Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = streptozotocin-induced β-cell damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4815 KiB  
Article
Spinach Extract Reduces Kidney Damage in Diabetic Rats by Impairing the AGEs/RAGE Axis
by Javier Flores-Estrada, Agustina Cano-Martínez, Luz Ibarra-Lara, Adriana Jiménez, Carmen Palacios-Reyes, Luis J. Pinto García, María G. Ortiz-López, Olga Nelly Rodríguez-Peña and Luis Barbo Hernández-Portilla
Int. J. Mol. Sci. 2025, 26(10), 4730; https://doi.org/10.3390/ijms26104730 - 15 May 2025
Viewed by 628
Abstract
The interaction between advanced glycation end products (AGEs) and their RAGE receptor (AGEs/RAGE axis) triggers several signaling pathways that lead to the development of diabetic nephropathy (DN). One of the most studied AGEs is Nε-(1-Carboxymethyl)-L-lysine (CML). Spinacia oleracea is an edible plant with [...] Read more.
The interaction between advanced glycation end products (AGEs) and their RAGE receptor (AGEs/RAGE axis) triggers several signaling pathways that lead to the development of diabetic nephropathy (DN). One of the most studied AGEs is Nε-(1-Carboxymethyl)-L-lysine (CML). Spinacia oleracea is an edible plant with beneficial health properties, but its effect on the AGE/RAGE axis in kidney damage is unknown. Objective: We aimed to investigate the functional role of spinach methanolic extract (SME) on kidney damage in diabetic rats associated with the CML/RAGE axis. Methods: Forty adult male Wistar rats were used in this study and divided into four groups: control rats (CTRL), SME-administered CTRL (400 mg/kg; SME), streptozotocin-induced diabetic nephropathy rats (STZ), and SME-treated STZ (STZ-SME); treatments were administered daily. After 12 weeks, serum AGEs, creatinine in urine, and lipid peroxidation in kidneys were measured. The distribution and expression levels of inflammatory and fibrotic mediators and RAGE signaling were evaluated through immunohistochemistry (NOX4, CML, RAGE, nuclear NF-κB, TNF-α, IL-1β, TGF-β1, SMAD2/3, CTGF, and a-SMA) and immunolocalization of CML/RAGE. Results: Glycoside flavonoid derivatives, such as patuletin and spinacetin, were primarily identified in the extract. Kidneys from the STZ group showed altered morphology, dead cells in the proximal tubules, and increased oxidative stress markers; notably, these effects were improved by SME treatment (STZ-SME). The STZ-SME group showed a lower staining intensity for CML and RAGE, which was associated with a decrease in the expression of inflammatory and fibrotic factors compared with the STZ group. In all groups, the distribution of these markers varied among proximal tubule, glomerular, and interstitial cells. Conclusions: SME treatment may help to prevent or delay kidney damage in diabetic rats by regulating inflammatory and fibrotic processes associated with the AGEs/RAGE pathway, a mechanism involved in the development of nephropathy. Full article
(This article belongs to the Special Issue Dietary Antioxidants in Human Health)
Show Figures

