Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Bar Test
2.3. Chronic Intermittent EtOH (CIE) Vapor Exposure
2.4. EtOH vs. Water Operant Self-Administration
2.5. Striatal Punch Collection in Naïve and Post-CIE Rats
2.6. RNA Isolation, Reverse Transcription, and qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Catalepsy
3.2. Post-CIE Operant EtOH Self-Administration
3.2.1. EtOH Intake
3.2.2. EtOH Preference
3.2.3. Water Intake
3.3. Gene Expression in Naïve Rats
3.3.1. MSN Marker Expression
3.3.2. IEG Expression
3.4. Gene Expression in Post-CIE Rats
3.4.1. MSN Marker Expression
3.4.2. IEG Expression
3.4.3. High- vs. Low-Drinking Post-CIE Male Rats: MSN Marker Expression
3.4.4. High- vs. Low-Drinking Post-CIE Male Rats: IEG Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grant, B.F.; Chou, S.P.; Saha, T.D.; Pickering, R.P.; Kerridge, B.T.; Ruan, W.J.; Huang, B.; Jung, J.; Zhang, H.; Fan, A.; et al. Prevalence of 12-Month Alcohol Use, High-Risk Drinking, and DSM-IV Alcohol Use Disorder in the United States, 2001–2002 to 2012–2013: Results From the National Epidemiologic Survey on Alcohol and Related Conditions. JAMA Psychiatry 2017, 74, 911–923. [Google Scholar] [CrossRef]
- Schuckit, M.A. Alcohol-use disorders. Lancet 2009, 373, 492–501. [Google Scholar] [CrossRef]
- Kendler, K.S.; Ohlsson, H.; Sundquist, J.; Sundquist, K. Alcohol Use Disorder and Mortality Across the Lifespan: A Longi-tudinal Cohort and Co-relative Analysis. JAMA Psychiatry 2016, 73, 575–581. [Google Scholar] [CrossRef]
- Dawson, D.A.; Goldstein, R.B.; Grant, B.F. Rates and correlates of relapse among individuals in remission from DSM-IV alcohol dependence: A 3-year follow-up. Alcohol. Clin. Exp. Res. 2007, 31, 2036–2045. [Google Scholar] [CrossRef]
- Loughney, K.; Snyder, P.; Uher, L.; Rosman, G.; Ferguson, K.; Florio, V. Isolation and characterization of PDE10A, a novel human 3′,5′-cyclic nucleotide phosphodiesterase. Gene 1999, 234, 109–117. [Google Scholar] [CrossRef]
- Soderling, S.H.; Bayuga, S.J.; Beavo, J.A. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc. Natl. Acad. Sci. USA 1999, 96, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Logrip, M.L. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol 2015, 49, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Logrip, M.L.; Vendruscolo, L.F.; Schlosburg, J.E.; Koob, G.F.; Zorrilla, E.P. Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats. Neuropsychopharmacology 2014, 39, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lu, T.; Chen, A.; Huang, Y.; Hansen, R.; Chandler, L.J.; Zhang, H.-T. Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology 2011, 218, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Fujishige, K.; Kotera, J.; Omori, K. Striatum-and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur. J. Biochem. 1999, 266, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010, 59, 367–374. [Google Scholar] [CrossRef]
- Sano, H.; Nagai, Y.; Miyakawa, T.; Shigemoto, R.; Yokoi, M. Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J. Neurochem. 2008, 105, 546–556. [Google Scholar] [CrossRef]
- Polito, M.; Guiot, E.; Gangarossa, G.; Longueville, S.; Doulazmi, M.; Valjent, E.; Hervé, D.; Girault, J.-A.; Paupardin-Tritsch, D.; Castro, L.R.V.; et al. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32. eNeuro 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Russwurm, C.; Koesling, D.; Russwurm, M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J. Biol. Chem. 2015, 290, 11936–11947. [Google Scholar] [CrossRef]
- de Laat, B.; Kling, Y.E.; Schroyen, G.; Ooms, M.; Hooker, J.M.; Bormans, G.; Van Laere, K.; Ceccarini, J. Effects of chronic vol-untary alcohol consumption on PDE10A availability: A longitudinal behavioral and [18F] JNJ42259152 PET study in rats. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, C.; Belin, D.; Everitt, B.J. Compulsive Alcohol Seeking Results from a Failure to Disengage Dorsolateral Striatal Control over Behavior. J. Neurosci. 2019, 39, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- National Health Service (U.K.). A PET Study in Healthy Volunteers after Oral MR1916; Version 1. EudraCT Number 2016-000876-64. Available online: https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/a-pet-study-in-healthy-volunteers-after-oral-mr1916-version-1/ (accessed on 30 January 2024).
