 20 June 2024).
- Zhang, G.; Wang, Y.; Ding, W.; Wang, H.; Yang, F. Anti-reflective crack performance of high viscosity and high elasticity asphalt mixture for ultra-thin wear layer. J. Shenzhen Univ. Sci. Eng. 2023, 40, 554–563. [Google Scholar] [CrossRef]
- YU, J.; Chen, F.; Peng, X.; Lu, G.; Deng, K.; Yu, X.; Zhang, W.; Mo, G.; Lu, X.; Chen, Z.; et al. High-toughness, ultra-thin friction course for the channel on the Zhuhai artificial island of the Hong Kong Zhuhai-Macao Bridge. J. Tsinghua Univ. Sci. Technol. 2020, 60, 48–56. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Y.Y.; Wu, Z.G.; Kang, A.H.; Wu, B.W.; Luo, C.F. Influence of basalt fiber on performance of thin overlayer asphalt mixtures based on multiple experimental methods. Front. Energy Res. 2023, 11, 11. [Google Scholar] [CrossRef]
- Liu, Z.M.; Luo, S.; Quan, X.; Wei, X.H.; Yang, X.; Li, Q. Laboratory evaluation of performance of porous ultra-thin overlay. Constr. Build. Mater. 2019, 204, 28–40. [Google Scholar] [CrossRef]
- Editorial Department of China Journal of Highway and Transport. Review on China’s Subgrade Engineering Research.2021. China J. Highw. Transp. 2021, 34, 1–49. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ma, B.A.; Chen, S.S.; Wei, K.; Kang, X.X. Properties of epoxy-resin binders and feasibility of their application in pavement mixtures. Constr. Build. Mater. 2021, 295, 11. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Lonetti, P.; Pranno, A. A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis. Eng. Fract. Mech. 2024, 301, 17. [Google Scholar] [CrossRef]
- Kristensen, P.K.; Niordson, C.F.; Martínez-Pañeda, E. An assessment of phase field fracture: Crack initiation and growth. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2021, 379, 22. [Google Scholar] [CrossRef]
- Shi, C.G.; Wu, Y.; Wang, H.P.; Liu, S.; Liu, P.F.; Yang, J.; Huang, W. Analysis of crumb rubber content influence on damage evolution and pattern recognition of rubberised epoxy asphalt mixture using acoustic emission techniques. Int. J. Pavement Eng. 2024, 25, 15. [Google Scholar] [CrossRef]
- Wu, B.W.; Luo, C.F.; Pei, Z.H.; Xia, J.; Chen, C.C.; Kang, A.H. Effect of Different Polymer Modifiers on the Long-Term Rutting and Cracking Resistance of Asphalt Mixtures. Materials 2021, 14, 3359. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.; Yan, K.Z.; Wang, M.; Shi, K.X.; Li, Y.R.; Zhang, Y.H. Performance evaluation of SBS-modified asphalt mixtures incorporating waste tire rubber and HDPE. Constr. Build. Mater. 2024, 430, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yang, T.; Wei, D.; Li, B. Evaluation of Road Performance of Activated Rubber Powder Composite Modified Asphalt Mixture. J. Build. Mater. 2024, 27, 114–120. [Google Scholar]
- Li, L.D.; Wu, C.L.; Cheng, Y.C.; Wang, H.T.; Liang, J.X.; Zhao, W.S. Synergistic effect of waste rubber powder on low-temperature toughness and high-temperature rheological properties of SBS modified asphalt. Constr. Build. Mater. 2023, 365, 13. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, X.C.; Lv, S.T.; Zhang, Y.N.; He, W.; Yu, F. Research on performance and mechanism of terminal blend/grafting activated crumb rubber composite modified asphalt. Constr. Build. Mater. 2023, 394, 11. [Google Scholar] [CrossRef]
- Wang, L.; Shan, M.Y.; Li, C. The cracking characteristics of the polymer-modified asphalt mixture before and after aging based on the digital image correlation technology. Constr. Build. Mater. 2020, 260, 11. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.Y.; Zhang, F.F.; Wu, H.; Zhao, P.C. Effect of Graphene Oxide on the Low-Temperature Crack Resistance of Polyurethane-SBS-Modified Asphalt and Asphalt Mixtures. Polymers 2022, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, M.; Dai, Y.; Liu, D.; Zhang, H. Study on Performance of Fiber-toughened Waterborne Epoxy Emulsified Asphalt Mixture. J. Highw. Transp. Res. Dev. 2024, 41, 1–11. [Google Scholar]
