Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = strained yogurt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 311 KiB  
Article
The Application Potential of the Raw Goat Milk-Derived Strain Lactococcus lactis MK 1/3 for the Dairy Industry
by Andrea Lauková, Martin Tomáška, Maroš Drončovský, Rastislav Mucha, Emília Dvorožňáková, Miroslav Kološta and Monika Pogány Simonová
Appl. Sci. 2025, 15(12), 6781; https://doi.org/10.3390/app15126781 - 17 Jun 2025
Viewed by 362
Abstract
Raw goat milk-derived Lactococcus lactis MK1/3 (CCM 9209) was studied to show its potential for use in the dairy industry. Finding an innovative strain indicates having a new safe, original additive for functional food. The strain has been shown to be safe using [...] Read more.
Raw goat milk-derived Lactococcus lactis MK1/3 (CCM 9209) was studied to show its potential for use in the dairy industry. Finding an innovative strain indicates having a new safe, original additive for functional food. The strain has been shown to be safe using a model experiment with Balb/c mice, when no mortality was noted. Its counts were increased continually during 120 days, with the highest value on day 90 (4.38 ± 1.24 colony-forming unit per gram (CFU/g, log 10). In vivo (in the experimental mice), anti-staphylococcal effect was noted with difference 1.82 log cycles. The safety of the strain MK1/3 has been also indicated by the fact that it did not produce damaging enzymes, it has been susceptible to antibiotics, and it has shown low-grade biofilm-forming ability (0.126 ± 0.35). This strain has tolerated bile, and low pH sufficiently. It produced a postbiotic active substance with inhibitory activity against cheese and milk contaminants (Enterococci), reaching antimicrobial activity up to 3200 AU/mL. The count of the strain MK1/3 was higher in yogurts from ewe goat milk (4.66 ± 0.30 CFU/g, log 10), in comparison with its count in yogurts from ewe milk (4.10 ± 0.10 CFU/g, log 10), with no influencing yogurt pH. Its use in 100% starter culture to process fresh cheese based on goat milk was revealed in the standard cheese quality with sufficient amount of lactic acid microbiota. To support the benefit of the strain MK1/3, additional human trials have been reinforced. Full article
(This article belongs to the Section Applied Microbiology)
16 pages, 3704 KiB  
Article
Function of Yogurt Fermented with the Lactococcus lactis 11/19-B1 Strain in Improving the Lipid Profile and Intestinal Microbiome in Hemodialysis Patients
by Yoshiki Suzuki, Ken Ishioka, Taichi Nakamura, Nozomu Miyazaki, Shigeru Marubashi and Tatsuo Suzutani
Nutrients 2025, 17(11), 1931; https://doi.org/10.3390/nu17111931 - 4 Jun 2025
Viewed by 660
Abstract
Background/Objectives: The number of chronic kidney disease (CKD) patients is increasing in Japan, and this population is at high risk of death from cardiovascular and cerebrovascular diseases. Therefore, prevention of arteriosclerosis as a common underlying cause of these diseases is required. In this [...] Read more.
Background/Objectives: The number of chronic kidney disease (CKD) patients is increasing in Japan, and this population is at high risk of death from cardiovascular and cerebrovascular diseases. Therefore, prevention of arteriosclerosis as a common underlying cause of these diseases is required. In this study, we examined whether 11/19-B1 yogurt, which has been proven to reduce serum low-density lipoprotein (LDL) levels, can decrease the serum levels of indoxylsulfate and trimethylamine-N-oxide (TMAO), which are produced by intestinal microbiota and known to cause arteriosclerosis, through improving dysbiosis in hemodialysis patients. Methods: Nineteen dialysis patients consumed 50 g of 11/19-B1 yogurt daily for 8 weeks, and changes in serum lipid profile and uremic toxin levels, intestinal microbiome, as well as the frequency of bowel movement and stool characteristics were observed. Results: The results demonstrated that an intake of yogurt decreased serum LDL 99.3 to 88.5 (p = 0.049) and indoxylsulfate in seven of nine subjects with previously high concentrations, and improved stool characteristics as estimated by the Bristle stool score, although decreased HDL and no beneficial effect on serum TMAO was observed. Conclusions: These results may suggest that the ingestion of 11/19-B1 yogurt provides a preventative effect against the progression of atherosclerosis and renal dysfunction. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

