Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = steel truss arch bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2893 KB  
Article
Research on the Cable Force Optimization of the Precise Closure of Steel Truss Arch Bridges Based on Stress-Free State Control
by Ningbo Wang, Qian Wei, Zhugang Chang, Bei Liu, Zhihao Fan and Chengshuo Han
Mathematics 2025, 13(14), 2314; https://doi.org/10.3390/math13142314 - 20 Jul 2025
Viewed by 870
Abstract
During the construction of large-span steel truss arch bridges, challenges such as complex control calculations, frequent adjustments of the cantilever structure, and deviations in the closure state often arise in the process of the assembly and closure of arch ribs. Based on the [...] Read more.
During the construction of large-span steel truss arch bridges, challenges such as complex control calculations, frequent adjustments of the cantilever structure, and deviations in the closure state often arise in the process of the assembly and closure of arch ribs. Based on the stress-free state control theory, this paper proposes a precise assembly control method for steel truss arch bridges, which takes the minimization of structural deformation energy and the maintenance of the stress-free dimensions of the closure wedge as the control objectives. By establishing a mathematical relationship between temporary buckle cables and the spatial position of the closure section, as well as adopting the influence matrix method and the quadprog function to determine the optimal parameters of temporary buckle cables (i.e., size, position, and orientation) conforming to actual construction constraints, the automatic approaching of bridge alignment to the target alignment can be achieved. Combined with the practical engineering case of Muping Xiangjiang River Bridge, a numerical calculation study of the precise assembly and closure of steel truss arch bridges was conducted. The calculated results demonstrate that, under the specified construction scheme, the proposed method can determine the optimal combination for temporary buckle cable tension. Considering the actual construction risk and the economic cost, the precise matching of closure joints can be achieved by selectively trimming the size of the closure wedge by a minimal amount. The calculated maximum stress of the structural rods in the construction process is 42% of the allowable value of steel, verifying the feasibility and practicality of the proposed method. The precise assembly method of steel truss arch bridges based on stress-free state control can significantly provide guidance and reference for the design and construction of bridges of this type. Full article
Show Figures

Figure 1

25 pages, 5991 KB  
Article
Wind Tunnel Tests and Buffeting Response Analysis of Concrete-Filled Steel Tubular Arch Ribs During Cantilever Construction
by Qing Hu, Xinrong Wu, Shilong Zhang and Dagang Lu
Buildings 2025, 15(11), 1837; https://doi.org/10.3390/buildings15111837 - 27 May 2025
Viewed by 763
Abstract
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced [...] Read more.
During the construction of concrete-filled steel tubular (CFST) arch bridges, hollow steel tube arch ribs are typically erected using the cantilever method with cable hoisting. In this construction stage, the arch ribs exhibit low out-of-plane stiffness and are thus highly susceptible to wind-induced vibrations, which may lead to cable failure or even collapse of the structure. Despite these critical risks, research on the aerodynamic performance of CFST arch ribs with different cross-sectional forms during cantilever construction remains limited. Most existing studies focus on individual bridge cases rather than generalized aerodynamic behavior. To obtain generalized aerodynamic parameters and buffeting response characteristics applicable to cantilevered CFST arch ribs, this study investigates two common cross-sectional configurations: four-tube trussed and horizontal dumbbell trussed sections. Sectional model wind tunnel tests were conducted to determine the aerodynamic force coefficients and aerodynamic admittance functions (AAFs) of these arch ribs. Comparisons with commonly used empirical AAF formulations (e.g., the Sears function) indicate that these simplified models, or assumptions equating aerodynamic forces with quasi-steady values, are inaccurate for the studied cross-sections. Considering the influence of the curved arch axis on buffeting behavior, a buffeting analysis computational program was developed, incorporating the experimentally derived aerodynamic characteristics. The program was validated against classical theoretical results and practical measurements from an actual bridge project. Using this program, a parametric analysis was conducted to evaluate the effects of equivalent AAF formulations, coherence functions, first-order mode shapes, and the number of structural modes on the buffeting response. The results show that the buffeting response of cantilevered hollow steel arch ribs is predominantly governed by the first-order mode, which can be effectively approximated using a bending-type mode shape expression. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