- Xie, J.; Zhao, X.C.; Liu, Y.N.; Ge, D.D.; Wang, S.F.; Ding, Z.Y.; Lv, S.T. Microbial treatment of waste crumb rubber: Reducing energy consumption and harmful emissions during asphalt production process. J. Clean. Prod. 2024, 464, 10. [Google Scholar] [CrossRef]
- Debbarma, K.; Debnath, B.; Sarkar, P.P. A comprehensive review on the usage of nanomaterials in asphalt mixes. Constr. Build. Mater. 2022, 361, 22. [Google Scholar] [CrossRef]
- Crucho, J.; Picado-Santos, L.; Neves, J.; Capitas, S. A Review of Nanomaterials’ Effect on Mechanical Performance and Aging of Asphalt Mixtures. Appl. Sci. 2019, 9, 3657. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Constr. Build. Mater. 2020, 240, 17. [Google Scholar] [CrossRef]
- Talebi, A.; Shafiei, M.; Kazemzadeh, Y.; Escrochi, M.; Riazi, M. Asphaltene prevention and treatment by using nanomaterial: A comprehensive review. J. Mol. Liq. 2023, 382, 12. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Sadeghnejad, M.; Hejazi, S.K.; Shirazi, A. Evaluation the Rheological Behavior of Asphalt Binder, Fracture Resistance and Moisture Susceptibility of Asphalt Mixtures: Before and After Adding Nano Fe2O3. Int. J. Pavement Res. Technol. 2024, 13. [Google Scholar] [CrossRef]
- Zhang, H.L.; Gao, Y.; Guo, G.H.; Zhao, B.J.; Yu, J.Y. Effects of ZnO particle size on properties of asphalt and asphalt mixture. Constr. Build. Mater. 2018, 159, 578–586. [Google Scholar] [CrossRef]
- Jia, H.C.; Sheng, Y.P.; Lv, H.L.; Kim, Y.R.; Zhao, X.R.; Meng, J.D.; Xiong, R. Effects of bamboo fiber on the mechanical properties of asphalt mixtures. Constr. Build. Mater. 2021, 289, 10. [Google Scholar] [CrossRef]
- Wei, J.T.; Mao, X.; Xu, W.; Xi, C.C.; Yan, S.J.; Sun, T.W.; Hu, X.Q.; Wang, Y.Y.; Chi, F.X. Experimental Research on the Effect of Fiberglass on the Performance of Epoxy Asphalt Concrete. Sustainability 2022, 14, 4724. [Google Scholar] [CrossRef]
- Ren, D.Y.; Luo, W.R.; Su, S.N.; Wang, Z.L.; Kong, L.; Ai, C.F. Study on crack resistance of basalt fiber reinforced asphalt mixture modified by titanate coupling agent based on digital image correlation. Constr. Build. Mater. 2024, 437, 17. [Google Scholar] [CrossRef]
- Petkova, M.; Ujhelyiova, A.; Ryba, J.; Hricova, M.; Kovar, V. Sorption Capabilities of Polypropylene/Modified Polypropylene Fibers. Preprints 2023. [Google Scholar] [CrossRef]
- Wu, B.W.; Pei, Z.H.; Xiao, P.; Lou, K.K.; Wu, X. Influence of fiber-asphalt interface property on crack resistance of asphalt mixture. Case Stud. Constr. Mater. 2022, 17, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, B.; Kang, A.H.; Wang, Y. Evaluation of Cracking Resistance of SMA-13 Hot Recycling Asphalt Mixtures Reinforced by Basalt Fiber. Materials 2024, 17, 1762. [Google Scholar] [CrossRef]
- Fu, L.X.; Jiao, Y.B.; Chen, X.H. Reinforcement evaluation of different fibers on fracture resistance of asphalt mixture based on acoustic emission technique. Constr. Build. Mater. 2022, 314, 9. [Google Scholar] [CrossRef]
- Guo, F.C.; Li, R.; Lu, S.H.; Bi, Y.Q.; He, H.Q. Evaluation of the Effect of Fiber Type, Length, and Content on Asphalt Properties and Asphalt Mixture Performance. Materials 2020, 13, 1556. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, M.H.; Kang, A.H.; Wu, Z.G.; Kou, C.J.; Zhang, Y.; Xiao, P. Effect of fiber characteristic parameters on the synergistic action and mechanism of basalt fiber asphalt mortar. Constr. Build. Mater. 2024, 438, 13. [Google Scholar] [CrossRef]
- Wang, W.S.; Cheng, Y.C.; Tan, G.J. Design Optimization of SBS-Modified Asphalt Mixture Reinforced with Eco-Friendly Basalt Fiber Based on Response Surface Methodology. Materials 2018, 11, 1311. [Google Scholar] [CrossRef] [PubMed]
- DB45/T 2531-2022; Technical Specification for Ultra-Thin Wear Layer of Hot Mix Asphalt Mixture for Expressway. Market Supervision Administration of Guangxi Zhuang Autonomous Region: Nanning, China, 2022.