26 pages, 948 KiB  
Review
Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions
by Yuan Gao, Yanyan Liu, Tingting Ma, Qimeng Liang, Junqi Sun, Xiaomeng Wu, Yinglong Song, Hui Nie, Jun Huang and Guangqing Mu
Foods 2025, 14(11), 1946; https://doi.org/10.3390/foods14111946 - 29 May 2025
Cited by 2 | Viewed by 2730
Abstract
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically [...] Read more.
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically to enhance microbial diversity, reinforce epithelial barrier integrity via upregulation of tight-junction proteins, and modulate immune signaling. Clinical evidence supports significant improvements in metabolic parameters (fasting glucose, lipid profiles, blood pressure) and reductions in systemic inflammation across metabolic syndrome, hypertension, and IBS cohorts. We highlight critical modulatory factors—including strain specificity, host enterotypes and FUT2 genotype, fermentation parameters, and matrix composition—that govern probiotic engraftment, postbiotic yield, and therapeutic efficacy. Despite promising short-term outcomes, current studies are limited by heterogeneous designs and brief intervention periods, underscoring the need for long-term, adaptive trials and integrative multi-omics to establish durability and causality. Looking forward, precision nutrition frameworks that harness baseline microbiota profiling, host genetics, and data-driven fermentation design will enable bespoke fermented dairy formulations, transforming these traditional foods into next-generation functional matrices for targeted prevention and management of metabolic, inflammatory, and neuroimmune disorders. Full article
Show Figures

Figure 1

17 pages, 4682 KiB  
Article
Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications
by Batchimeg Namshir, Gil-Ha Kim, Natsag Lkhagvasuren, Seon-A Jeong, Narangerel Mijid and Woan-Sub Kim
Fermentation 2025, 11(5), 286; https://doi.org/10.3390/fermentation11050286 - 15 May 2025
Viewed by 790
Abstract
Lactic acid bacteria (LAB) isolated from plant sources are gaining increasing attention due to their potential probiotic and postbiotic functionalities. In the present study, Limosilactobacillus fermentum isolated from Prunus padus (bird cherry) was evaluated for its physiological, functional, and technological attributes for application [...] Read more.
Lactic acid bacteria (LAB) isolated from plant sources are gaining increasing attention due to their potential probiotic and postbiotic functionalities. In the present study, Limosilactobacillus fermentum isolated from Prunus padus (bird cherry) was evaluated for its physiological, functional, and technological attributes for application in fermented dairy products. The strain was isolated through anaerobic fermentation and identified using API 50 CHL and 16S rRNA sequencing. Its acid tolerance, antioxidant capacity, antibacterial effects, and hemolytic activity were assessed. The cell-free supernatant (CFS) was evaluated for thermal and pH stability. Fermentation trials were conducted using both mono- and co-culture combinations with the commercial yogurt starter strain YC-380. Physicochemical properties, viable cell counts, and viscosity were monitored throughout fermentation and refrigerated storage. The L. fermentum isolate exhibited strong acid resistance (48.28% viability at pH 2.0), non-hemolytic safety, and notable DPPH radical scavenging activity. Its CFS showed significant antibacterial activity against five Escherichia coli strains, which remained stable after heat treatment. Co-cultivation with YC-380 enhanced fermentation efficiency and improved yogurt viscosity (from 800 to 1200 CP) compared to YC-380 alone. During 24 days of cold storage, co-cultured samples maintained superior pH and microbial stability. Additionally, the moderate acidification profile and near-neutral pH of L. fermentum created favorable conditions for postbiotic compound production. These results indicate that L. fermentum derived from P. padus holds considerable promise as a functional adjunct culture in yogurt production. Its postbiotic potential, technological compatibility, and heat-stable bioactivity suggest valuable applications in the development of safe, stable, and health-promoting fermented dairy products. Full article
Show Figures