- Bricker, B.; Sampson, D.; Ablordeppey, S.Y. Evaluation of the potential of antipsychotic agents to induce catalepsy in rats: Assessment of a new, commercially available, semi-automated instrument. Pharmacol. Biochem. Behav. 2014, 120, 109–116. [Google Scholar] [CrossRef]
- Gentzel, R.C.; Toolan, D.; Roberts, R.; Koser, A.J.; Kandebo, M.; Hershey, J.; Renger, J.J.; Uslaner, J.; Smith, S.M. The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology 2015, 99, 256–263. [Google Scholar] [CrossRef]
- Nakatani, A.; Nakamura, S.; Kimura, H. The phosphodiesterase 10A selective inhibitor, TAK-063, induces c-Fos expression in both direct and indirect pathway medium spiny neurons and sub-regions of the medial prefrontal cortex in rats. Neurosci. Res. 2017, 125, 29–36. [Google Scholar] [CrossRef]
- Strick, C.A.; James, L.C.; Fox, C.B.; Seeger, T.F.; Menniti, F.S.; Schmidt, C.J. Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 2010, 58, 444–451. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Buonaguro, E.F.; Latte, G.; Rossi, R.; Marmo, F.; Iasevoli, F.; Tomasetti, C. Immediate-early genes modulation by antipsychotics: Translational implications for a putative gateway to drug-induced long-term brain changes. Front. Behav. Neurosci. 2017, 11, 240. [Google Scholar] [CrossRef]
- Chan, S.H.; Chang, K.F.; Ou, C.C.; Chan, J.Y. Nitric oxide regulates c-fos expression in nucleus tractus solitarii induced by baroreceptor activation via cGMP-dependent protein kinase and cAMP response element-binding protein phos-phorylation. Mol. Pharmacol. 2004, 65, 319–325. [Google Scholar] [CrossRef]
- Moens, U.; Subramaniam, N.; Johansen, B.; Aarbakke, J. The c-fos cAMP-response element: Regulation of gene ex-pression by a β2-adrenergic agonist, serum and DNA methylation. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1993, 1173, 63–70. [Google Scholar]
- Maronde, E. Influence of Phosphodiesterase Inhibition on CRE-and EGR1-Dependent Transcription in a Mouse Hip-pocampal Cell Line. Int. J. Mol. Sci. 2020, 21, 8658. [Google Scholar] [CrossRef]
- Ota, K.T.; Monsey, M.S.; Wu, M.S.; Young, G.J.; Schafe, G.E. Synaptic plasticity and NO-cGMP-PKG signaling coordinately regulate ERK-driven gene expression in the lateral amygdala and in the auditory thalamus following Pavlovian fear conditioning. Learn. Mem. 2010, 17, 221–235. [Google Scholar] [CrossRef]
- Contestabile, A. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog. Neurobiol. 2008, 84, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.F.; Iadecola, C. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cgmp, protein kinase g, and extracellular signal-regulated kinase. J. Neurosci. 2011, 31, 6947–6955. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.S.; Du, J.; Williams, A.J.; Wadgaonkar, R.; Drazen, J.M.; Collins, T. cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1). Biochem. J. 1998, 336, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Ginty, D.D.; Glowacka, D.; Bader, D.S.; Hidaka, H.; Wagner, J.A. Induction of immediate early genes by Ca2+ influx requires cAMP-dependent protein kinase in PC12 cells. J. Biol. Chem. 1991, 266, 17454–17458. [Google Scholar] [CrossRef] [PubMed]
