Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = steerability tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1827 KB  
Review
Rotary Steerable Drilling Technology: Bottlenecks Breakthroughs and Intelligent Trends in China Shale Gas Development
by Hao Geng, Bingzhong Zhang and Yingjian Xie
Processes 2025, 13(11), 3471; https://doi.org/10.3390/pr13113471 - 29 Oct 2025
Viewed by 887
Abstract
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To [...] Read more.
Rotary Steerable System (RSS) enhances directional drilling efficiency by over 300% via dynamic bit adjustment during string rotation. This study aims to systematically address these bottlenecks, quantify technical boundaries, and propose actionable breakthrough paths for China’s RSS technology in shale gas development. To address China’s shale gas RSS bottlenecks, this study proposes a “Material-Algorithm-System” tri-level strategy centered on an innovative “Tri-loop System.” Key innovations include (1) silicon nitride–tungsten carbide composite coatings to enhance thermal resilience, tested to withstand 220 °C, reducing thermal failure risk by 40% compared to conventional materials; (2) downhole reinforcement learning optimization; (3) a “Tri-loop System” integrating downhole intelligent control, wellbore-surface bidirectional communication, and cloud monitoring, shortening downhole command response latency from over 5 s to less than 1 s. In practical shale gas development scenarios—such as the Sichuan Basin’s deep coalbed methane wells and Shengli Oilfield’s tight reservoirs—this tri-level strategy has proven effective: the high-frequency electromagnetic wave radar increased thin coal seam drilling encounter rate by 23%, while the piezoelectric ceramic micro-actuators reduced tool failure rate by 35% in 175–200 °C environments. This approach targets raising China’s shale gas RSS application rate to 60%, supporting sustainable oil and gas exploration. Full article
(This article belongs to the Special Issue Development of Advanced Drilling Engineering)
Show Figures

Figure 1

46 pages, 56644 KB  
Article
A 1.8 m Class Pathfinder Raman LIDAR for the Northern Site of the Cherenkov Telescope Array Observatory—Technical Design
by Otger Ballester, Oscar Blanch, Joan Boix, Paolo G. Calisse, Anna Campoy-Ordaz, Sidika Merve Çolak, Vania Da Deppo, Michele Doro, Lluís Font, Eudald Font-Pladevall, Rafael Garcia, Markus Gaug, Roger Grau, Darko Kolar, Alicia López-Oramas, Camilla Maggio, Manel Martinez, Òscar Martínez, Victor Riu-Molinero, David Roman, Samo Stanič, Júlia Tartera-Barberà, Santiago Ubach, Marko Zavrtanik and Miha Živecadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(6), 1074; https://doi.org/10.3390/rs17061074 - 18 Mar 2025
Cited by 1 | Viewed by 2018
Abstract
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for [...] Read more.
This paper presents the technical design of the pathfinder Barcelona Raman LIDAR (pBRL) for the northern site of the Cherenkov Telescope Array Observatory (CTAO-N) located at the Roque de los Muchachos Observatory (ORM). The pBRL is developed for continuous atmospheric characterization, essential for correcting high-energy gamma-ray observations captured by Imaging Atmospheric Cherenkov Telescopes (IACTs). The LIDAR consists of a steerable telescope with a 1.8 m parabolic mirror and a pulsed Nd:YAG laser with frequency doubling and tripling. It emits at wavelengths of 355 nm and 532 nm to measure aerosol scattering and extinction through two elastic and Raman channels. Built upon a former Cherenkov Light Ultraviolet Experiment (CLUE) telescope, the pBRL’s design includes a Newtonian mirror configuration, a coaxial laser beam, a near-range system, a liquid light guide and a custom-made polychromator. During a one-year test at the ORM, the stability of the LIDAR and semi-remote-controlled operations were tested. This pathfinder leads the way to designing a final version of a CTAO Raman LIDAR which will provide real-time atmospheric monitoring and, as such, ensure the necessary accuracy of scientific data collected by the CTAO-N telescope array. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