20 pages, 22376 KB  
Article
Constrained Optimization for the Buckle and Anchor Cable Forces Under One-Time Tension in Long Span Arch Bridge Construction
by Xiaoyu Zhang, Xuming Ma, Wei Chen, Wei Xu, Yuan Kang and Yonghong Wu
Buildings 2025, 15(9), 1529; https://doi.org/10.3390/buildings15091529 - 2 May 2025
Viewed by 928
Abstract
During long-span arch bridge construction, repeated adjustments of large cantilevered segments and nonuniform cable tensions can lead to deviations from the desired arch profile, reducing structural efficiency and increasing labor and material costs. To precisely control the process of cable-stayed buckle construction in [...] Read more.
During long-span arch bridge construction, repeated adjustments of large cantilevered segments and nonuniform cable tensions can lead to deviations from the desired arch profile, reducing structural efficiency and increasing labor and material costs. To precisely control the process of cable-stayed buckle construction in long-span arch bridges and achieve an optimal arch formation state, a constrained optimization for the buckle and anchor cable forces under one-time tension is developed in this paper. First, by considering the coupling effect of the cable-stayed buckle system with the buckle tower and arch rib structure, the control equations between the node displacement and cable force after tensioning are derived based on the influence matrix method. Then, taking the cable force size, arch rib closure joint alignment, upstream and downstream side arch rib alignment deviation, tower deviation, and the arch formation alignment displacement after loosening the cable as the constraint conditions, the residual sum of squares between the arch rib alignment and the target alignment during the construction stage is regarded as the optimization objective function, to solve the cable force of the buckle and anchor cables that satisfy the requirements of the expected alignment. Applied to a 310 m asymmetric steel truss arch bridge, the calculation of arch formation alignment is consistent with the ideal arch alignment, with the largest vertical displacement difference below 5 mm; the maximum error between the measured and theoretical cable forces during construction is 4.81%, the maximum difference between the measured and theoretical arch rib alignments after tensioning is 3.4 cm, and the maximum axial deviation of the arch rib is 5 cm. The results showed the following: the proposed optimization method can effectively control fluctuations of arch rib alignment, tower deviation, and cable force during construction to maintain the optimal arch shape and calculate the buckle and anchor cable forces at the same time, avoiding iterative calculations and simplifying the analysis process. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 6026 KB  
Article
Research on Impact Coefficient of Railroad Large Span Steel Truss Arch Bridge Based on Vehicle–Bridge Coupling
by Yipu Peng, Boen Jiang, Li Chen, Zhiyuan Tang, Zichao Li and Jian Li
Appl. Sci. 2025, 15(5), 2542; https://doi.org/10.3390/app15052542 - 27 Feb 2025
Viewed by 1319
Abstract
This study investigated the impact coefficient of a large-span steel truss arch railroad bridge under moving train loads, with the Nanning Three Banks Yongjiang Special Bridge serving as the case study. Field tests were conducted to measure the bridge’s self-vibration characteristics, dynamic deflection, [...] Read more.
This study investigated the impact coefficient of a large-span steel truss arch railroad bridge under moving train loads, with the Nanning Three Banks Yongjiang Special Bridge serving as the case study. Field tests were conducted to measure the bridge’s self-vibration characteristics, dynamic deflection, and strain. A coupled vehicle–bridge vibration model was developed using the finite element software ABAQUS 2022 for the bridge and multi-body dynamics software SIMPACK 2022 for the CRH2 train. The two models were integrated to simulate the dynamic interaction between the train and bridge under different speeds and single-/double-track operations. The results demonstrate that the joint simulation of SIMPACK and ABAQUS was an effective method for the vehicle–bridge coupled vibration analysis. The key findings include the following: the deflection and stress impact coefficients increased with the train speed, where the main span exhibited larger deflection coefficients than the side span. The stress impact coefficients varied significantly across different bridge components, where the lower chord of the side span and the ties of the main span showed the highest values. While there was no substantial difference in the deflection impact coefficients between the single- and double-track operations, the stress impact coefficients showed deviations, particularly in the side span’s lower chord and ties, highlighting their sensitivity to vehicle-induced deflection. This study concluded that the bridge’s deflection impact coefficient met design specifications, but the stress impact coefficient exceeded the specified values, suggesting that stress amplification should be carefully considered in the design of similar bridges to ensure operational safety. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