- Benito, E.; Valor, L.M.; Jimenez-Minchan, M.; Huber, W.; Barco, A. cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression. J. Neurosci. 2011, 31, 18237–18250. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, F.M.; Hayward, M.D.; Le, H.N.; Hartigan, D.J.; Duman, R.S.; Nestler, E.J. Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex. Mol. Brain Res. 1993, 19, 76–82. [Google Scholar] [CrossRef]
- Morris, C.H.T.; Cao, X.; Sukhatme, V.P. 5′flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res. 1988, 16, 8835–8846. [Google Scholar] [CrossRef]
- Wilson, J.M.; Ogden, A.M.L.; Loomis, S.; Gilmour, G.; Baucum, A.J., II.; Belecky-Adams, T.L.; Merchant, K.M. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015, 99, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Soares-Cunha, C.; Coimbra, B.; Sousa, N.; Rodrigues, A.J. Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci. Biobehav. Rev. 2016, 68, 370–386. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, K.H.; London, T.D.; Szczot, I.; Bocarsly, M.E.; Friend, D.M.; Nguyen, K.P.; Mengesha, M.M.; Rubinstein, M.; Alvarez, V.A.; Kravitz, A.V. Striatopallidal neurons control avoidance behavior in exploratory tasks. Mol. Psychiatry 2020, 25, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.M.; Corbit, L.H.; Robinson, D.L.; Gremel, C.M.; Gonzales, R.A.; Chandler, L.J. Corticostriatal circuitry and habitual EtOH seeking. Alcohol 2015, 49, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, D.; Jung, M.W. Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nat. Commun. 2018, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Thanos, P.K.; Wang, G.-J.; Febo, M.; Demetrovics, Z.; Modestino, E.J.; Braverman, E.R.; Baron, D.; Badgaiyan, R.D.; Gold, M.S. The Food and Drug Addiction Epidemic: Targeting Dopamine Homeostasis. Curr. Pharm. Des. 2018, 23, 6050–6061. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N. Y. Acad. Sci. 1999, 877, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Harada, A.; Suzuki, H.; Miyamoto, M.; Kimura, H. TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-Like Effects in Multiple Paradigms. Neuropsychopharmacology 2016, 41, 2252–2262. [Google Scholar] [CrossRef]
- Hsu, Y.-T.; Liao, G.; Bi, X.; Oka, T.; Tamura, S.; Baudry, M. The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology 2011, 61, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Beck, G.; Maehara, S.; Chang, P.L.; Papa, S.M. A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov. Disord. 2018, 33, 805–814. [Google Scholar] [CrossRef]
- Arakawa, K.; Maehara, S. Combination of the phosphodiesterase 10A inhibitor, MR1916 with risperidone shows additive antipsychotic-like effects without affecting cognitive enhancement and cataleptic effects in rats. Neuropsychopharmacol. Rep. 2020, 40, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, K.; Yuge, N.; Maehara, S. Ameliorative effects of a phosphodiesterase 10A inhibitor, MR1916 on l-DOPA-induced dyskinesia in parkinsonian rats. Pharmacol. Rep. 2020, 72, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Roberto, M.; Madamba, S.G.; Stouffer, D.G.; Parsons, L.H.; Siggins, G.R. Increased GABA release in the central amygdala of ethanol-dependent rats. J. Neurosci. 2004, 24, 10159–10166. [Google Scholar] [CrossRef]