Figure 1

23 pages, 4228 KiB  
Article
Diosmin Potentiates the Antidiabetic Effects of Linagliptin in Nicotinamide/Streptozotocin-Induced Diabetic Wistar Rats
by Eman B. Abbas, Asmaa M. El-Kalaawy, Noha A. Ahmed, Anwar Shams, Amal K. Khaliefa and Osama M. Ahmed
Pharmaceuticals 2025, 18(5), 656; https://doi.org/10.3390/ph18050656 - 29 Apr 2025
Viewed by 651
Abstract
Background/Objectives: Natural therapeutics for the treatment of diabetes mellitus represent a common challenge for many researchers. Thus, the aim of this study was to evaluate the antihyperglycemic and anti-inflammatory effects and the hepatic antioxidant activities of both diosmin and linagliptin on nicotinamide/streptozotocin-induced diabetes [...] Read more.
Background/Objectives: Natural therapeutics for the treatment of diabetes mellitus represent a common challenge for many researchers. Thus, the aim of this study was to evaluate the antihyperglycemic and anti-inflammatory effects and the hepatic antioxidant activities of both diosmin and linagliptin on nicotinamide/streptozotocin-induced diabetes mellitus in rats. Methods: Induction of diabetes mellitus was produced by injecting an intraperitoneal dose of nicotinamide (60 mg/kg) to 16-hour-fasted rats, then after 15 min, an intraperitoneal dose of streptozotocin (60 mg/kg) was injected. The rats with diabetes were orally treated with linagliptin (1 mg/kg), diosmin (10 mg/kg), and both of them every other day for 4 weeks. Results: The elevated hepatic glucose-6-phosphatase and glycogen phosphorylase activities, the lowered concentrations of serum insulin, C-peptide, and hepatic glycogen, and the diminished hepatic antioxidant defense system of nicotinamide/streptozotocin-induced diabetic rats were all potentially improved by the therapies. The treatments also improved the deteriorated adiponectin and resistin mRNA expression in visceral adipose tissue of nicotinamide/streptozotocin-induced diabetic rats. In addition, the treatments induced a recovery of damaged islets of Langerhans and a regeneration of islet cells in association with the enhancement of the formation of insulin granules in β-cells and the improvement of kidney function; the combined effect was the most potent. Conclusions: Diosmin alone or in combination with linagliptin has potent antidiabetic effects, which were managed through their insulinotropic and insulin-improving actions. The diosmin in combination with linagliptin has the most potent antihyperglycemic effects. Full article
(This article belongs to the Special Issue Natural Products in Diabetes Mellitus: 2nd Edition)
Show Figures

Figure 1

15 pages, 4225 KiB  
Article
Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease
by Dora B. Balogh, Judit Hodrea, Adar Saeed, Marcell Cserhalmi, Alexandra Rozsahegyi, Tamas Lakat, Lilla Lenart, Attila J. Szabo, Laszlo J. Wagner and Andrea Fekete
Int. J. Mol. Sci. 2024, 25(24), 13327; https://doi.org/10.3390/ijms252413327 - 12 Dec 2024
Cited by 2 | Viewed by 1355
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with [...] Read more.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia. Based on these, we hypothesized that FLU might exert a similar protective effect in DKD. Diabetes was induced in male Wistar rats using streptozotocin, followed by a seven-week FLU treatment. Metabolic and renal parameters were assessed along with a histological analysis of glomerular damage and fibrosis. The effects of FLU on inflammation, hypoxia, and fibrosis were tested in human proximal tubular cells and normal rat kidney fibroblasts. FLU improved renal function and reduced glomerular damage and tubulointerstitial fibrosis. It also mitigated inflammation by reducing TLR4, IL6, and NFKB1 expressions and moderated the cellular response to tubular hypoxia. Additionally, FLU suppressed TGF-β1-induced fibrotic processes and fibroblast transformation. These findings suggest that S1R activation can slow DKD progression and protect renal function by modulating critical inflammatory, hypoxic, and fibrotic pathways; therefore, it might serve as a promising novel drug target for preventing DKD. Full article
(This article belongs to the Special Issue Molecular Mechanism of Diabetic Kidney Disease (2nd Edition))
Show Figures

Figure 1

20 pages, 4640 KiB  
Article
In Vivo and Computational Studies on Sitagliptin’s Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer’s Disease
by Vasudevan Mani and Minhajul Arfeen
Brain Sci. 2024, 14(12), 1191; https://doi.org/10.3390/brainsci14121191 - 26 Nov 2024
Cited by 4 | Viewed by 1657
Abstract
Background/Objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer’s disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 (DPP-4) [...] Read more.
Background/Objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer’s disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 (DPP-4) inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM). Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain. Computational studies supported the in vivo findings. Results: SITG significantly reduced the brain enzyme levels of acetylcholinesterase (AChE), beta-secretase-1 (BACE-1), DPP-4, and glycogen synthase kinase-3β (GSK-3β) in T2DM-induced rats. It also reduced inflammation by lowering cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB). Additionally, SITG improved oxidative stress markers by reducing malondialdehyde (MDA) and enhancing glutathione (GSH). It increased anti-apoptotic B-cell lymphoma protein-2 (Bcl-2) while reducing pro-apoptotic markers such as Bcl-2-associated X (BAX) and Caspace-3. SITG also lowered blood glucose levels and improved plasma insulin levels. To explore potential molecular level mechanisms, docking was performed on AChE, COX-2, GSK-3β, BACE-1, and Caspace-3. The potential binding affinity of SITG for the above-mentioned target enzymes were 10.8, 8.0, 9.7, 7.7, and 7.9 kcal/mol, respectively, comparable to co-crystallized ligands. Further binding mode analysis of the lowest energy conformation revealed interactions with the critical residues. Conclusions: These findings highlight SITG’s neuroprotective molecular targets in T2DM-associated neurodegeneration and its potential as a therapeutic approach for AD, warranting further clinical investigations. Full article
Show Figures