38 pages, 7005 KB  
Article
Seismic Response of a Large-Span Steel Truss Arch Bridge under Nonuniform Near-Fault Ground Motions
by Zhen Liu, Xingliang Ma and Junlin Lv
Buildings 2024, 14(8), 2308; https://doi.org/10.3390/buildings14082308 - 25 Jul 2024
Cited by 5 | Viewed by 2402
Abstract
The ground motion in the near-fault region of an earthquake is characterized by exceptional energy levels, powerful velocity impulses, substantial spatial variability, and notable permanent displacement. These unique attributes can dramatically escalate structural damage. Steel truss arch bridges, being critical components of transportation [...] Read more.
The ground motion in the near-fault region of an earthquake is characterized by exceptional energy levels, powerful velocity impulses, substantial spatial variability, and notable permanent displacement. These unique attributes can dramatically escalate structural damage. Steel truss arch bridges, being critical components of transportation networks, are particularly vulnerable to these phenomena due to their extensive stiffness spans. Such factors are difficult to accurately simulate. In this study, real near-fault ground motions that incorporate spatial variability effects and pulse effects are used to excite the long-span arch bridge, thereby striving to realistically reproduce the structural damage sustained by the bridge under the simultaneous influence of near-fault spatial variability and pulse effects. This study adopts an arch bridge with a span closely approximating the spacing between stations (200 m) of the SMART seismic array as a case study. The near-fault ground motions, characterized by spatial variability and captured by the array, are selected as seismic samples, while the far-field ground motions recorded by the same array serve as a comparative reference. The seismic excitations are then input into the bridge case study, following the spatial correspondence of the stations, using a large-scale finite element program to obtain the structural response. Upon analyzing the seismic response of crucial positions on the bridge, it became evident that the arch foot of the bridge is more susceptible to the spatial variability in near-fault ground motion, whereas the vault experiences a greater impact from the high-energy velocity pulse. Specifically, under nonuniform seismic conditions, the internal force at the base of the bridge arch increased significantly, averaging a rise of 18.69% compared to uniform excitation conditions. Conversely, the displacement and internal force response at the top of the arch exhibited more modest increases of 6.48% and 10.33%, respectively. Under nonuniform excitation, the vault’s response to near-fault earthquakes increased by an average of 20.35% com-pared to far-field earthquakes, while the arch foot’s response rose by 11.55%. In contrast, under uniform excitation, the vault’s response to near-fault earthquakes was notably higher, increasing by 25.04%, while the arch foot’s response showed a minor increase of only 2.28%. The study has revealed significant differences in the sensitivity of different parts of long-span arch bridges to near-fault earthquake characteristics. This finding is of great importance for understanding the behavior of long-span arch bridges under complex earthquake conditions. Specifically, the arch foot of the bridge is more sensitive to the spatial variability of near-fault ground motions, while the arch crown is more significantly affected by high-energy velocity pulses, providing new insights for bridge seismic design. Furthermore, the differences in response between the arch crown and arch foot under different earthquake excitations also reveal the complexity and diversity of bridge structural responses. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 27172 KB  
Article
Numerical Study on the Mechanical Performance of a Flexible Arch Composite Bridge with Steel Truss Beams over Its Entire Lifespan
by Ning Sun, Xiaobo Zheng, Yuan Li, Yunlei Zhao, Haoyun Yuan and Mi Zhou
Sustainability 2024, 16(14), 6041; https://doi.org/10.3390/su16146041 - 15 Jul 2024
Cited by 4 | Viewed by 2053
Abstract
Steel truss–arch composite bridge systems are widely used in bridge engineering to provide sufficient space for double lanes. However, a lack of research exists on their mechanical performance throughout their lifespan, resulting in uncertainties regarding bearing capacity and the risk of bridge failure. [...] Read more.
Steel truss–arch composite bridge systems are widely used in bridge engineering to provide sufficient space for double lanes. However, a lack of research exists on their mechanical performance throughout their lifespan, resulting in uncertainties regarding bearing capacity and the risk of bridge failure. This paper conducts a numerical study of the structural mechanical performance of a flexible arch composite bridge with steel truss beams throughout its lifespan to determine the critical components and their mechanical behavior. Critical vehicle loads are used to assess the bridge’s mechanical performance. The results show that the mechanical performance of the bridge changes significantly when the temporary piers and the bridge deck pavement are removed, substantially influencing the effects of the vehicle loads on the service life. The compressive axial force of the diagonal bar significantly increases to 33,101 kN near the supports during the two construction stages, and the axial force in the upper chord of the midspan increases by 4.1 times under a critical load. Moreover, the suspender tensions and maximum vertical displacement are probably larger than the limit of this bridge system in the service stage, and this is caused by the insufficient longitudinal bending stiffness of truss beams. Therefore, monitoring and inspection of critical members are necessary during the removal of temporary piers and bridge deck paving, and an appropriate design in steel truss beams is required to improve the life cycle assessment of this bridge system. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