- Weiss, F.; Lorang, M.T.; Bloom, F.E.; Koob, G.F. Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: Genetic and motivational determinants. J. Pharmacol. Exp. Ther. 1993, 267, 250–258. [Google Scholar]
- Dean, R.B.; Dixon, W.J. Simplified statistics for small numbers of observations. Anal. Chem. 1951, 23, 636–638. [Google Scholar] [CrossRef]
- Rorabacher, D.B. Statistical treatment for rejection of deviant values: Critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level. Anal. Chem. 1991, 63, 139–146. [Google Scholar] [CrossRef]
- Cook, R.D.; Weisberg, S. Residuals and Influence in Regression; Chapman and Hall: New York, NY, USA, 1982. [Google Scholar]
- van Ginkel, J.R.; Linting, M.; Rippe, R.C.A.; van der Voort, A. Rebutting existing misconceptions about multiple imputation as a method for handling missing data. J. Pers. Assess. 2020, 102, 297–308. [Google Scholar] [CrossRef]
- Tabakoff, B.; Hoffman, P.L. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front. Pharmacol. 2022, 13, 1012013. [Google Scholar] [CrossRef]
- Desrivières, S.; Pronko, S.P.; Lourdusamy, A.; Ducci, F.; Hoffman, P.L.; Wodarz, N.; Ridinger, M.; Rietschel, M.; Zelenika, D.; Lathrop, M.; et al. Sex-specific role for adenylyl cyclase type 7 in alcohol dependence. Biol. Psychiatry 2011, 69, 1100–1108. [Google Scholar] [CrossRef]
- Thiele, T.E.; Willis, B.; Stadler, J.; Reynolds, J.G.; Bernstein, I.L.; McKnight, G.S. High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase a-mutant mice. J. Neurosci. 2000, 20, RC75. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.C.; Roy, A.; Zhang, H.; Xu, T. Partial deletion of the cAMP response element-binding protein gene pro-motes alcohol-drinking behaviors. J. Neurosci. 2004, 24, 5022–5030. [Google Scholar] [CrossRef] [PubMed]
- Clarke, T.-K.; Adams, M.J.; Davies, G.; Howard, D.M.; Hall, L.S.; Padmanabhan, S.; Murray, A.D.; Smith, B.H.; Campbell, A.; Hayward, C.; et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112 117). Mol. Psychiatry 2017, 22, 1376–1384. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Liu, X.; Hao, P.-D.; Yang, M.-F.; Sun, J.-Y.; Mao, L.-L.; Fan, C.-D.; Zhang, Z.-Y.; Li, D.-W.; Yang, X.-Y.; Sun, B.-L.; et al. The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice. Psychopharmacology 2017, 234, 2409–2419. [Google Scholar] [CrossRef]
- Blednov, Y.A.; Da Costa, A.; Mason, S.; Mayfield, J.; Messing, R.O. Selective PDE4B and PDE4D inhibitors produce distinct behavioral responses to ethanol and GABAergic drugs in mice. Neuropharmacology 2023, 231, 109508. [Google Scholar] [CrossRef] [PubMed]
- Grigsby, K.B.; Mangieri, R.A.; Roberts, A.J.; Lopez, M.F.; Firsick, E.J.; Townsley, K.G.; Beneze, A.; Bess, J.; Eisenstein, T.K.; Meissler, J.J.; et al. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J. Clin. Investig. 2023, 133. [Google Scholar] [CrossRef]
- Bell, R.L.; Lopez, M.F.; Cui, C.; Egli, M.; Johnson, K.W.; Franklin, K.M.; Becker, H.C. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict. Biol. 2015, 20, 38–42. [Google Scholar] [CrossRef]
