Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = striatal medium spiny neurons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6758 KiB  
Article
Dopamine Receptor D3 Induces Transient, mTORC1-Dependent Autophagy That Becomes Persistent, AMPK-Mediated, and Neuroprotective in Experimental Models of Huntington’s Disease
by Diego Luis-Ravelo, Felipe Fumagallo-Reading, Alejandro Febles-Casquero, Jonathan Lopez-Fernandez, Daniel J. Marcellino and Tomas Gonzalez-Hernandez
Cells 2025, 14(9), 652; https://doi.org/10.3390/cells14090652 - 29 Apr 2025
Viewed by 817
Abstract
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently [...] Read more.
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients. Full article
(This article belongs to the Special Issue Molecular Therapeutic Advances for Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 1928 KiB  
Article
Knocking Out TAAR5: A Pathway to Enhanced Neurogenesis and Dopamine Signaling in the Striatum
by Anastasia N. Vaganova, Zoia S. Fesenko, Evgeniya V. Efimova, Sergei A. Chekrygin, Daria D. Shafranskaya, Andrey D. Prjibelski, Nataliia V. Katolikova and Raul R. Gainetdinov
Cells 2024, 13(22), 1910; https://doi.org/10.3390/cells13221910 - 19 Nov 2024
Cited by 1 | Viewed by 1939
Abstract
The member of trace-amine associated receptor family, TAAR5 receptor was suggested to recognize tertiary amines, mostly in the olfactory system; however, knocking out the receptor TAAR5 in mice showed an enhancing effect on adult neurogenesis and dopamine neurotransmission in the striatum. To estimate [...] Read more.
The member of trace-amine associated receptor family, TAAR5 receptor was suggested to recognize tertiary amines, mostly in the olfactory system; however, knocking out the receptor TAAR5 in mice showed an enhancing effect on adult neurogenesis and dopamine neurotransmission in the striatum. To estimate the role of the TAAR5, we performed gene expression profiling of striatal samples from TAAR5 knockout (KO) mice and their wild-type littermates. The higher expression of several genes involved in dopaminergic signaling and the downregulation of genes associated with gliogenesis were revealed in TAAR5-KO mice. Meanwhile, the upregulating effect of TAAR5 knockout on genes was associated with neurogenesis and synaptogenesis. The estimation of cell-type relative abundance through the deconvolution of RNA sequencing data demonstrated that TAAR5-KO striatum samples contain more D2 dopamine receptor-expressing medium spiny neurons but fewer astrocytes than wild-type mice. Our findings indicate that previously identified improvement in cognitive functions and motor coordination in TAAR5-KO mice may activate genes involved in neurogenesis, synaptogenesis, and synapse organization in the striatum. These data suggest that the pharmaceutical targeting of TAAR5 may improve striatum-dependent cognitive or motor functions. At the same time, a more detailed investigation of future TAAR5 antagonists’ effect on glia development is necessary. Full article
Show Figures

Figure 1

22 pages, 4970 KiB  
Article
Single-Cell Assessment of Human Stem Cell-Derived Mesolimbic Models and Their Responses to Substances of Abuse
by Thomas P. Rudibaugh, Ryan W. Tam, R. Chris Estridge, Samantha R. Stuppy and Albert J. Keung
Organoids 2024, 3(2), 126-147; https://doi.org/10.3390/organoids3020009 - 20 Jun 2024
Cited by 2 | Viewed by 1634
Abstract
The mesolimbic pathway connects ventral tegmental area dopaminergic neurons and striatal medium spiny neurons, playing a critical role in reward and stress behaviors. Exposure to substances of abuse during development and adulthood has been linked to adverse outcomes and molecular changes. The rise [...] Read more.
The mesolimbic pathway connects ventral tegmental area dopaminergic neurons and striatal medium spiny neurons, playing a critical role in reward and stress behaviors. Exposure to substances of abuse during development and adulthood has been linked to adverse outcomes and molecular changes. The rise of human cell repositories and whole-genome sequences enables human functional genomics ‘in a dish’, offering insights into human-specific responses to substances of abuse. Continued development of new models is needed, and the characterization of in vitro models is also necessary to ensure appropriate experimental designs and the accurate interpretation of results. This study introduces new culture conditions for generating medium spiny neurons and dopaminergic neurons with an early common media, allowing for coculture and assembloid generation. It then provides a comprehensive characterization of these and prior models and their responses to substances of abuse. Single-cell analysis reveals cell-type-specific transcriptomic responses to dopamine, cocaine, and morphine, including compound and cell-type-specific transcriptomic signatures related to neuroinflammation and alterations in signaling pathways. These findings offer a resource for future genomics studies leveraging human stem cell-derived models. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
Striatal GDNF Neurons Chemoattract RET-Positive Dopamine Axons at Seven Times Farther Distance Than Medium Spiny Neurons
by Ana Rosa Montaño-Rodriguez, Tabea Schorling and Jaan-Olle Andressoo
Cells 2024, 13(12), 1059; https://doi.org/10.3390/cells13121059 - 19 Jun 2024
Cited by 1 | Viewed by 4452
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson’s disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, [...] Read more.
Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson’s disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Figure 1