21 pages, 6925 KB  
Article
Nonlinear Orbit Acquisition and Maintenance of a Lunar Navigation Constellation Using Low-Thrust Propulsion
by Edoardo Maria Leonardi, Giulio De Angelis and Mauro Pontani
Aerospace 2024, 11(12), 1046; https://doi.org/10.3390/aerospace11121046 - 20 Dec 2024
Viewed by 1323
Abstract
In this research, a feedback nonlinear control law was designed and tested to perform acquisition and station-keeping maneuvers for a lunar navigation constellation. Each satellite flies an Elliptical Lunar Frozen Orbit (ELFO) and is equipped with a steerable and throttleable low-thrust propulsion system. [...] Read more.
In this research, a feedback nonlinear control law was designed and tested to perform acquisition and station-keeping maneuvers for a lunar navigation constellation. Each satellite flies an Elliptical Lunar Frozen Orbit (ELFO) and is equipped with a steerable and throttleable low-thrust propulsion system. Lyapunov stability theory was employed to design a real-time feedback control law, capable of tracking all orbital elements (including the true anomaly), expressed in terms of modified equinoctial elements (MEEs). Unlike previous research, control synthesis was developed in the complete nonlinear dynamical model, and allows for driving the spacecraft toward a time-varying desired state, which includes correct phasing. Orbit propagation was performed in a high-fidelity framework, which incorporated several relevant harmonics of the selenopotential, as well as third-body effects due to the gravitational pull of the Earth and Sun. The control strategy at hand was successfully tested through two Monte Carlo campaigns in the presence of nonnominal flight conditions related to estimation errors of orbit perturbations, accompanied by the temporary unavailability and misalignment of the propulsive thrust. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

19 pages, 9762 KB  
Article
Graph Search-Based Path Planning for Automatic Ship Berthing
by Xiaocheng Liu, Zhihuan Hu, Ziheng Yang and Weidong Zhang
J. Mar. Sci. Eng. 2024, 12(6), 933; https://doi.org/10.3390/jmse12060933 - 2 Jun 2024
Cited by 3 | Viewed by 2059
Abstract
Ship berthing is one of the most challenging operations for crews, involving optimal trajectory generation and intricate harbor maneuvering at low speed. In this paper, we present a practical path-planning method that generates smooth trajectories for an underactuated surface vehicle (USV) traveling in [...] Read more.
Ship berthing is one of the most challenging operations for crews, involving optimal trajectory generation and intricate harbor maneuvering at low speed. In this paper, we present a practical path-planning method that generates smooth trajectories for an underactuated surface vehicle (USV) traveling in a confined harbor environment. Our approach introduces a Generalized Voronoi Diagram (GVD)-based path planner to handle the unberthing phase. The hybrid A* search-based path finding method is used for the transportation phase. A simple planner based on a Bézier curve is proposed for the berthing phase. To track the target path, an adaptive pure pursuit method and proportional-derivative (PD) controller is used. The performance of the given method is tested numerically and experimentally on a catamaran with a pair of non-steerable thrusters. The results demonstrate that the proposed algorithm can achieve a successful berthing operation through static obstacle handling and smooth trajectory generation. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—2nd Edition)
Show Figures

Figure 1

15 pages, 12453 KB  
Article
A Study on the Mechanical Characteristics and Wheel–Rail Contact Simulation of a Welded Joint for a Large Radio Telescope Azimuth Track
by Xiao Chen, Ruihua Yin, Zaitun Yang, Huiqing Lan and Qian Xu
Buildings 2024, 14(5), 1300; https://doi.org/10.3390/buildings14051300 - 5 May 2024
Cited by 2 | Viewed by 1714
Abstract
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 [...] Read more.
The azimuth track is an important component of the radio telescope wheel–rail system. During operation, the azimuth track is inevitably subject to phenomena such as track wear, track fatigue cracks, and impact damage to welded joints, which can affect observation accuracy. The 110 m QiTai radio telescope (QTT) studied in this paper is the world’s largest fully steerable radio telescope at present, and its track will bear the largest load ever. Since the welded joint of an azimuth track is the weakest part, an innovative welding method (multi-layer and multi-pass weld) is adopted for the thick welding section. Therefore, it is necessary to study the contact mechanical properties between the wheel and the azimuth track in this welded joint. In this study, tensile tests based on digital image correlation technology (DIC) and Vickers hardness tests are carried out in the metal zone (BM), heat-affected zone (HAZ), modified layer, and weld zone (WZ) of the welded joint, and the measured data are used to fit the elastic–plastic constitutive model for the different zones of the welded joint in the azimuth track. Based on the constitutive model established, a nonlinear finite element model is built and used to simulate the rolling mechanical performance between the wheel and azimuth track. Through the analysis of simulated data, we obtained the stress distribution of the track under different pre-designed loads and identified the locations most susceptible to damage during ordinary working conditions, braking conditions, and start-up conditions. The result can provide a significant theoretical basis for future research and for the monitoring of large track damage. Full article
Show Figures