- Ray, L.A.; Bujarski, S.; Shoptaw, S.; Roche, D.J.; Heinzerling, K.; Miotto, K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017, 42, 1776–1788. [Google Scholar] [CrossRef]
- Logrip, M.L.; Gainey, S.C. Sex differences in the long-term effects of past stress on alcohol self-administration, glucocorticoid sensitivity and phosphodiesterase 10A expression. Neuropharmacology 2020, 164, 107857. [Google Scholar] [CrossRef]
- Porcu, E.; Medici, M.; Pistis, G.; Volpato, C.B.; Wilson, S.G.; Cappola, A.R.; Bos, S.D.; Deelen, J.; den Heijer, M.; Freathy, R.M.; et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet. 2013, 9, e1003266. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Da Costa, A.; Mason, S.; Mayfield, J.; Moss, S.J.; Messing, R.O. Apremilast-induced increases in acute ethanol intoxication and decreases in ethanol drinking in mice involve PKA phosphorylation of GABAA β3 subunits. Neuropharmacology 2022, 220, 109255. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Willett, J.A.; Dorris, D.M.; Meitzen, J. Sex differences in medium spiny neuron excitability and glutamatergic synaptic input: Heterogeneity across striatal regions and evidence for estradiol-dependent sexual differentiation. Front. Endocrinol. 2018, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Marques, T.R.; Natesan, S.; Niccolini, F.; Politis, M.; Gunn, R.N.; Searle, G.E.; Howes, O.; Rabiner, E.A.; Kapur, S. Phosphodiesterase 10A in Schizophrenia: A PET Study Using [(11)C]IMA107. Am. J. Psychiatry 2016, 173, 714–721. [Google Scholar] [CrossRef]
- Allen Reference Atlas–Mouse Brain [Brain Atlas]. Available online: https://mouse.brain-map.org/experiment/show/71924204 (accessed on 30 January 2024).
- McClung, C.A.; Ulery, P.G.; Perrotti, L.I.; Zachariou, V.; Berton, O.; Nestler, E.J. ΔFosB: A molecular switch for long-term adaptation in the brain. Mol. Brain Res. 2004, 132, 146–154. [Google Scholar] [CrossRef]
- Piccart, E.; Gantois, I.; Laeremans, A.; de Hoogt, R.; Meert, T.; Vanhoof, G.; Arckens, L.; D’hooge, R. Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiol. Learn. Mem. 2011, 95, 260–269. [Google Scholar] [CrossRef]
- Bell, R.L.; Kimpel, M.W.; McClintick, J.N.; Strother, W.N.; Carr, L.G.; Liang, T.; Rodd, Z.A.; Mayfield, R.D.; Edenberg, H.J.; McBride, W.J. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption. Pharmacol. Biochem. Behav. 2009, 94, 131–147. [Google Scholar] [CrossRef]
- Wscieklica, T.; de Barros Viana, M.; Maluf, L.L.S.; Pouza, K.C.P.; Spadari, R.C.; Céspedes, I.C. Alcohol con-sumption increases locomotion in an open field and induces Fos-immunoreactivity in reward and ap-proach/withdrawal-related neurocircuitries. Alcohol 2016, 50, 73–82. [Google Scholar] [CrossRef]
- McBride, W.J.; Kimpel, M.W.; McClintick, J.N.; Ding, Z.-M.; Hyytia, P.; Colombo, G.; Liang, T.; Edenberg, H.J.; Lumeng, L.; Bell, R.L. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013, 47, 517–529. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Vieira, H.L.; Duarte, C.B. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR. Nitric Oxide 2015, 49, 80–89. [Google Scholar] [CrossRef]
- Boué, J.; Blanpied, C.; Brousset, P.; Vergnolle, N.; Dietrich, G. Endogenous opioid-mediated analgesia is dependent on adaptive t cell response in mice. J. Immunol. 2011, 186, 5078–5084. [Google Scholar] [CrossRef]