Figure 1

13 pages, 3252 KiB  
Article
Protective Effects of Food-Derived Kaempferol on Pancreatic β-Cells in Type 1 Diabetes Mellitus
by Chenmeng Song, Wei Zheng, Chengyi Song, Houfeng Zhou and Jengyuan Yao
Foods 2024, 13(23), 3797; https://doi.org/10.3390/foods13233797 - 26 Nov 2024
Cited by 3 | Viewed by 1282
Abstract
Background: Kaempferol (KPF), a flavonoid abundant in edible plants, possesses potent anti-inflammatory and antioxidant properties beneficial with notable health benefits. Objective: To evaluate the protective effects of KPF on metabolic disturbances and pancreatic damage in a Type 1 diabetes mellitus (T1DM) mouse model. [...] Read more.
Background: Kaempferol (KPF), a flavonoid abundant in edible plants, possesses potent anti-inflammatory and antioxidant properties beneficial with notable health benefits. Objective: To evaluate the protective effects of KPF on metabolic disturbances and pancreatic damage in a Type 1 diabetes mellitus (T1DM) mouse model. Methods: Male C57BL/6 mice were divided into normal, T1DM, T1DM + KPF 25 mg/kg, and T1DM + KPF 50 mg/kg groups. T1DM was induced by streptozotocin (STZ). KPF was administered via intraperitoneal injection for 2 weeks. After 4 weeks from the start, metabolic parameters, pancreatic histology, and plasma metabolites were analyzed. Network pharmacology and molecular docking identified key targets and pathways. In vitro, INS-1 cells were used to assess reactive oxygen species (ROS) production and apoptosis. Results: KPF significantly reduced blood glucose (GLU) and triglyceride (TG) levels, increased high-density lipoprotein (HDL) levels, and preserved pancreatic β-cell structure. Metabolomics revealed changes in energy metabolism and oxidative stress-related metabolites. Network analysis highlighted the PI3K/AKT/mTOR pathway, with strong binding affinities to targets such as AKT1. In vitro, KPF decreased ROS production in INS-1 cells; this effect was reversed by a PI3K/AKT inhibitor. KPF also reduced apoptosis in INS-1 cells. Conclusions: KPF ameliorates metabolic disturbances and pancreatic damage in T1DM mice, suggesting potential as a functional food ingredient for diabetes management. Full article
(This article belongs to the Special Issue The Link Between Nutrition, Developmental Plasticity and Human Health)
Show Figures

Figure 1

19 pages, 4321 KiB  
Article
Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model
by Raphaela Cassol Piccoli, William Sanabria Simões, Solange Vega Custódio, Kelen Cristiane Machado Goularte, Karina Pereira Luduvico, Julia Eisenhardt de Mello, Anita Avila de Souza, Ana Carolina Teixeira, Diego Araujo da Costa, Alethéa Gatto Barschak, Bruna Ferrary Deniz, Wellington de Almeida, Paula Pereira, Marisa Nicolai, Roselia Maria Spanevello, Francieli Moro Stefanello, Rejane Giacomelli Tavares and Maria Lídia Palma
Pharmaceuticals 2024, 17(11), 1530; https://doi.org/10.3390/ph17111530 - 14 Nov 2024
Viewed by 1261
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with ‘Arinto’ grape pomace flour (GPF) (WGPF) and ‘Touriga Nacional’ GPF (RGPF) in an [...] Read more.
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with ‘Arinto’ grape pomace flour (GPF) (WGPF) and ‘Touriga Nacional’ GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% ‘Arinto’ GPF (WGPF), and T2DM + 10% ‘Touriga Nacional’ GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits. Full article
(This article belongs to the Special Issue Bioactive Substances, Oxidative Stress, and Inflammation)
Show Figures