Figure 1

20 pages, 612 KiB  
Review
Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation
by Carlos Eduardo de Faria Cardoso, Sofia Terra Silva, Maria Eduarda Flores Trindade, Monique de Barros E. Campos, Adriano Gomes Cruz, Francine Albernaz T. Fonseca Lobo and Anderson Junger Teodoro
Foods 2025, 14(9), 1497; https://doi.org/10.3390/foods14091497 - 25 Apr 2025
Viewed by 697
Abstract
There is a growing interest in promoting health and improving quality of life, which has led consumers to prefer foods that offer not only basic nutrition but also additional health benefits. In this space, yogurt has gained increasing attention due to its potential [...] Read more.
There is a growing interest in promoting health and improving quality of life, which has led consumers to prefer foods that offer not only basic nutrition but also additional health benefits. In this space, yogurt has gained increasing attention due to its potential to deliver bioactive compounds and improve overall consumer well-being. As a fermented dairy product consumed globally, yogurt serves as an effective dietary base for nutritional enhancement through the incorporation of a wide range of primary agricultural products, including fruits, vegetables, cereals, and their respective by-products, including peels, seeds, and pomace. This review provides an overview of recent advances in yogurt biofortification using primary agricultural matrices and agro-industrial by-products within the framework of sustainable food systems and the circular economy. Significant increases in antioxidant activity and final phytochemical content are observed after the addition of ingredients to yogurt. Enrichment with dietary fiber from fruit peels or pomace also improved syneresis control and viscosity of the products. The microbiological viability of probiotic strains was maintained or increased in most formulations, and sensory acceptance remained favorable with enriched yogurts. These findings highlight the potential of agricultural matrices to enhance yogurt functionality, promoting sustainability and reducing food waste. Full article
(This article belongs to the Special Issue Recent Advances in Functional Components in Plant-Based Foods)
Show Figures

Figure 1

20 pages, 5467 KiB  
Article
Preliminary Study on the Application of Protease-Producing Lactiplantibacillus plantarum in Yogurt Fermentation
by Jing Huang, Jiao Chen and Xiaohui Li
Fermentation 2025, 11(4), 215; https://doi.org/10.3390/fermentation11040215 - 15 Apr 2025
Cited by 1 | Viewed by 824
Abstract
Starter culture significantly influences the texture and flavor of yogurt, making the selection of appropriate fermentation strains a key focus in yogurt starter research. In this study, protease-producing Lactiplantibacillus plantarum NH-24, identified in prior experiments, was combined with Lactobacillus delbrueckii subsp. bulgaricus and [...] Read more.
Starter culture significantly influences the texture and flavor of yogurt, making the selection of appropriate fermentation strains a key focus in yogurt starter research. In this study, protease-producing Lactiplantibacillus plantarum NH-24, identified in prior experiments, was combined with Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophiles for yogurt fermentation. Indicators such as coagulation state, acidity, and water-holding capacity were measured to determine the optimal fermentation temperature and starter ratio. Additionally, the effects of this strain on the yogurt’s texture, sensory properties, and volatile flavor compounds were evaluated. The results indicate that a fermentation temperature of 37 °C and a starter ratio of 4:4:3 were most suitable for yogurt production. Further analysis demonstrated that incorporating Lp. plantarum NH-24 improved the yogurt’s texture and flavor while reducing post-acidification during storage. Thus, protease-producing Lp. plantarum NH-24 holds significant promise as a yogurt starter culture. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

15 pages, 794 KiB  
Article
CLA-Producing Probiotics for the Development of a Yogurt-Type Beverage
by Hasnia Ziar, Philippe Gérard and Ali Riazi
Beverages 2025, 11(2), 50; https://doi.org/10.3390/beverages11020050 - 14 Apr 2025
Cited by 1 | Viewed by 691
Abstract
This study examined the ability of four beneficial strains (Lactobacillus rhamnosus LbRE-LSAS, Bifidobacterium animalis subsp. lactis Bb12, and two yogurt starters TA040 and LB340) to ferment MRS or milk containing free linoleic acid (0, 0.5, or 1 mg/mL). The goal was to produce [...] Read more.
This study examined the ability of four beneficial strains (Lactobacillus rhamnosus LbRE-LSAS, Bifidobacterium animalis subsp. lactis Bb12, and two yogurt starters TA040 and LB340) to ferment MRS or milk containing free linoleic acid (0, 0.5, or 1 mg/mL). The goal was to produce an enriched conjugated linoleic acid (CLA) isomers’ yogurt-type beverage. Linoleic acid (LA) at 0.5 mg/mL did not interfere with the growth of the assayed bacteria on de Man Rogosa and Sharpe broth (MRS) or milk. On the other hand, increasing the content of LA in the MRS or yogurt-type beverage to 1 mg/mL slightly inhibited all strains and prevented accumulating high biomasses. A gas chromatography analysis of the fatty acid profiles confirmed the bioconversion of LA. The yogurt starters TA040 and LB340 had the highest bioconversion rates in the yogurt-type beverages, whereas the probiotic Bb12 strain was the most interesting at converting LA into its active CLA. CLA from the MRS supernatants of TA040, Bb12, and LbRE-LSAS had maximum antibacterial activities against S. typhimurium, E. coli, and S. aureus, respectively. Whey from the Bb12 beverage showed an inhibitory effect against all pathogens. These results suggest that all strains could be used as starter cultures in the proposition of a yogurt-type beverage with a high CLA content and antibacterial potential. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