- Huang, Q.; Kang, X.G.; Chen, P.F.; Zhang, Z.J.; Yan, E.H.; Zang, Z.H.; Yan, H. Characterization of viscoelastic behavior of basalt fiber asphalt mixtures based on discrete and continuous spectrum models. PLoS ONE 2024, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.X.; Men, G.Y.; Xiao, P.; Tang, Q.; Han, F.Y.; Kang, A.H.; Wu, Z.G. Recent Advances in Basalt Fiber Reinforced Asphalt Mixture for Pavement Applications. Materials 2022, 15, 6826. [Google Scholar] [CrossRef]
- Luo, D.; Khater, A.; Yue, Y.C.; Abdelsalam, M.; Zhang, Z.P.; Li, Y.Y.; Li, J.N.; Iseley, D.T. The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review Dong. Constr. Build. Mater. 2019, 209, 377–387. [Google Scholar] [CrossRef]
- Ziari, H.; Aliha, M.R.M.; Moniri, A.; Saghafi, Y. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Constr. Build. Mater. 2020, 230, 10. [Google Scholar] [CrossRef]
- Luo, Y.F.; Zhang, K.; Xie, X.B.; Yao, X.G. Performance evaluation and material optimization of Micro-surfacing based on cracking and rutting resistance. Constr. Build. Mater. 2019, 206, 193–200. [Google Scholar] [CrossRef]
- Yang, K.; Ren, J.Q.; Cui, Y.H.; Shah, T.; Zhang, Q.Y.; Zhang, B.L. Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 615, 10. [Google Scholar] [CrossRef]
- Shi, C.; Wang, J.; Sun, S.; Guan, C. Research on Basalt Fiber Oil/Asphalt Absorption Performance and Test Methods Suitable for Asphalt Mixture with Different Structures. Coatings 2024, 14, 204. [Google Scholar] [CrossRef]
- JT/T 533-2020; Fiber for Asphalt Pavements. Ministry of Transport of the People’s Republic of China: Beijing, China, 2020.
- AASHTO T 315-20; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2020.
- NB/SH/T 0184-2010; Specification on Technical Documentation for Construction Process of Petrochemical Construction Projects-Force Ductility Test of Bituminous Materials. National Energy Board: Beijing, China, 2010.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- Guo, N.; Zhao, Y.; Sun, L. Effect of fiber contents on toughness of polyester fiber asphalt concrete. J. Transp. Eng. 2006, 6, 32–35. [Google Scholar]
- Sobhan, K.; Mashnad, M. Mechanical Stabilization of Cemented Soil–Fly Ash Mixtures with Recycled Plastic Strips. J. Environ. Eng. 2003, 129, 943–947. [Google Scholar] [CrossRef]
- Sobhan, K.; Mashnad, M. Tensile Strength and Toughness of Soil–Cement–Fly-Ash Composite Reinforced with Recycled High-Density Polyethylene Strips. J. Environ. Eng. 2002, 14, 177–184. [Google Scholar] [CrossRef]
- AASHTO TP 124-16; Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature. AASHTO: Washington, DC, USA, 2016.