Figure 1

16 pages, 12183 KiB  
Article
Protective Effect of Black Rice Cyanidin-3-Glucoside on Testicular Damage in STZ-Induced Type 1 Diabetic Rats
by Hongxing Zheng, Yingjun Hu, Jia Zhou, Baolong Zhou and Shanshan Qi
Foods 2024, 13(5), 727; https://doi.org/10.3390/foods13050727 - 27 Feb 2024
Cited by 3 | Viewed by 2222
Abstract
Diabetic testicular damage is quite a common and significant complication in diabetic men, which could result in infertility. The natural fertility rate of type 1 diabetes men is only 50% because of testicular damage. This research first aimed to explore the intervention effect [...] Read more.
Diabetic testicular damage is quite a common and significant complication in diabetic men, which could result in infertility. The natural fertility rate of type 1 diabetes men is only 50% because of testicular damage. This research first aimed to explore the intervention effect of C3G on testicular tissue damage induced by diabetes. Here, a streptozotocin-induced type 1 diabetic rat model was established, and then C3G was administered. After 8 weeks of C3G supplementation, the symptoms of diabetes (e.g., high blood glucose, lower body weight, polydipsia, polyphagia) were relieved, and at the same time that sperm motility and viability increased, sperm abnormality decreased in C3G-treated diabetic rats. Furthermore, the pathological structure of testis was restored; the fibrosis of the testicular interstitial tissue was inhibited; and the LH, FSH, and testosterone levels were all increased in the C3G-treated groups. Testicular oxidative stress was relieved; serum and testicular inflammatory cytokines levels were significantly decreased in C3G-treated groups; levels of Bax, Caspase-3, TGF-β1 and Smad2/3 protein in testis decreased; and the level of Bcl-2 was up-regulated in the C3G-treated groups. A possible mechanism might be that C3G improved antioxidant capacity, relieved oxidative stress, increased anti-inflammatory cytokine expression, and inhibited the apoptosis of spermatogenic cells and testicular fibrosis, thus promoting the production of testosterone and repair of testicular function. In conclusion, this study is the first to reveal that testicular damage could be mitigated by C3G in type 1 diabetic rats. Our results provide a theoretical basis for the application of C3G in male reproductive injury caused by diabetes. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

16 pages, 2093 KiB  
Article
Diabetic Retinopathy and Regulation of Mitochondrial Glutathione–Glutathione Peroxidase Axis in Hyperhomocysteinemia
by Pooja Malaviya and Renu A. Kowluru
Antioxidants 2024, 13(3), 254; https://doi.org/10.3390/antiox13030254 - 20 Feb 2024
Cited by 10 | Viewed by 2308
Abstract
Diabetic patients have elevated homocysteine levels, and hyperhomocysteinemia is shown to exacerbate mitochondrial damage, which plays a central role in diabetic retinopathy. Glutathione peroxidases (GPx) catalyze hydrogen peroxide (H2O2) reduction using glutathione (GSH) as a cofactor. GSH and GPx [...] Read more.
Diabetic patients have elevated homocysteine levels, and hyperhomocysteinemia is shown to exacerbate mitochondrial damage, which plays a central role in diabetic retinopathy. Glutathione peroxidases (GPx) catalyze hydrogen peroxide (H2O2) reduction using glutathione (GSH) as a cofactor. GSH and GPx are mainly cytosolic but are also present in the mitochondria to neutralize H2O2 produced by superoxide dismutase, and in diabetes, they are downregulated. Hyperhomocysteinemia also disrupts the balance between S-adenosyl-L-homocysteine and S-adenosylmethionine (SAM); SAM is also a methyl donor for DNA methylation. The aim of this study was to investigate the role of homocysteine in mitochondrial GSH–GPx1 regulation in diabetic retinopathy. Human retinal endothelial cells in 20 mM D-glucose + high homocysteine were analyzed for ROS, GSH and GPx in the mitochondria, and SAM levels and GPx1 promoter DNA methylation were also studied (5-methylcytosine and MS-PCR). The results were confirmed in the retina from streptozotocin-induced hyperhomocysteinemic (cystathionine-β-synthase-deficient) diabetic mice. High homocysteine exacerbated the glucose-induced decrease in GSH levels and GPx activity in the mitochondria and the downregulation of GPx1 transcripts and further increased SAM levels and GPx1 promoter DNA methylation. Similar results were obtained in a hyperglycemic–hyperhomocysteinemic mouse model. Thus, elevated homocysteine in diabetes hypermethylates GPx1 promoter, thus decreasing the mitochondrial GPx/GSH pool and exacerbating mitochondrial damage. Modulating hyperhomocysteinemia could be a potential therapeutic avenue to target mitochondrial dysfunction in diabetic retinopathy. Full article
Show Figures