Figure 1

34 pages, 12848 KB  
Article
Design Optimization of Printed Multi-Layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery
by Simon Toinet, Mohammed Benwadih, Helga Szambolics, Christine Revenant, David Alincant, Marine Bordet, Jean-Fabien Capsal, Nellie Della-Schiava, Minh-Quyen Le and Pierre-Jean Cottinet
Materials 2024, 17(9), 2135; https://doi.org/10.3390/ma17092135 - 2 May 2024
Cited by 8 | Viewed by 2455
Abstract
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with [...] Read more.
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with numerous bifurcations and angulations. To reach a target artery, surgeons frequently opt for several tools (guidewires with different size integrated into angulated catheters) that might provoke arterial complications such as perforation or dissection. Steerable guidewires would, therefore, be of high interest to reduce surgical morbidity and mortality for patients as well as to simplify procedure for surgeons, thereby saving time and health costs. Regarding these reasons, our research involves the development of a smart steerable guidewire using electroactive polymer (EAP) capable of bending when subjected to an input voltage. The actuation performance of the developed device is assessed through the curvature behavior (i.e., the displacement and the angle of the bending) of a cantilever beam structure, consisting of single- or multi-stack EAP printed on a substrate. Compared to the single-stack architecture, the multi-stack gives rise to a significant increase in curvature, even when subjected to a moderate control voltage. As suggested by the design framework, the intrinsic physical properties (dielectric, electrical, and mechanical) of the EAP layer, together with the nature and thickness of all materials (EAP and substrate), do have strong effect on the bending response of the device. The analyses propose a comprehensive guideline to optimize the actuator performance based on an adequate selection of the relevant materials and geometric parameters. An analytical model together with a finite element model (FEM) are investigated to validate the experimental tests. Finally, the design guideline leads to an innovative structure (composed of a 10-stack active layer screen-printed on a thin substrate) capable of generating a large range of bending angle (up to 190°) under an acceptable input level of 550 V, which perfectly matches the standard of medical tools used for cardiovascular surgery. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

22 pages, 13396 KB  
Article
Low-Thrust Nonlinear Orbit Control for Very Low Lunar Orbits
by Edoardo Maria Leonardi, Mauro Pontani, Stefano Carletta and Paolo Teofilatto
Appl. Sci. 2024, 14(5), 1924; https://doi.org/10.3390/app14051924 - 26 Feb 2024
Cited by 5 | Viewed by 2243
Abstract
In the next decades, both space agencies and private competitors are targeting the lunar environment as a scientific and technological resource for future space missions. In particular, the confirmed existence of water-ice deposits in the vicinity of the poles (predominantly the south pole) [...] Read more.
In the next decades, both space agencies and private competitors are targeting the lunar environment as a scientific and technological resource for future space missions. In particular, the confirmed existence of water-ice deposits in the vicinity of the poles (predominantly the south pole) makes polar or near-polar low lunar orbits attractive for the purpose of designing space missions that could search for suitable Lunar base sites. However, traveling very-low-altitude orbits is very challenging, as they are strongly perturbed by the Moon’s gravity field as well as third- and fourth-body effects due to the Earth and the Sun. Several studies demonstrate that these orbits are expected to impact the lunar surface in a few months. Therefore, the definition and implementation of an effective station-keeping strategy represents a crucial issue in order to extend satellites’ lifetime. In this paper, a feedback nonlinear control law is employed in order to perform corrective maneuvers aimed at keeping the state of the satellite within acceptable margins. The satellite is assumed to be equipped with a steerable and throttleable low-thrust propulsion system. The control law is based on the Lyapunov stability theory and does not require any reference path to track, with a considerable decrease in the computational cost. The proposed real-time control law includes control saturation, related to the maximum available thrust magnitude, and is developed employing modified equinoctial elements, in order to avoid singularities and extend its range of application. Finally, the strategy at hand is tested in the presence of all the relevant perturbations (i.e., harmonics of the selenopotential, third- and fourth-body effects) in order to show its effectiveness and efficiency. Full article
(This article belongs to the Special Issue Advanced Schemes for Lunar Transfer, Descent and Landing)
Show Figures