20 pages, 2172 KiB  
Article
A Study into the Effects of Chosen Lactic Acid Bacteria Cultures on the Quality Characteristics of Fermented Dairy, Dairy–Oat, and Oat Beverages
by Małgorzata Ziarno, Dorota Zaręba, Ewa Kowalska and Tomasz Florowski
Appl. Sci. 2025, 15(7), 3714; https://doi.org/10.3390/app15073714 - 28 Mar 2025
Cited by 3 | Viewed by 2200
Abstract
The growing demand for plant-based and hybrid dairy–plant beverages has driven interest in optimizing their fermentation processes. This study investigates the effects of selected lactic acid bacteria (LAB) cultures on the quality characteristics of fermented dairy, dairy–oat, and oat beverages. The term ‘dairy-oat [...] Read more.
The growing demand for plant-based and hybrid dairy–plant beverages has driven interest in optimizing their fermentation processes. This study investigates the effects of selected lactic acid bacteria (LAB) cultures on the quality characteristics of fermented dairy, dairy–oat, and oat beverages. The term ‘dairy-oat beverage’ refers to a hybrid product composed of cow’s milk and an oat-based drink in a 1:1 ratio. Cow’s milk, an oat beverage, and a 1:1 mixture of both were inoculated with traditional yogurt cultures (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) and/or probiotic strains (Lactiplantibacillus plantarum 299v and Lactobacillus acidophilus La-5). Fermentation was conducted for 6 h at 37 °C, followed by 28 days of cold storage. pH, texture (hardness and adhesiveness), syneresis, carbohydrate content, and bacterial viability were assessed. The selection of lactic acid bacteria cultures had a significant impact on the quality attributes of the beverages. Both the bacterial culture type and the base material played a crucial role in determining the beverages’ texture, stability, and overall quality. Mixed bacterial cultures exhibited higher hardness, while milk and dairy–oat samples fermented with the yogurt culture demonstrated better structural stability. Fermentation influenced sugar levels, and bacterial viability depended on the beverage type and storage conditions. The selection of lactic acid bacteria cultures significantly impacts the quality of fermented beverages. Further optimization of bacterial culture combinations could improve these products’ stability and sensory properties. Full article
Show Figures

Figure 1

16 pages, 1888 KiB  
Article
Untargeted Screening Based on UHPLC-HRMS of Total Folates Produced by Lactic Acid Bacteria in Fermented Milk and During Yogurt Shelf Life
by Marianna Bozzetti, Carolina Cerri, Sara Morandi, Gabriele Rocchetti, Chiara Mussio, Federica Barbieri, Giulia Tabanelli and Daniela Bassi
Foods 2025, 14(7), 1112; https://doi.org/10.3390/foods14071112 - 24 Mar 2025
Cited by 1 | Viewed by 780
Abstract
Folate deficiency is a widespread nutritional issue, and biofortifying dairy products through lactic acid bacteria (LAB) is a promising strategy to enhance natural folate levels. This study aimed to develop a reliable method for selecting Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains [...] Read more.
Folate deficiency is a widespread nutritional issue, and biofortifying dairy products through lactic acid bacteria (LAB) is a promising strategy to enhance natural folate levels. This study aimed to develop a reliable method for selecting Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus strains with enhanced folate production for use as functional starter cultures. Initially, a traditional microbiological assay (MA) was used to measure folate production in 36 LAB strains isolated from fermented milks. Due to MA’s limitations, an untargeted and semi-quantitative method combining ultra-high-performance liquid chromatography (UHPLC) with high-resolution mass spectrometry (HRMS) was developed for a more comprehensive folate screening. The MA showed higher folate production in S. thermophilus strains (309–639 µg/L) compared to L. delbrueckii subsp. bulgaricus (up to 48 µg/L). Subsequently, nine selected LAB strains were further analyzed using the UHPLC-HRMS approach, which enabled the identification and semi-quantification of six folate metabolites, namely dihydrofolate, tetrahydrofolate (THF), 10-formyl-THF, 5,10-methenyl-THF, 5,10-methylene-THF, and 5-methyl-THF. Lab-scale yogurt production using the top-performing strains, as identified through the HRMS method, demonstrated an increase in folate content over a 14-day shelf life. These findings revealed the potential of UHPLC-HRMS as a high-throughput alternative method for folates detection, offering a promising tool for screening folate-enhanced LAB strains for biofortification. Full article
Show Figures