13 pages, 13765 KB  
Article
UAV 3D Modeling and Application Based on Railroad Bridge Inspection
by Zhiyuan Tang, Yipu Peng, Jian Li and Zichao Li
Buildings 2024, 14(1), 26; https://doi.org/10.3390/buildings14010026 - 21 Dec 2023
Cited by 11 | Viewed by 2268
Abstract
Unmanned aerial vehicle (UAV) remote sensing technology is vigorously driving the development of digital cities. For experimental objects such as large, protruding, and structurally complex steel truss railway bridge structures, commonly used oblique photography and cross-circular photography techniques can lead to blurring, missing, [...] Read more.
Unmanned aerial vehicle (UAV) remote sensing technology is vigorously driving the development of digital cities. For experimental objects such as large, protruding, and structurally complex steel truss railway bridge structures, commonly used oblique photography and cross-circular photography techniques can lead to blurring, missing, or lower accuracy of fine texture in the models. Therefore, this paper proposes a real-scene three-dimensional modeling method that combines oblique photography with inclined photography and compares it with oblique photography and cross-circular photography techniques. Experimental results demonstrate that the model generated by combining oblique photography with inclined photography exhibits clearer textures, more complete lines, and higher accuracy, meeting the accuracy requirements of 1:500 topographic map control points. This method plays a beneficial auxiliary role in the inspection of ailments such as steel structure coating corrosion and high-strength bolt loss in steel truss railway arch bridges. Full article
Show Figures

Figure 1

30 pages, 10108 KB  
Article
Research on the Mechanical Performance of a Mountainous Long-Span Steel Truss Arch Bridge with High and Low Arch Seats
by Yao Tan, Junfeng Shi, Peng Liu, Jun Tao and Yueyue Zhao
Buildings 2023, 13(12), 3037; https://doi.org/10.3390/buildings13123037 - 6 Dec 2023
Cited by 6 | Viewed by 5552
Abstract
The Loushui River Bridge is a mountainous long-span steel truss arch bridge with high and low arch seats. The design and construction of the bridge follow the principle of minimizing environmental damage and promoting sustainable development. In this article, the mechanical performance of [...] Read more.
The Loushui River Bridge is a mountainous long-span steel truss arch bridge with high and low arch seats. The design and construction of the bridge follow the principle of minimizing environmental damage and promoting sustainable development. In this article, the mechanical performance of this bridge is investigated experimentally and numerically at both the construction and operation stages. A series of validated finite element models were established for linear and nonlinear analyses by introducing geometric imperfections, geometric nonlinearities, and material nonlinearities. Then, several optimized models based on different types of design are compared with the original structure. The results indicate that the stability of the asymmetric bridge met the design requirements in both the construction and operation stages. However, the lateral stability and stiffness of the asymmetric bridge are weak due to the wind hazard that occurred in its mountain ravine. The out-of-plane instability from the short half-arch is the dominant failure mode, and the weakest area is where the arch ribs intersect with the bridge deck. It can be solved by adding more cross bracings without affecting the clearance above the bridge deck or by improving the material intensity of the arch. Full article
(This article belongs to the Special Issue Advancements in Large-Span Steel Structures and Architectural Design)
Show Figures