Figure 1

17 pages, 1559 KiB  
Article
Protective Effect of Betulin on Streptozotocin–Nicotinamide-Induced Diabetes in Female Rats
by Feyisayo O. Adepoju, Ksenia V. Sokolova, Irina F. Gette, Irina G. Danilova, Mikhail V. Tsurkan, Alicia C. Mondragon, Elena G. Kovaleva and Jose Manuel Miranda
Int. J. Mol. Sci. 2024, 25(4), 2166; https://doi.org/10.3390/ijms25042166 - 10 Feb 2024
Cited by 5 | Viewed by 3766
Abstract
Type 2 diabetes is characterized by hyperglycemia and a relative loss of β–cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess [...] Read more.
Type 2 diabetes is characterized by hyperglycemia and a relative loss of β–cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin–nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α–amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA–IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of β–cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes. Full article
(This article belongs to the Special Issue Bioactive Agents Effective in the Prevention of Metabolic Syndrome)
Show Figures

Figure 1

20 pages, 7847 KiB  
Article
Ameliorative Effects of Cumin Extract-Encapsulated Chitosan Nanoparticles on Skeletal Muscle Atrophy and Grip Strength in Streptozotocin-Induced Diabetic Rats
by Yu-Chiuan Wu, Min-Chien Su, Chun-Shien Wu, Pin-Yu Chen, I-Fen Chen, Feng-Huei Lin and Shyh-Ming Kuo
Antioxidants 2024, 13(1), 6; https://doi.org/10.3390/antiox13010006 - 19 Dec 2023
Cited by 3 | Viewed by 2247
Abstract
Skeletal muscle atrophy is a disorder characterized by reductions in muscle size and strength. Cumin extract (CE) possesses anti-inflammatory, antioxidant, and hypoglycemic properties. Its pharmaceutical applications are hindered by its low water solubility and by its cytotoxicity when administered at high doses. In [...] Read more.
Skeletal muscle atrophy is a disorder characterized by reductions in muscle size and strength. Cumin extract (CE) possesses anti-inflammatory, antioxidant, and hypoglycemic properties. Its pharmaceutical applications are hindered by its low water solubility and by its cytotoxicity when administered at high doses. In this study, we have developed a simplified water distillation method using a rotary evaporator to isolate the active components in cumin seeds. The anti-inflammatory effects of CE and its potential to ameliorate skeletal muscle atrophy in rats with streptozotocin (STZ)-induced diabetes were evaluated. The half-maximal inhibitory concentration (IC50) of CE for cells was 80 μM. By encapsulating CE in chitosan nanoparticles (CECNs), an encapsulation efficacy of 87.1% was achieved with a slow release of 90% of CE after 24 h of culturing, resulting in CECNs with significantly reduced cytotoxicity (IC50, 1.2 mM). Both CE and CECNs significantly reduced the inflammatory response in interleukin (IL)-6 and IL-1β assays. STZ-induced diabetic rats exhibited sustained high blood glucose levels (>16.5 mmol/L), small and damaged pancreatic β islets, and skeletal muscle atrophy. CE and CECN treatments ameliorated skeletal muscle atrophy, recovered muscle fiber striated appearance, increased grip strength, and decreased IL-6 level. Furthermore, CE and CECNs led to a reduction of damage to the pancreas, restoring its morphological phenotype, increasing serum insulin levels, and lowering blood glucose levels in STZ-induced diabetic rats. Taken together, treatment with CECNs over a 6-week period yielded positive ameliorative effects in STZ-induced rats of muscle atrophy. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 8291 KiB  
Article
Phytochemical Profiling and Anti-Fibrotic Activities of the Gemmotherapy Bud Extract of Corylus avellana in a Model of Liver Fibrosis on Diabetic Mice
by Cornel Balta, Hildegard Herman, Alina Ciceu, Bianca Mladin, Marcel Rosu, Alciona Sasu, Victor Eduard Peteu, Sorina Nicoleta Voicu, Mihaela Balas, Mihaela Gherghiceanu, Anca Dinischiotu, Neli Kinga Olah and Anca Hermenean
Biomedicines 2023, 11(6), 1771; https://doi.org/10.3390/biomedicines11061771 - 20 Jun 2023
Cited by 2 | Viewed by 2682
Abstract