25 pages, 4396 KiB  
Article
Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats
by Luísa B. Bertotto, Dolly Lampson-Stixrud, Anushka Sinha, Nicki K. Rohani, Isabella Myer and Eric P. Zorrilla
Cells 2024, 13(4), 321; https://doi.org/10.3390/cells13040321 - 9 Feb 2024
Cited by 1 | Viewed by 1944
Abstract
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control [...] Read more.
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5–6/grp) and post-CIE (n = 6–8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking. Full article
Show Figures

Figure 1

13 pages, 1914 KiB  
Article
Selective Activation of D3 Dopamine Receptors Ameliorates DOI-Induced Head Twitching Accompanied by Changes in Corticostriatal Processing
by Ana María Estrada-Sánchez, Claudia Rangel-Barajas, Andrew G. Howe, Scott J. Barton, Robert H. Mach, Robert R. Luedtke and George V. Rebec
Int. J. Mol. Sci. 2023, 24(11), 9300; https://doi.org/10.3390/ijms24119300 - 26 May 2023
Viewed by 2491
Abstract
D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches [...] Read more.
D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur. Full article
Show Figures

Figure 1

21 pages, 3459 KiB  
Article
Failure to Thrive: Impaired BDNF Transport along the Cortical–Striatal Axis in Mouse Q140 Neurons of Huntington’s Disease
by Michael T. Maloney, Wei Wang, Sumana Bhowmick, Ivan Millan, Mridu Kapur, Nicolas Herrera, Everett Frost, Elena Y. Zhang, Scott Song, Melissa Wang, Amelia Bora Park, Annabelle Y. Yao and Yanmin Yang
Biology 2023, 12(2), 157; https://doi.org/10.3390/biology12020157 - 19 Jan 2023
Cited by 5 | Viewed by 3216
Abstract
Boosting trophic support to striatal neurons by increasing levels of brain-derived neurotrophic factor (BDNF) has been considered as a target for therapeutic intervention for several neurodegenerative diseases, including Huntington’s disease (HD). To aid in the implementation of such a strategy, a thorough understanding [...] Read more.
Boosting trophic support to striatal neurons by increasing levels of brain-derived neurotrophic factor (BDNF) has been considered as a target for therapeutic intervention for several neurodegenerative diseases, including Huntington’s disease (HD). To aid in the implementation of such a strategy, a thorough understanding of BDNF cortical–striatal transport is critical to help guide its strategic delivery. In this manuscript, we investigate the dynamic behavior of BDNF transport along the cortical–striatal axis in Q140 primary neurons, a mouse model for HD. We examine this by using single-molecule labeling of BDNF conjugated with quantum dots (QD-BDNF) to follow the transport along the cortical–striatal axis in a microfluidic chamber system specifically designed for the co-culture of cortical and striatal primary neurons. Using this approach, we observe a defect of QD-BDNF transport in Q140 neurons. Our study demonstrates that QD-BDNF transport along the cortical–striatal axis involves the impairment of anterograde transport within axons of cortical neurons, and of retrograde transport within dendrites of striatal neurons. One prominent feature we observe is the extended pause time of QD-BDNF retrograde transport within Q140 striatal dendrites. Taken together, these finding support the hypothesis that delinquent spatiotemporal trophic support of BDNF to striatal neurons, driven by impaired transport, may contribute to the pathogenesis of HD, providing us with insight into how a BDNF supplementation therapeutic strategy may best be applied for HD. Full article
Show Figures