Figure 1

17 pages, 740 KB  
Article
Initial Costate Approximation for Rapid Orbit Raising with Very Low Propulsive Acceleration
by Alessandro A. Quarta
Appl. Sci. 2024, 14(3), 1124; https://doi.org/10.3390/app14031124 - 29 Jan 2024
Cited by 11 | Viewed by 1718
Abstract
The transfer between two circular, coplanar Keplerian orbits of a spacecraft equipped with a continuous thrust propulsion system is usually studied in an optimal framework by maximizing a given performance index. Using an indirect approach, the optimal trajectory and the maximum value of [...] Read more.
The transfer between two circular, coplanar Keplerian orbits of a spacecraft equipped with a continuous thrust propulsion system is usually studied in an optimal framework by maximizing a given performance index. Using an indirect approach, the optimal trajectory and the maximum value of the performance index are obtained by numerically solving a two-point boundary value problem (TPBVP). In this context, the computation time required by the numerical solution of the TPBVP depends on the guess of unknown initial costates. The aim of this paper is to describe an analytical procedure to accurately approximate the initial costate variables in a coplanar, circle-to-circle, minimum-time transfer. In particular, this method considers a freely steerable propulsive acceleration vector, whose magnitude varies over a finite range with a sufficiently low maximum value. The effectiveness of the analytical method is tested in a set of both geocentric and heliocentric (simplified) mission scenarios, which model the classical LEO-GEO or interplanetary transfers toward Venus, Mars, Jupiter, and comet 29P/Schwassmann–Wachmann 1. Full article
(This article belongs to the Special Issue Recent Advances in Space Propulsion Technology)
Show Figures

Figure 1

17 pages, 6623 KB  
Article
Towards a Procedure-Optimised Steerable Catheter for Deep-Seated Neurosurgery
by Ayhan Aktas, Ali Anil Demircali, Riccardo Secoli, Burak Temelkuran and Ferdinando Rodriguez y Baena
Biomedicines 2023, 11(7), 2008; https://doi.org/10.3390/biomedicines11072008 - 17 Jul 2023
Cited by 7 | Viewed by 3456
Abstract
In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the [...] Read more.
In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work. Full article
Show Figures

Graphical abstract

19 pages, 10442 KB  
Article
Velocity Vector Estimation of Two-Dimensional Flow Field Based on STIV
by Jianghuai Lu, Xiaohong Yang and Jianping Wang
Sensors 2023, 23(2), 955; https://doi.org/10.3390/s23020955 - 13 Jan 2023
Cited by 13 | Viewed by 3422
Abstract
As an important part of hydrometry, river discharge monitoring plays an irreplaceable role in the planning and management of water resources and is an essential element and necessary means of river management. Due to its benefits of simplicity, efficiency and safety, Space-Time Image [...] Read more.
As an important part of hydrometry, river discharge monitoring plays an irreplaceable role in the planning and management of water resources and is an essential element and necessary means of river management. Due to its benefits of simplicity, efficiency and safety, Space-Time Image Velocimetry (STIV) has attracted attention from all around the world. The most crucial component of the STIV is the detection of the Main Orientation of Texture (MOT), and the precision of detection directly affects the results of calculations. However, due to the complicated river flow characteristics and the harsh testing environment in the field, a large amount of noise and interfering textures show up in the space-time images, which affects the detection results of the MOT. In response to the shortage of noise and interference texture, a new non-contact image analysis method is developed. Firstly, Multi-scale Retinex (MSR) is proposed to pre-process the images for contrast enhancement; secondly, a fourth-order Gaussian derivative steerable filter is employed to enhance the structure of the texture; next, based on the probability density distribution function and the orientations of the enhanced images, the noise suppression function and the orientation-filtering function are designed to filter out the noise to highlight the texture. Finally, the Fourier Maximum Angle Analysis (FMAA) is used to filter out the noise further and obtain the clear orientations to achieve the measurement of velocity and discharge. The experimental results show that, compared with the widely used image velocimetry measurements, the accuracy of our method in the average velocity and flow discharge is significantly improved, and the real-time performance is excellent. Full article
(This article belongs to the Special Issue Hydrographic Systems and Sensors)
Show Figures