In this study, we aimed to explore the hepatoprotective effects of the gemmotherapy bud extract of Corylus avellana in a model of liver fibrosis on diabetic mice. An evaluation of total flavonoids and polyphenols contents and LC/MS analyses were performed. Experimental fibrosis was [...] Read more.
In this study, we aimed to explore the hepatoprotective effects of the gemmotherapy bud extract of Corylus avellana in a model of liver fibrosis on diabetic mice. An evaluation of total flavonoids and polyphenols contents and LC/MS analyses were performed. Experimental fibrosis was induced with CCl4 (2 mL/kg by i.p. injections twice a week for 7 weeks) in streptozotocin-induced diabetic mice. Our results showed a content of 6–7% flavonoids, while hyperoside and chlorogenic acids were highlighted in the bud extract. Toxic administration of CCl4 increased oxidative stress, mRNA expression of the transforming growth factor-β1 (TGF-β1) and Smad 2/3, and reduced Smad 7 expression. Furthermore, up-regulation of α-smooth muscle actin (α-SMA) revealed an activation of hepatic stellate cells (HSCs), while collagen I (Col I) up-regulation and matrix metalloproteinases (MMPs) unbalance led to an altered extracellular matrix enriched in collagen, confirmed as well by a trichrome stain and electron microscopy analysis. Treatment with gemmotherapy extract significantly restored the liver architecture and the antioxidant balance, and significantly decreased collagen deposits in the liver and improved the liver function. Our results suggest that Corylus avellana gemmotherapy extract may have anti-fibrotic effects and could be useful in the prevention and treatment of liver fibrosis. The hepatoprotective mechanism is based on HSC inhibition, a reduction in oxidative stress and liver damage, a downregulation of the TGF-β1/Smad signaling pathway and a MMPs/TIMP rebalance. Full article
Show Figures

Figure 1

18 pages, 3267 KiB  
Article
Assessment of Antidiabetic and Anti-Inflammatory Activities of Carissa carandas Linn Extract: In Vitro and In Vivo Study
by Manaschanok Lailerd, Thiri Wai Linn, Narissara Lailerd, Duangporn Amornlerdpison and Arisa Imsumran
Appl. Sci. 2023, 13(11), 6454; https://doi.org/10.3390/app13116454 - 25 May 2023
Cited by 7 | Viewed by 3936
Abstract
This study investigated the effects of aqueous fruit extracts of Carissa carandas (CCA) on inflammation and insulin resistance using an in vitro cellular model, in vivo high-fat diets, and a streptozotocin-induced type 2 diabetic (T2DM) rat model. CCA significantly ameliorated inflammation by decreasing [...] Read more.
This study investigated the effects of aqueous fruit extracts of Carissa carandas (CCA) on inflammation and insulin resistance using an in vitro cellular model, in vivo high-fat diets, and a streptozotocin-induced type 2 diabetic (T2DM) rat model. CCA significantly ameliorated inflammation by decreasing nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Interestingly, CCA showed anti-insulin resistance activities, as it significantly improved glucose uptake and decreased glycerol release in LPS-induced 3T3-L1 adipocytes. In vivo studies showed that a high dose of 12-week oral supplementation of CCA (400 mg/kg BW/day) significantly reduced visceral fat, triglycerides, and cholesterol level in the blood of diabetic rats. Importantly, the metabolic parameters in both fasting and postprandial states, including fasting plasma glucose, HOMA-IR, and glucose intolerance, significantly improved, indicating its antihyperglycemic benefit in diabetic rats. Moreover, the results of the HOMA-β and histological examination suggested that pancreatic β-cell function and pancreatic morphological changes of the CCA and metformin treatments appeared to be better than those in non-treated diabetes, indicating the protective effect of CCA against pancreatic damage caused by hyperglycemia. In conclusion, the present study first reported that the C. carandas fruit extract has anti-inflammation and anti-insulin resistance, and subsequently improved glycemic control in the T2DM rat model. Full article
Show Figures