Figure 1

24 pages, 1013 KiB  
Review
Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health
by Ariana Saraiva, Dele Raheem, Poly Rani Roy, Mona N. BinMowyna, Bernardo Romão, Sehad N. Alarifi, Najla A. Albaridi, Zayed D. Alsharari and António Raposo
Nutrients 2025, 17(6), 986; https://doi.org/10.3390/nu17060986 - 11 Mar 2025
Cited by 1 | Viewed by 3990
Abstract
Urinary tract infections (UTIs) are a prevalent global health issue, often requiring antibiotic treatment, which contributes to antimicrobial resistance. This narrative review explores the potential of probiotics and plant-based foods as alternative or complementary preventive strategies against UTIs. Fermented foods, such as yogurt, [...] Read more.
Urinary tract infections (UTIs) are a prevalent global health issue, often requiring antibiotic treatment, which contributes to antimicrobial resistance. This narrative review explores the potential of probiotics and plant-based foods as alternative or complementary preventive strategies against UTIs. Fermented foods, such as yogurt, kefir, and kombucha, contain probiotic strains that can modulate the gut and urogenital microbiota, enhancing resistance to uropathogens. Likewise, plant-based foods, including cranberry, garlic, bearberry, juniper, and nettle, possess bioactive compounds with antimicrobial, anti-inflammatory, and diuretic properties. Laboratory and clinical studies suggest that these natural interventions may reduce the incidence of UTIs by inhibiting pathogen adhesion, modulating immune responses, and promoting urinary tract health. However, despite promising findings, inconsistencies in study methodologies, dosage standardization, and long-term efficacy warrant further investigation. Future research should focus on optimizing probiotic formulations, standardizing plant-based supplement dosages, and assessing potential food–drug interactions to establish evidence-based guidelines for UTI prevention. Full article
Show Figures

Figure 1

19 pages, 6213 KiB  
Article
A Protein-Based Approach for Greek Yogurt Authentication via an HRMS Technique (MALDI-TOF MS) and Milk Powder Detection as a Fraudulent Addition
by Evangelia Krystalli, Nikolaos Thomaidis, Anastasia S. Kritikou and Christos Kokkinos
Foods 2025, 14(4), 693; https://doi.org/10.3390/foods14040693 - 18 Feb 2025
Viewed by 1121
Abstract
The popularity of Greek-style yogurt (made from cow, ewe, and goat milk) has grown significantly in recent years thanks to its high protein content, nutritional value, and unique creamy texture, making it vulnerable to illegal practices, such as adulteration. In the present work, [...] Read more.
The popularity of Greek-style yogurt (made from cow, ewe, and goat milk) has grown significantly in recent years thanks to its high protein content, nutritional value, and unique creamy texture, making it vulnerable to illegal practices, such as adulteration. In the present work, a fast and reliable matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based methodology was developed for the detection of yogurt adulteration with cow milk powder, exploiting the intact protein profile. An integrated protein-based workflow was established for the detection of as little as 1% cow milk powder addition into cow and goat milk yogurt. Simultaneously, markers for yogurt classification based on their animal origin (cow, ewe, or goat), type (traditional or strained), and thermal treatment of milk were revealed for the first time. Statistical analysis using chemometric tools, such as unsupervised principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) recognition techniques, were implemented for the discrimination/classification of the yogurt samples. Full article
Show Figures