Figure 1

22 pages, 4244 KiB  
Article
iPSC-Derived Striatal Medium Spiny Neurons from Patients with Multiple System Atrophy Show Hypoexcitability and Elevated α-Synuclein Release
by Lisa M. Henkel, Svenja Kankowski, Thiemo M. Moellenkamp, Nadine J. Smandzich, Sigrid Schwarz, Alessio Di Fonzo, Gudrun Göhring, Günter Höglinger and Florian Wegner
Cells 2023, 12(2), 223; https://doi.org/10.3390/cells12020223 - 4 Jan 2023
Cited by 1 | Viewed by 3749
Abstract
Multiple system atrophy of the parkinsonian type (MSA-P) is a rare, fatal neurodegenerative disease with sporadic onset. It is still unknown if MSA-P is a primary oligodendropathy or caused by neuronal pathophysiology leading to severe, α-synuclein-associated neurodegeneration, mainly in the striatum. In this [...] Read more.
Multiple system atrophy of the parkinsonian type (MSA-P) is a rare, fatal neurodegenerative disease with sporadic onset. It is still unknown if MSA-P is a primary oligodendropathy or caused by neuronal pathophysiology leading to severe, α-synuclein-associated neurodegeneration, mainly in the striatum. In this study, we generated and differentiated induced pluripotent stem cells (iPSCs) from patients with the clinical diagnosis of probable MSA-P (n = 3) and from three matched healthy controls into GABAergic striatal medium spiny neurons (MSNs). We found a significantly elevated release and neuronal distribution for α-synuclein, as well as hypoexcitability in the MSNs derived from the MSA-P patients compared to the healthy controls. These data suggest that the striatal hypoexcitable neurons of MSA-P patients contribute to a pathological α-synuclein burden which is likely to spread to neighboring cells and projection targets, facilitating disease progression. Full article
(This article belongs to the Special Issue iPS Cells (iPSCs) for Modelling and Treatment of Human Diseases 2022)
Show Figures

Figure 1

14 pages, 1871 KiB  
Article
Haloperidol-Induced Immediate Early Genes in Striatopallidal Neurons Requires the Converging Action of cAMP/PKA/DARPP-32 and mTOR Pathways
by Oriane Onimus, Emmanuel Valjent, Gilberto Fisone and Giuseppe Gangarossa
Int. J. Mol. Sci. 2022, 23(19), 11637; https://doi.org/10.3390/ijms231911637 - 1 Oct 2022
Cited by 3 | Viewed by 2695
Abstract
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized [...] Read more.
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum. Full article
(This article belongs to the Special Issue Role of Dopamine in Health and Disease—Biological Aspect)
Show Figures

Figure 1

19 pages, 3584 KiB  
Article
Postnatal Conditional Deletion of Bcl11b in Striatal Projection Neurons Mimics the Transcriptional Signature of Huntington’s Disease
by Sicheng Song, Jordi Creus Muncunill, Carlos Galicia Aguirre, Kizito-Tshitoko Tshilenge, B. Wade Hamilton, Akos A. Gerencser, Houda Benlhabib, Maria-Daniela Cirnaru, Mark Leid, Sean D. Mooney, Lisa M. Ellerby and Michelle E. Ehrlich
Biomedicines 2022, 10(10), 2377; https://doi.org/10.3390/biomedicines10102377 - 23 Sep 2022
Cited by 4 | Viewed by 3312
Abstract
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington’s disease (HD), Parkinson’s disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical [...] Read more.
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington’s disease (HD), Parkinson’s disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, Bcl11b (also known as Ctip2), is required for striatal development, but the function of Bcl11b in adult MSNs in vivo has not been investigated. We conditionally deleted Bcl11b specifically in postnatal MSNs and performed a transcriptomic and behavioral analysis on these mice. Multiple enrichment analyses showed that the D9-Cre-Bcl11btm1.1Leid transcriptional profile was similar to the HD gene expression in mouse and human data sets. A Gene Ontology enrichment analysis linked D9-Cre-Bcl11btm1.1Leid to calcium, synapse organization, specifically including the dopaminergic synapse, protein dephosphorylation, and HDAC-signaling, commonly dysregulated pathways in HD. D9-Cre-Bcl11btm1.1Leid mice had decreased DARPP-32/Ppp1r1b in MSNs and behavioral deficits, demonstrating the dysregulation of a subtype of the dopamine D2 receptor expressing MSNs. Finally, in human HD isogenic MSNs, the mislocalization of BCL11B into nuclear aggregates points to a mechanism for BCL11B loss of function in HD. Our results suggest that BCL11B is important for the function and maintenance of mature MSNs and Bcl11b loss of function drives, in part, the transcriptomic and functional changes in HD. Full article
Show Figures