Figure 1

18 pages, 5884 KB  
Article
Analysis of the Hydraulic Efficiency of a Steerable Detention Tank—Simulation Studies
by Kamil Pochwat and Henrique Pizzo
Hydrology 2022, 9(12), 217; https://doi.org/10.3390/hydrology9120217 - 30 Nov 2022
Cited by 4 | Viewed by 2730
Abstract
The article contains the results of the first part of the research on the analysis of the operation of the retention device cooperating with the drainage system—steerable detention tank and concerns model simulation studies. The obtained results are an introduction to conducting laboratory [...] Read more.
The article contains the results of the first part of the research on the analysis of the operation of the retention device cooperating with the drainage system—steerable detention tank and concerns model simulation studies. The obtained results are an introduction to conducting laboratory tests. The planned research was carried out on the basis of the theory of experimental planning and hydrodynamic modelling, in which the systems of hydraulic parameters of the drainage system and hydrological of the catchment were selected. In total, over a thousand hydrodynamic simulations were carried out using SWMM 5.1. The planned analyses had two main goals. Firstly, to verify the possibility of reducing the rainwater volume flow in the drainage system by means of controllable devices enabling cooperation with the drainage system in various hydraulic conditions of the drainage system. Secondly, determining the impact of the connection method (parallel or serial) of the device enabling retention and cooperation with the sewage system on the efficiency of the system. The conducted analyses showed that the use of a retention device cooperating with the drainage system may significantly reduce the amount of sewage outfall from system, depending on the capacity of a single micro-accumulator, even up to 83% (in the analysed data range). It was also shown that the method of connecting the device to the network has an influence on the efficiency of the system in depend on hydraulic conditions. Full article
(This article belongs to the Special Issue Stormwater/Drainage Systems and Wastewater Management)
Show Figures

Figure 1

14 pages, 12264 KB  
Article
The Advances and Challenges of the Ediacaran Fractured Reservoir Development in the Central Sichuan Basin, China
by Xiao He, Guian Guo, Qingsong Tang, Guanghui Wu, Wei Xu, Bingshan Ma, Tianjun Huang and Weizhen Tian
Energies 2022, 15(21), 8137; https://doi.org/10.3390/en15218137 - 1 Nov 2022
Cited by 10 | Viewed by 2380
Abstract
The largest Precambrian gasfield in China has been found in the central Sichuan Basin. It has been assumed as an Ediacaran (Sinian) mound–shoal, microfacies-controlled, dolomite reservoir. However, the extremely low porosity–permeability and heterogeneous reservoir cannot establish high production by conventional development technology in [...] Read more.
The largest Precambrian gasfield in China has been found in the central Sichuan Basin. It has been assumed as an Ediacaran (Sinian) mound–shoal, microfacies-controlled, dolomite reservoir. However, the extremely low porosity–permeability and heterogeneous reservoir cannot establish high production by conventional development technology in the deep subsurface. For this contribution, we carried out development tests on the fractured reservoir by seismic reservoir description and horizontal well drilling. New advances have been made in recent years: (1) the prestack time and depth migration processing provides better seismic data for strike-slip fault identification; (2) seismic planar strike-slip structures (e.g., en échelon/oblique faults) and lithofacies offset together with sectional vertical fault reflection and flower structure are favorable for strike–slip fault identification; (3) in addition to coherence, maximum likelihood and steerable pyramid attributes can be used to identify small strike-slip faults and for fault mapping; (4) fusion attributes of seismic illumination and structural tensor were used to find fractured reservoir along fault damage zone; (5) horizontal wells were carried out across the strike-slip fault damage zone and penetrated fractured reservoir with high production. Subsequently, a large strike-slip fault system has been found throughout the central intracratonic basin, and the “sweet spot” of the fractured reservoir along the strike-slip fault damage zone is widely developed to be a new favorable domain for high-production development. There is still a big challenge in seismic and horizontal well technology for the economical exploitation of the deep fractured reservoirs. This practice provides new insight in the deep tight matrix reservoir development. Full article
Show Figures

Figure 1

13 pages, 5920 KB  
Article
Vector Sensor Steering-Dependent Performance in an Underwater Acoustic Communication Field Experiment
by Fabricio A. Bozzi and Sérgio M. Jesus
Sensors 2022, 22(21), 8332; https://doi.org/10.3390/s22218332 - 30 Oct 2022
Cited by 4 | Viewed by 2860
Abstract
This paper shows the performance resulting from combining vector sensor directional components in an underwater acoustic communication experiment. The objective is to relate performance with transmission direction and range. Receiver structures based on beamforming and passive time-reversal are tested in order to quantify [...] Read more.
This paper shows the performance resulting from combining vector sensor directional components in an underwater acoustic communication experiment. The objective is to relate performance with transmission direction and range. Receiver structures based on beamforming and passive time-reversal are tested in order to quantify and compare the steerability impact of vector sensor directional components. A shallow water experiment is carried out with a bottom fixed two-axis pressure-gradient vector sensor. A ship suspended acoustic source transmits coherent modulated communication signals at various ranges and from several directions. Results show that one vector sensor can provide an up to 10 times smaller error bit rate than a pressure sensor, favoring communication robustness without size penalty. Full article
(This article belongs to the Special Issue Underwater Wireless Communications)
Show Figures