Figure 1

13 pages, 786 KiB  
Article
Enhancing Probiotic Viability in Yogurt: The Role of Apple Fibers in Supporting Lacticaseibacillus casei ATCC 393 During Storage and Gastrointestinal Transit
by Dimitra Dimitrellou, Eleni Sakadani and Panagiotis Kandylis
Foods 2025, 14(3), 376; https://doi.org/10.3390/foods14030376 - 24 Jan 2025
Cited by 3 | Viewed by 3037
Abstract
Probiotics are widely recognized for their health benefits, but their viability during food processing and digestion poses significant challenges. The present study evaluated the impact of incorporating apple fibers into yogurt on the viability of the probiotic strain Lacticaseibacillus casei ATCC 393 during [...] Read more.
Probiotics are widely recognized for their health benefits, but their viability during food processing and digestion poses significant challenges. The present study evaluated the impact of incorporating apple fibers into yogurt on the viability of the probiotic strain Lacticaseibacillus casei ATCC 393 during production, storage, and simulated gastrointestinal digestion. Apple fibers, a by-product of apple processing, were used as a prebiotic ingredient due to their functional and technological benefits. The incorporation of apple fibers increased probiotic viability during 28 days of refrigerated storage, improving it from 90.4% in the control yogurt to 93.9%. Under simulated gastrointestinal conditions, yogurt alone acted as a protective matrix, preserving probiotic viability, during gastric (71.0% at pH 2 after 3 h) and intestinal digestion (73.3% at 0.3% bile salts after 6 h). The inclusion of apple fibers further enhanced this protection, reducing probiotic viability loss in both gastric (81.9% at pH 2 after 3 h) and intestinal (79.0% at 0.3% bile salts after 6 h) environments. Similar results were obtained using the INFOGEST 2.0 static protocol. After the completion of the protocol (oral, gastric and intestinal phase) a viability of 71.1% (6.61 logCFU/g) was observed in the yogurt with apple fibers compared to 64.5% (6.10 logCFU/g) in the control yogurt. This enhanced protection could be attributed to the potential prebiotic properties of apple fibers, including their pectin and cellulose content, which may shield probiotics from acidic and enzymatic degradation. These findings highlight the potential of apple fiber-enriched yogurt as a functional food that supports probiotic viability during storage and throughout gastrointestinal transit. These insights may open the way for developing new food products with enhanced health benefits, aligning with growing consumer demand for functional foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

27 pages, 2817 KiB  
Article
A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products
by Ioanna Prapa, Chrysoula Pavlatou, Vasiliki Kompoura, Anastasios Nikolaou, Electra Stylianopoulou, George Skavdis, Maria E. Grigoriou and Yiannis Kourkoutas
Fermentation 2025, 11(1), 37; https://doi.org/10.3390/fermentation11010037 - 17 Jan 2025
Cited by 3 | Viewed by 1868
Abstract
Raw goat and ewe’s milk samples were used for the isolation of seven lactic acid bacteria new strains. After testing hemolytic activity and resistance to antibiotics, specific functional properties were evaluated; Lactococcus lactis subsp. lactis FBM_1321 and Lacticaseibacillus paracasei FBM_1327 strains resulted in [...] Read more.
Raw goat and ewe’s milk samples were used for the isolation of seven lactic acid bacteria new strains. After testing hemolytic activity and resistance to antibiotics, specific functional properties were evaluated; Lactococcus lactis subsp. lactis FBM_1321 and Lacticaseibacillus paracasei FBM_1327 strains resulted in the highest cholesterol assimilation percentages ranging from 28.78 to 30.56%. In addition, strong adhesion capacity to differentiated Caco-2 cells (1.77–21.04%) was mapped, and the lactobacilli strains exhibited strong antagonistic activity against foodborne pathogens compared to lactococci. The strains were able to grow at low pH and high NaCl concentrations, conditions that prevail in food systems (cell counts ranged from 1.77 to 8.48 log CFU/mL after exposure to pH 3 and from 5.66 to 9.52 log CFU/mL after exposure to NaCl concentrations up to 8%). As a next step, freeze-dried immobilized Lc. paracasei FBM_1327 cells on oat flakes were used for the preparation of functional yoghurt and ayran products. Cell loads of the functional strain remained high and stable in both products (7.69 log CFU/g in yoghurt and 8.56 log CFU/g in ayran after 30 days of storage at 4 °C) throughout their shelf life. No significant changes in the volatile profile were noticed, and the new products were accepted by the panel during the sensory evaluation. Full article
Show Figures