Figure 1

15 pages, 5272 KB  
Article
Research on Optimal Arch Rib Inclination of Large Span Highway CFST through Arch Bridge
by Zengwu Liu, Yuexing Wu, Chengwei Wang, Yonghui Fan, Chao Luo and Shaorui Wang
Buildings 2023, 13(6), 1415; https://doi.org/10.3390/buildings13061415 - 30 May 2023
Cited by 4 | Viewed by 8155
Abstract
To investigate the reasonable range of the inclination angle of arch ribs, a spatial finite element method was employed based on a concrete-filled steel tube (CFST) basket-handle through an arch bridge with a span of 360 m. A spatial finite element model was [...] Read more.
To investigate the reasonable range of the inclination angle of arch ribs, a spatial finite element method was employed based on a concrete-filled steel tube (CFST) basket-handle through an arch bridge with a span of 360 m. A spatial finite element model was established using Midas/Civil software, which was verified with actual bridge data. The effects of different arch rib inclination angles were investigated under static loads. The structural natural frequencies, linear elastic stability coefficients, internal forces, and displacements were comprehensively considered to determine the reasonable range of the inclination angle. The results show that when the inclination angle ranges between 8° and 10°, the first, third, and sixth natural frequencies of the structure are increased. It effectively improves the lateral and torsional stiffness of the arch ribs while ensuring optimal out-of-plane stability of the arch ribs. Compared with the parallel arch, the stability is improved by 20.2%. The effects of angle variation on displacement and internal force of the arch ribs were not significant. Considering all indicators, the optimal range of the inclination angle for the arch ribs of 300-m-level highway CFST arch bridges is suggested to be 8~10°. Full article
(This article belongs to the Special Issue Intelligent Building Health Monitoring and Assessment)
Show Figures

Figure 1

15 pages, 3385 KB  
Article
Study of a Layered Plate Girder Element of Composite Materials and Its Applications
by Yanqun Han, Li Chen and Wenqi Hou
Appl. Sci. 2023, 13(11), 6545; https://doi.org/10.3390/app13116545 - 27 May 2023
Viewed by 1689
Abstract
This study aims to provide an effective method to study the behavior of a steel–concrete composite deck. First, the structural characteristics of the composite deck and the challenges arising in the computational analysis of the structure using general software are described. Then, an [...] Read more.
This study aims to provide an effective method to study the behavior of a steel–concrete composite deck. First, the structural characteristics of the composite deck and the challenges arising in the computational analysis of the structure using general software are described. Then, an LPGE element that combines the plate element and the girder element into one element to conveniently construct the model with high computation efficiency is proposed. Based on the principle of multivariate field function, the constraint matrix for the plate and girder and the stiffness matrix for the LPGE are derived. The LPGE method is used to study the behavior of the composite deck through the computation of a steel truss arch bridge. The computation results are compared with the results obtained in ANSYS and the test results to verify the correctness and effectiveness of the LPGE method. The results of the paper offer references for the analysis of steel–concrete composite decks. Full article
(This article belongs to the Special Issue Porous Materials and Structures)
Show Figures