Figure 1

15 pages, 7629 KiB  
Article
Neuropathology of the Basal Ganglia in SNCA Transgenic Rat Model of Parkinson’s Disease: Involvement of Parvalbuminergic Interneurons and Glial-Derived Neurotropic Factor
by Emanuela Paldino, Vincenza D’angelo, Mariangela Massaro Cenere, Ezia Guatteo, Simone Barattucci, Giorgia Migliorato, Nicola Berretta, Olaf Riess, Giuseppe Sancesario, Nicola Biagio Mercuri and Francesca Romana Fusco
Int. J. Mol. Sci. 2022, 23(17), 10126; https://doi.org/10.3390/ijms231710126 - 4 Sep 2022
Cited by 7 | Viewed by 3188
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the SNCA gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the SNCA gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic factor (GDNF) is also lacking in PD. We performed immunohistochemical studies to investigate neuropathological changes in the basal ganglia of a rat transgenic model of PD overexpressing alfa-synuclein. We observed that neuronal loss also occurs in the dorsolateral part of the striatum in the advanced stages of the disease. Moreover, along with the degeneration of the medium spiny projection neurons, we found a dramatic loss of parvalbumin interneurons. A marked decrease in GDNF, which is produced by parvalbumin interneurons, was observed in the striatum and in the substantia nigra of these animals. This confirmed the involvement of the striatum in the pathophysiology of PD and the importance of GDNF in maintaining the health of the substantia nigra. Full article
(This article belongs to the Special Issue The Molecular and Cellular Mechanisms of Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 1225 KiB  
Article
Consequences of Acute or Chronic Methylphenidate Exposure Using Ex Vivo Neurochemistry and In Vivo Electrophysiology in the Prefrontal Cortex and Striatum of Rats
by Mathieu Di Miceli, Asma Derf and Benjamin Gronier
Int. J. Mol. Sci. 2022, 23(15), 8588; https://doi.org/10.3390/ijms23158588 - 2 Aug 2022
Cited by 4 | Viewed by 8631
Abstract
Methylphenidate (MPH) is among the main drugs prescribed to treat patients with attention-deficit and hyperactivity disease (ADHD). MPH blocks both the norepinephrine and dopamine reuptake transporters (NET and DAT, respectively). Our study was aimed at further understanding the mechanisms by which MPH could [...] Read more.
Methylphenidate (MPH) is among the main drugs prescribed to treat patients with attention-deficit and hyperactivity disease (ADHD). MPH blocks both the norepinephrine and dopamine reuptake transporters (NET and DAT, respectively). Our study was aimed at further understanding the mechanisms by which MPH could modulate neurotransmitter efflux, using ex vivo radiolabelled neurotransmitter assays isolated from rats. Here, we observed significant dopamine and norepinephrine efflux from the prefrontal cortex (PFC) after MPH (100 µM) exposure. Efflux was mediated by both dopamine and norepinephrine terminals. In the striatum, MPH (100 µM) triggered dopamine efflux through both sodium- and vesicular-dependent mechanisms. Chronic MPH exposure (4 mg/kg/day/animal, voluntary oral intake) for 15 days, followed by a 28-day washout period, increased the firing rate of PFC pyramidal neurons, assessed by in vivo extracellular single-cell electrophysiological recordings, without altering the responses to locally applied NMDA, via micro-iontophoresis. Furthermore, chronic MPH treatment resulted in decreased efficiency of extracellular dopamine to modulate NMDA-induced firing activities of medium spiny neurons in the striatum, together with lower MPH-induced (100 µM) dopamine outflow, suggesting desensitization to both dopamine and MPH in striatal regions. These results indicate that MPH can modulate neurotransmitter efflux in brain regions enriched with dopamine and/or norepinephrine terminals. Further, long-lasting alterations of striatal and prefrontal neurotransmission were observed, even after extensive washout periods. Further studies will be needed to understand the clinical implications of these findings. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 1728 KiB  
Communication
HIV-Induced Hyperactivity of Striatal Neurons Is Associated with Dysfunction of Voltage-Gated Calcium and Potassium Channels at Middle Age
by Christina E. Khodr, Lihua Chen, Lena Al-Harthi and Xiu-Ti Hu
Membranes 2022, 12(8), 737; https://doi.org/10.3390/membranes12080737 - 28 Jul 2022
Cited by 4 | Viewed by 1952
Abstract
Despite combination antiretroviral therapy, HIV-associated neurocognitive disorders (HAND) occur in ~50% of people living with HIV (PLWH), which are associated with dysfunction of the corticostriatal pathway. The mechanism by which HIV alters the neuronal activity in the striatum is unknown. The goal of [...] Read more.
Despite combination antiretroviral therapy, HIV-associated neurocognitive disorders (HAND) occur in ~50% of people living with HIV (PLWH), which are associated with dysfunction of the corticostriatal pathway. The mechanism by which HIV alters the neuronal activity in the striatum is unknown. The goal of this study is to reveal the dysfunction of striatal neurons in the context of neuroHIV during aging. Using patch-clamping electrophysiology, we evaluated the functional activity of medium spiny neurons (MSNs), including firing, Ca2+ spikes mediated by voltage-gated Ca2+ channels (VGCCs), and K+ channel-mediated membrane excitability, in brain slices containing the dorsal striatum (a.k.a. the caudate-putamen) from 12-month-old (12mo) HIV-1 transgenic (HIV-1 Tg) rats. We also assessed the protein expression of voltage-gated Cav1.2/Cav1.3 L-type Ca2+ channels (L-channels), NMDA receptors (NMDAR, NR2B subunit), and GABAA receptors (GABAARs, β2,3 subunit) in the striatum. We found that MSNs had significantly increased firing in 12mo HIV-1 Tg rats compared to age-matched non-Tg control rats. Unexpectedly, Ca2+ spikes were significantly reduced, while Kv channel activity was increased, in MSNs of HIV-1 Tg rats compared to non-Tg ones. The reduced Ca2+ spikes were associated with an abnormally increased expression of a shorter, less functional Cav1.2 L-channel form, while there was no significant change in the expression of NR2Bs or GABAARs. Collectively, the present study initially reveals neuroHIV-induced dysfunction of striatal MSNs in 12mo-old (middle) rats, which is uncoupled from VGCC upregulation and reduced Kv activity (that we previously identified in younger HIV-1 Tg rats). Notably, such striatal dysfunction is also associated with HIV-induced hyperactivity/neurotoxicity of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) that send excitatory input to the striatum (demonstrated in our previous studies). Whether such MSN dysfunction is mediated by alterations in the functional activity instead of the expression of NR2b/GABAAR (or other subtypes) requires further investigation. Full article
(This article belongs to the Special Issue Physiology, Pathophysiology and Pharmacology of Calcium Channels)
Show Figures