Graphical abstract

17 pages, 301 KiB  
Article
Survivability of Probiotic Microflora in Fermented and Non-Fermented Mare’s Milk: A Comparative Study
by Anna Mituniewicz-Małek, Małgorzata Ziarno, Izabela Dmytrów and Katarzyna Szkolnicka
Appl. Sci. 2025, 15(2), 862; https://doi.org/10.3390/app15020862 - 16 Jan 2025
Viewed by 1273
Abstract
This study discusses the properties of mare milk as a potential food matrix to produce functional dairy products. The aim of this study was to investigate the effects of cold storage on the viability of microflora in fermented and unfermented mare’s milk, containing [...] Read more.
This study discusses the properties of mare milk as a potential food matrix to produce functional dairy products. The aim of this study was to investigate the effects of cold storage on the viability of microflora in fermented and unfermented mare’s milk, containing live monocultures of probiotic bacteria, during storage at low temperatures. Three fermented beverages were produced, differentiated by the bacterial flora used for production (Lactobacillus acidophilus LA-5 and Bifidobacterium animalis subsp. lactis BB-12), as well as one unfermented beverage (using 40% commercial kumis and 7% LA-5). The unfermented beverage was mare’s milk supplemented with a BB-12 monoculture, which was chilled immediately after adding the inoculum. The population of BB-12 remained above 6 log CFU/g until the 21st day of storage at 5 ± 1 °C, while for LA-5, it remained viable only up to 14 days of storage. The BB-12 population was high and stable for 21 days in both fermented and unfermented beverages. The results confirm the good quality of the final product (appropriate pH and high population of individual bacterial strains); not only are appropriate culture conditions important, but the use of suitable probiotic bacteria and the optimization of the starter concentrations should also be considered. There is considerable potential for further research and future commercialization of mare’s dairy products, such as yogurt and potentially other dairy products. Full article
(This article belongs to the Special Issue Innovation in Dairy Products)
19 pages, 4816 KiB  
Article
Optimization of Enzymatic Hydrolysis and Fermentation Processing for Set-Type Oat Yogurt with Favorable Acidity and Coagulated Texture
by Wenjie Xu, Xinzhu Wu, Chen Xia, Zicong Guo, Zhengyuan Zhai, Yongqiang Cheng and Ju Qiu
Foods 2024, 13(24), 4180; https://doi.org/10.3390/foods13244180 - 23 Dec 2024
Cited by 2 | Viewed by 1502
Abstract
The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results [...] Read more.
The key role of enzymatic hydrolysis and fermentation in the sensory quality of set yogurt made from whole oats was demonstrated. The optimal process was established by the orthogonal and response surface methodology based on the acidity, textural, and rheological properties. The results indicated that the enzymatic hydrolysis appropriately consisted of liquefaction with 12 U/mL α-amylase at 70 °C and pH 6.5 for 60 min, followed by saccharification with 400 U/mL α-1,4-glucan glucohydrolase at 60 °C and pH 4.5 for 60 min. The Streptococcus thermophilus ST15 and Lactobacillus bulgaricus 20249 strains were the most efficacious strains, with a 0.1% inoculation for the fermentation at 42 °C for 16 h. So, a soft semisolid oat yogurt formed with an 8% solid–liquid ratio, which exhibited an acidity of 73.17 °T, a cohesiveness ratio of 0.51, and a maximum apparent viscosity of 1902.67 Pa·s. The coagulated texture of the oat yogurt was closely associated with the exopolysaccharide (EPS) yield up to 304.99 mg/L. These findings supported the optimal processing of oat yogurt, especially its correlation with the high capacity of EPS production by strains. It is an innovative and feasible way to improve the properties of set-type oat yogurt, especially the utilization of the whole oat. Full article
Show Figures

Figure 1

Back to TopTop