Figure 1

17 pages, 7983 KB  
Article
Driving Robot for Reproducible Testing: A Novel Combination of Pedal and Steering Robot on a Steerable Vehicle Test Bench
by Philip Rautenberg, Clemens Kurz, Martin Gießler and Frank Gauterin
Vehicles 2022, 4(3), 727-743; https://doi.org/10.3390/vehicles4030041 - 22 Jul 2022
Cited by 11 | Viewed by 4396
Abstract
Shorter development times, increased standards for vehicle emissions and a greater number of vehicle variants result in a higher level of complexity in the vehicle development process. Efficient development of powertrain and driver assistance functions under comparable and reproducible operating conditions is possible [...] Read more.
Shorter development times, increased standards for vehicle emissions and a greater number of vehicle variants result in a higher level of complexity in the vehicle development process. Efficient development of powertrain and driver assistance functions under comparable and reproducible operating conditions is possible on vehicle test benches. Yet, the realistic simulation of real driving environments on test benches is a challenge. Current test procedures and new technologies, such as Real Driving Emission tests and Autonomous Driving, require a reproducible and even more detailed simulation of the driving environment. Due to this, the simulation of curve driving in particular is gaining in importance. This results from its significant influence on energy consumption and Autonomous Driving functions with lateral guidance, such as lane departure and evasion assistance. Reproducibility can be additionally increased by using a driving robot. At today’s vehicle test benches, pedal and shift robots are predominantly used for longitudinal dynamic tests in the performed test procedures. In order to meet these new test automation requirements for vehicle test benches, the cooperative operation of pedal and steering robots is needed on a test bench setup suitable for this purpose. In this publication, the authors present the setup of a vehicle test bench to be used in automated and reproducible vehicle-in-the-loop tests during steering events. The focus is on the test-bench-specific setup with steerable front wheels, the actuators for simulating the wheel steering torque around the steering axle and the robots used for pedals and steering wheel. Results from various test series are presented and the potential of the novel test environment is shown. The results are reproducible in various test series due to the closed-loop operation without human driving influences at the test bench. Full article
(This article belongs to the Special Issue Driver-Vehicle Automation Collaboration)
Show Figures

Figure 1

20 pages, 7068 KB  
Article
Direction of Arrival Estimation Based on Received Signal Strength Using Two-Row Electronically Steerable Parasitic Array Radiator Antenna
by Mateusz Rzymowski, Krzysztof Nyka and Lukasz Kulas
Sensors 2022, 22(5), 2034; https://doi.org/10.3390/s22052034 - 5 Mar 2022
Cited by 4 | Viewed by 3580
Abstract
In this paper, we present a novel approach to direction-of-arrival (DoA) estimation using two-row electronically steerable parasitic array radiator (ESPAR) antenna which has 12 passive elements and allows for elevation and azimuth beam switching using a simple microcontroller, relying solely on received signal [...] Read more.
In this paper, we present a novel approach to direction-of-arrival (DoA) estimation using two-row electronically steerable parasitic array radiator (ESPAR) antenna which has 12 passive elements and allows for elevation and azimuth beam switching using a simple microcontroller, relying solely on received signal strength (RSS) values measured at the antenna output port. To this end, we thoroughly investigate all 18 available 3D antenna radiation patterns of the antenna measured in an anechoic chamber with respect to radiation coverage in the horizontal and vertical direction and propose a generalization of the power-pattern cross-correlation (PPCC) algorithm involving a high number of multiple calibration planes (MCP) as well as specific combinations of radiation pattern sets. Additionally, a new way of RSS-based DoA estimation accuracy assessment, which involves thorough testing conducted along the elevation direction when RF signals impinging on the antenna arrive from arbitrary θ angles, has been reported in this paper to verify the overall algorithm’s performance. The results obtained for different signal-to-noise ratio (SNR) levels indicate that two-row ESPAR antenna can produce, even for low SNR values, accurate DoA estimation in the horizontal plane without prior knowledge about the elevation direction of the unknown RF signals by using appropriate combinations of only 12 3D antenna radiation patterns. Full article
(This article belongs to the Special Issue Applications of Antenna Technology in Sensors)
Show Figures

Figure 1

Back to TopTop