Figure 1

20 pages, 3821 KiB  
Article
Modulation by Estradiol of L-Dopa-Induced Dyskinesia in a Rat Model of Post-Menopausal Hemiparkinsonism
by Kaja Kolmančič, Marko Živin and Maja Zorović
Life 2022, 12(5), 640; https://doi.org/10.3390/life12050640 - 26 Apr 2022
Cited by 4 | Viewed by 2751
Abstract
Treatment with levodopa (L-dopa) in Parkinson’s disease (PD) leads to involuntary movements termed L-dopa-induced dyskinesia (LID). There are contradictory data about the influence of hormone therapy in female PD patients with LID and of 17-β-estradiol (E2) on animal correlates of LID-abnormal involuntary movements [...] Read more.
Treatment with levodopa (L-dopa) in Parkinson’s disease (PD) leads to involuntary movements termed L-dopa-induced dyskinesia (LID). There are contradictory data about the influence of hormone therapy in female PD patients with LID and of 17-β-estradiol (E2) on animal correlates of LID-abnormal involuntary movements (AIMs). Our aim was to characterize the influence of E2 on motor impairment and AIMs in ovariectomized 6-hydroxydopamine (6-OHDA) rat model of PD. Half of the rats received empty and the other half implants filled with E2. Following the 6-OHDA surgery, the rats received daily treatment with either L-dopa or saline for 16 days. They were assessed for AIMs, contralateral rotations, and FAS. In the L-dopa-treated rats, E2 intensified and prolonged AIMs and contralateral rotations. On the other hand, it had no effect on motor impairment. Postmortem tyrosine hydroxylase immunostaining revealed an almost complete unilateral lesion of nigrostriatal dopaminergic neurons. E2 partially prevented the upregulation of striatal ΔFosB caused by dopamine depletion. L-dopa potentiated the upregulation of ΔFosB within the dopamine-depleted striatum and this effect was further enhanced by E2. We speculate that the potentiating effects of E2 on AIMs and on contralateral rotations could be explained by the molecular adaptations within the striatal medium spiny neurons of the direct and indirect striatofugal pathways. Full article
Show Figures

Graphical abstract

12 pages, 2693 KiB  
Article
Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum
by Gubbi Govindaiah, Rong-Jian Liu and Yanyan Wang
Biomedicines 2022, 10(1), 101; https://doi.org/10.3390/biomedicines10010101 - 4 Jan 2022
Cited by 2 | Viewed by 2764
Abstract
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in [...] Read more.
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

Back to TopTop