Figure 1

20 pages, 6204 KiB  
Article
Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis
by Chetan Ram, Shobhit Gairola, Shobhit Verma, Madhav Nilakanth Mugale, Srinivasa Reddy Bonam, Upadhyayula Suryanarayana Murty and Bidya Dhar Sahu
Antioxidants 2023, 12(5), 1052; https://doi.org/10.3390/antiox12051052 - 5 May 2023
Cited by 24 | Viewed by 3910
Abstract
Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on [...] Read more.
Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on the inflammatory response, nod-like receptor protein 3 (NLRP3) inflammasome activation, oxidative stress, and fibrosis in diabetic kidneys. A high-fat-diet/streptozotocin (HFD/STZ)-induced experimental model of diabetic nephropathy (DN) was established in Sprague Dawley rats, and in vitro studies were performed in high-glucose-induced renal tubular epithelial (NRK-52E) cells. Persistent hyperglycemia in diabetic rats was manifested by perturbation of renal function, marked histological alterations, and oxidative and inflammatory renal damage. Therapeutic intervention of BCA mitigated histological changes, improved renal function and antioxidant capacity, and suppressed phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear factor-kappa B inhibitor alpha (IκBα) proteins. Our in vitro data reveal excessive superoxide generation, apoptosis, and altered mitochondrial membrane potential in NRK-52E cells that were cultured in a high-glucose (HG) environment were subsided by BCA intervention. Meanwhile, the upregulated expressions of NLRP3 and its associated proteins, the pyroptosis-indicative protein gasdermin-D (GSDMD) in the kidneys, and HG-stimulated NRK-52E cells were significantly ameliorated by BCA treatment. Additionally, BCA blunted transforming growth factor (TGF)-β/Smad signaling and production of collagen I, collagen III, fibronectin, and alfa-smooth muscle actin (α-SMA) in diabetic kidneys. Our results indicate the plausible role of BCA in attenuating DN, presumably through modulation of the apoptotic cascade in renal tubular epithelial cells and the NF-κB/NLRP3 axis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Phloretamide Prevent Hepatic and Pancreatic Damage in Diabetic Male Rats by Modulating Nrf2 and NF-κB
by Rasha Al-Hussan, Nawal A. Albadr, Ghedeir M. Alshammari, Soheir A. Almasri and Mohammed Abdo Yahya
Nutrients 2023, 15(6), 1456; https://doi.org/10.3390/nu15061456 - 17 Mar 2023
Cited by 6 | Viewed by 3356
Abstract
This study examined the effect of phloretamide, a metabolite of phloretin, on liver damage and steatosis in streptozotocin-induced diabetes mellitus (DM) in rats. Adult male rats were divided into two groups: control (nondiabetic) and STZ-treated rats, each of which was further treated orally [...] Read more.
This study examined the effect of phloretamide, a metabolite of phloretin, on liver damage and steatosis in streptozotocin-induced diabetes mellitus (DM) in rats. Adult male rats were divided into two groups: control (nondiabetic) and STZ-treated rats, each of which was further treated orally with the vehicle phloretamide 100 mg or 200 mg. Treatments were conducted for 12 weeks. Phloretamide, at both doses, significantly attenuated STZ-mediated pancreatic β-cell damage, reduced fasting glucose, and stimulated fasting insulin levels in STZ-treated rats. It also increased the levels of hexokinase, which coincided with a significant reduction in glucose-6 phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase 1 (PBP1) in the livers of these diabetic rats. Concomitantly, both doses of phloretamide reduced hepatic and serum levels of triglycerides (TGs) and cholesterol (CHOL), serum levels of low-density lipoprotein cholesterol (LDL-c), and hepatic ballooning. Furthermore, they reduced levels of lipid peroxidation, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), mRNA, and total and nuclear levels of NF-κB p65, but increased mRNA levels, total and nuclear levels of Nrf2, as well as levels of reduced glutathione (GSH), superoxide dismutase (SOD-1), catalase (CAT), and heme-oxygenase-1 (HO-1) in the livers of diabetic rats. All of these effects were dose-dependent. In conclusion, phloretamide is a novel drug that could ameliorate DM-associated hepatic steatosis via its powerful antioxidant and anti-inflammatory effects. Mechanisms of protection involve improving the β-cell structure and hepatic insulin action, suppressing hepatic NF-κB, and stimulating hepatic Nrf2. Full article
(This article belongs to the Special Issue Natural Products and Health)
Show Figures