- Valenza, M.; Steardo, L.; Cottone, P.; Sabino, V. Diet-induced obesity and diet-resistant rats: Differences in the rewarding and anorectic effects of D-amphetamine. Psychopharmacology 2015, 232, 3215–3226. [Google Scholar] [CrossRef] [PubMed]
- Burnett, L.A.; Blais, E.M.; Unadkat, J.D.; Hille, B.; Tilley, S.L.; Babcock, D.F. Testicular expression of Adora3i2 in Adora3 knockout mice reveals a role of mouse A3Ri2 and human A3Ri3 adenosine receptors in sperm. J. Biol. Chem. 2010, 285, 33662–33670. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Suh, K.S.; Sul, D.; Kim, B.J.; Lee, S.K.; Jung, W.W. The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells. Int. J. Mol. Med. 2012, 29, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Alibhai, I.N. Regulation of FOSB MRNA Isoforms by Drugs of Abuse. Ph.D. Thesis, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA, 2006. [Google Scholar]
Naïve | ||||||||
---|---|---|---|---|---|---|---|---|
DLS | Males | p-value | Females | p-value | ||||
Egr1 | 1.76 | <0.001 | 0.80 | 0.037 | ||||
Fos (ln) | 1.32 | 0.003 | 0.28 | 0.876 | ||||
FosB | 1.12 | 0.001 | 0.45 | 0.164 | ||||
ΔFosB | 0.92 | 0.026 | 0.60 | 0.149 | ||||
VMS | Males | p-value | Females | p-value | ||||
Egr1 | 0.91 | 0.054 | 0.33 | 0.494 | ||||
Fos (ln) | 1.54 | 0.019 | −0.12 | 0.899 | ||||
FosB | 1.35 | 0.004 | −0.07 | 0.87 | ||||
ΔFosB | 1.13 | 0.03 | 0.25 | 0.63 | ||||
Post-CIE | ||||||||
Males | Females | |||||||
DLS | 0.05 µmol/kg | p-value | 0.4 µmol/kg | p-value | 0.05 µmol/kg | p-value | 0.4 µmol/kg | p-value |
Egr1 | 0.44 | 0.292 | 0.69 | 0.103 | −0.19 | 0.677 | 1.60 | 0.001 |
Fos | 0.16 | 0.64 | 0.48 | 0.176 | 0.14 | 0.712 | 2.19 | <0.001 |
FosB | −0.01 | 0.973 | 0.30 | 0.445 | 0.21 | 0.624 | 1.83 | <0.001 |
ΔFosB | 0.10 | >0.05 | 0.36 | >0.05 | −0.32 | >0.05 | 0.85 | >0.05 |
Males | Females | |||||||
VMS | 0.05 µmol/kg | p-value | 0.4 µmol/kg | p-value | 0.05 µmol/kg | p-value | 0.4 µmol/kg | p-value |
Egr1 | −0.32 | 0.496 | 0.63 | 0.187 | 0.20 | 0.674 | 0.64 | 0.185 |
Fos | −0.05 | 0.913 | 0.74 | 0.104 | 0.47 | 0.293 | 1.50 | 0.002 |
FosB | −0.03 | 0.955 | 0.65 | 0.238 | 0.59 | 0.287 | 0.69 | 0.213 |
ΔFosB | −0.08 | 867 | 0.31 | 0.519 | 0.85 | 0.083 | 0.93 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertotto, L.B.; Lampson-Stixrud, D.; Sinha, A.; Rohani, N.K.; Myer, I.; Zorrilla, E.P. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells 2024, 13, 321. https://doi.org/10.3390/cells13040321
Bertotto LB, Lampson-Stixrud D, Sinha A, Rohani NK, Myer I, Zorrilla EP. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells. 2024; 13(4):321. https://doi.org/10.3390/cells13040321
Chicago/Turabian StyleBertotto, Luísa B., Dolly Lampson-Stixrud, Anushka Sinha, Nicki K. Rohani, Isabella Myer, and Eric P. Zorrilla. 2024. "Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats" Cells 13, no. 4: 321. https://doi.org/10.3390/cells13040321
APA StyleBertotto, L. B., Lampson-Stixrud, D., Sinha, A., Rohani, N. K., Myer, I., & Zorrilla, E. P. (2024). Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells, 13(4), 321. https://doi.org/10.3390/cells13040321