- Feng, D.; Cui, S.; Yi, J.; Chen, Z.; Qin, W. Evaluation Index of Lowtemperature Asphalt Mixture PerformanceBased on Semicircular Bending Test. China J. Highw. Transp. 2020, 33, 50–57. [Google Scholar] [CrossRef]
- Xing, X.Y.; Chen, S.H.; Li, Y.; Pei, J.Z.; Zhang, J.P.; Wen, Y.; Li, R.; Cui, S.C. Effect of different fibers on the properties of asphalt mastics. Constr. Build. Mater. 2020, 262, 9. [Google Scholar] [CrossRef]
- Deng, Y.G.; Zhao, B.J.; Dai, T.T.; Li, G.Q.; Li, Y. Study on the dispersibility of modified basalt fiber and its influence on the mechanical properties of concrete. Constr. Build. Mater. 2022, 350, 9. [Google Scholar] [CrossRef]
- Sun, X.L.; Qin, X.; Chen, Q.; Ma, Q. Investigation of enhancing effect and mechanism of basalt fiber on toughness of asphalt material. Pet. Sci. Technol. 2018, 36, 1710–1717. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, D.; Lv, Y.; Xiao, P.; Ding, Z.; Yu, H. Toughness research and mechanism analysis of basalt fiber asphalt mixtures. J. Nanjing Univ. Sci. Technol. 2015, 39, 500–505. [Google Scholar] [CrossRef]
- Wu, B.W.; Pei, Z.H.; Luo, C.F.; Xia, J.; Chen, C.C.; Kang, A.H. Effect of different basalt fibers on the rheological behavior of asphalt mastic. Constr. Build. Mater. 2022, 318, 10. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Xiao, Y.; Li, J.X.; Wang, T.L.; Peng, L.F. Modification and Enhancing Contribution of Fiber to Asphalt Binders and Their Corresponding Mixtures: A Study of Viscoelastic Properties. Materials 2023, 16, 5727. [Google Scholar] [CrossRef]
- Du, Z.Y.; Jiang, C.S.; Yuan, J.; Xiao, F.P.; Wang, J.G. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 24. [Google Scholar] [CrossRef]
- Wang, S.; Mallick, R.B.; Rahbar, N. Toughening mechanisms in polypropylene fiber-reinforced asphalt mastic at low temperature. Constr. Build. Mater. 2020, 248, 9. [Google Scholar] [CrossRef]
- Guo, Q.L.; Wang, H.Y.; Gao, Y.; Jiao, Y.B.; Liu, F.C.; Dong, Z.Z. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng. Fract. Mech. 2020, 229, 16. [Google Scholar] [CrossRef]
- Wu, J.R.; Hu, Y.Y. Effect of aging on the low-temperature performance of fiber-reinforced asphalt mixtures. Aip Adv. 2023, 13, 12. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, P.; Lou, K.K.; Wu, Y.H. Interfacial characteristics of fiber asphalt mastic and aggregates: Impact on mixture crack resistance performance. Constr. Build. Mater. 2024, 414, 17. [Google Scholar] [CrossRef]
- Su, J.F.; Li, P.L.; Wei, X.F.; Sun, S.F.; Zhu, L.; Dong, C. Analysis of interface interaction of aggregate-asphalt system and its effect on shear-slip behavior of asphalt mixture. Constr. Build. Mater. 2020, 264, 8. [Google Scholar] [CrossRef]
- Hajiloo, H.R.; Karimi, H.R.; Aliha, M.R.M.; Farahani, H.Z.; Salehi, S.M.; Hajiloo, M.; Haghighatpour, P.J. Crack resistance of fiber-reinforced asphalt mixtures: Effect of test specimen and test condition. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 921–937. [Google Scholar] [CrossRef]
SMA-10 | Percentages of Volume Passing Through the Following Sieves (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
The upper limit of gradation | 100 | 100 | 60 | 32 | 26 | 22 | 18 | 16 | 13 |
The lower limit of gradation | 100 | 90 | 28 | 20 | 14 | 12 | 10 | 9 | 8 |
Design gradation | 100 | 95 | 45 | 26 | 20 | 17 | 14 | 12.5 | 10.5 |
Fiber Type | Tensile Strength (MPa) | Density (kg/m3) | Purity | Price (RMB/kg) |
---|---|---|---|---|
Basalt fiber | 3000–3650 | 2650–3000 | ≧99% | 18 |
Polypropylene fiber | 2800 | 900–920 | 15 | |
Glass fiber | 3100 | 2400–2760 | 20 |
Fiber Type | ms/g | my/g | m/g | ρ |
---|---|---|---|---|
Basalt fiber | 165.91 | 175.305 | 5 | 0.879 |
Polypropylene fiber | 168.025 | 200.14 | 5.423 | |
Glass fiber | 165.93 | 182.495 | 2.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Mao, J.; Han, Y.; Li, P.; Wu, W.; Yi, C. Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures. Appl. Sci. 2025, 15, 22. https://doi.org/10.3390/app15010022
Wei J, Mao J, Han Y, Li P, Wu W, Yi C. Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures. Applied Sciences. 2025; 15(1):22. https://doi.org/10.3390/app15010022
Chicago/Turabian StyleWei, Jianguo, Jing Mao, Yanlong Han, Ping Li, Wenjie Wu, and Chengxi Yi. 2025. "Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures" Applied Sciences 15, no. 1: 22. https://doi.org/10.3390/app15010022
APA StyleWei, J., Mao, J., Han, Y., Li, P., Wu, W., & Yi, C. (2025). Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures. Applied Sciences, 15(1), 22. https://doi.org/10.3390/app15010022