Figure 1

15 pages, 5976 KiB  
Article
Increased Renal Medullary NOX-4 in Female but Not Male Mice during the Early Phase of Type 1 Diabetes: Potential Role of ROS in Upregulation of TGF-β1 and Fibronectin in Collecting Duct Cells
by Felipe Casado-Barragán, Geraldine Lazcano-Páez, Paulina E. Larenas, Monserrat Aguirre-Delgadillo, Fernanda Olivares-Aravena, Daniela Witto-Oyarce, Camila Núñez-Allimant, Katherin Silva, Quynh My Nguyen, Pilar Cárdenas, Modar Kassan and Alexis A. Gonzalez
Antioxidants 2023, 12(3), 729; https://doi.org/10.3390/antiox12030729 - 16 Mar 2023
Cited by 4 | Viewed by 3769
Abstract
Chronic diabetes mellitus (DM) can lead to kidney damage associated with increased reactive oxygen species (ROS), proteinuria, and tubular damage. Altered protein expression levels of transforming growth factor-beta 1 (TGF-β1), fibronectin, and renal NADPH oxidase (NOX-4) are associated with the profibrotic phenotype in [...] Read more.
Chronic diabetes mellitus (DM) can lead to kidney damage associated with increased reactive oxygen species (ROS), proteinuria, and tubular damage. Altered protein expression levels of transforming growth factor-beta 1 (TGF-β1), fibronectin, and renal NADPH oxidase (NOX-4) are associated with the profibrotic phenotype in renal tubular cells. NOX-4 is one of the primary sources of ROS in the diabetic kidney and responsible for the induction of profibrotic factors in collecting duct (CD) cells. The renal medulla is predominantly composed of CDs; in DM, these CD cells are exposed to high glucose (HG) load. Currently there is no published literature describing the expression of these markers in the renal medulla in male and female mice during the early phase of DM, or the role of NOX-4-induced ROS. Our aim was to evaluate changes in transcripts and protein abundances of TGF-β1, fibronectin, and NOX-4 along with ROS levels in renal medullary tissues from male and female mice during a short period of streptozotocin (STZ)-induced type 1 DM and the effect of HG in cultured CD cells. CF-1 mice were injected with or without a single dose of STZ (200 mg/kg) and euthanized at day 6. STZ females showed higher expression of fibronectin and TGF-β1 when compared to control mice of either gender. Interestingly, STZ female mice showed a >30-fold increase on mRNA levels and a 3-fold increase in protein levels of kidney medullary NOX-4. Both male and female STZ mice showed increased intrarenal ROS. In primary cultures of inner medullary CD cells exposed to HG over 48 h, the expression of TGF-β1, fibronectin, and NOX-4 were augmented. M-1 CD cells exposed to HG showed increased ROS, fibronectin, and TGF-β1; this effect was prevented by NOX-4 inhibition. Our data suggest that at as early as 6 days of STZ-induced DM, the expression of profibrotic markers TGF-β1 and fibronectin increases in renal medullary CD cells. Antioxidants mechanisms in male and female in renal medullary tissues seems to be differentially regulated by the actions of NOX-4. Full article
(This article belongs to the Special Issue Cellular ROS and Antioxidants: Physiological and Pathological Role)
Show Figures

Graphical abstract

Back to TopTop