Figure 1

19 pages, 11665 KB  
Article
Application of BRB to Seismic Mitigation of Steel Truss Arch Bridge Subjected to Near-Fault Ground Motions
by Haoyuan Gao, Kun Zhang, Xinyu Wu, Hongjiang Liu and Lianzhen Zhang
Buildings 2022, 12(12), 2147; https://doi.org/10.3390/buildings12122147 - 6 Dec 2022
Cited by 14 | Viewed by 5266
Abstract
In this paper, the seismic response of a steel truss arch bridge subjected to near-fault ground motions is studied. Then, the idea of applying buckling restrained braces (BRBs) to a steel truss arch bridge in near-fault areas is proposed and validated. Firstly, the [...] Read more.
In this paper, the seismic response of a steel truss arch bridge subjected to near-fault ground motions is studied. Then, the idea of applying buckling restrained braces (BRBs) to a steel truss arch bridge in near-fault areas is proposed and validated. Firstly, the basic characteristics of near-fault ground motions are identified and distinguished. Furthermore, the seismic response of a long span steel truss arch bridge in the near fault area is analyzed by elastic-plastic time analysis. Finally, the braces prone to buckling failure are replaced by BRBs to reduce the seismic response of the arch rib through their energy dissipation properties. Four BRB schemes were proposed with different yield strengths, but the same initial stiffness. The basic period of the structure remains the same. The results show that near-fault ground motion will not only obviously increase the displacement and internal force response of the bridge, but also cause more braces to buckle. By replacing a portion of the normal bars with BRBs, the internal forces and displacements of the arch ribs can be reduced to some extent, which is more prominent under the action of pulsed ground motion. There is a clear correlation between the damping effect and the parameters of BRB, so an optimized solution should be obtained by comparison and calculation. Full article
(This article belongs to the Special Issue New Trends in Seismic Performance Evaluation)
Show Figures

Graphical abstract

12 pages, 3673 KB  
Article
Fatigue Performance Evaluation of K-Type Joints in Long-Span Steel Truss Arch Bridge
by Peng Liu, Hongping Lu, Yixuan Chen, Jian Zhao, Luming An and Yuanqing Wang
Metals 2022, 12(10), 1700; https://doi.org/10.3390/met12101700 - 11 Oct 2022
Cited by 7 | Viewed by 3411
Abstract
The K-type joint, which consists of the web members and the chord members with varied angles welded together, has been widely adopted in long-span steel truss bridges. However, its fatigue performance has been rarely considered, despite its critical role in bridge structural safety [...] Read more.
The K-type joint, which consists of the web members and the chord members with varied angles welded together, has been widely adopted in long-span steel truss bridges. However, its fatigue performance has been rarely considered, despite its critical role in bridge structural safety and durability. Accordingly, the FE model of the K-type joint was established in Abaqus and the fatigue performance analysis was conducted, in which the effect of web/chord thickness ratio (τ), chord/web angle (θ), and chord with rib stiffener were investigated. Take the Mingzhu Bay steel truss arch bridge as an engineering background, the hot spot stress method was employed to calculate the fatigue performance of three K-type joints in unfavorable locations. Furthermore, a 3D full-scall bridge model was built to evaluate the fatigue performance of the K-type joints under standard and overloaded moving vehicle load scenarios. The results show that the max hot spot stress factor (SCFmax) of the web and chord member is influenced by τ and θ. The chord members added stiffener is founded to be an effective way to enhance fatigue performance. The fatigue stress intensities of the three unfavorable locations meet the Eurocode 3 specification requirements, but the one in the mid-truss arch is not satisfied under an overloaded vehicle loading rate of 25%. Full article
Show Figures

Figure 1

27 pages, 17941 KB  
Article
A Decision-Making Algorithm for Concrete-Filled Steel Tubular Arch Bridge Maintenance Based on Structural Health Monitoring
by Chengzhong Gui, Weiwei Lin, Zuwei Huang, Guangtao Xin, Jun Xiao and Liuxin Yang
Materials 2022, 15(19), 6920; https://doi.org/10.3390/ma15196920 - 6 Oct 2022
Cited by 4 | Viewed by 3399
Abstract
This study focuses on establishing a novel heuristic algorithm for life-cycle performance evaluation. Special attention is given to decision-making algorithms for concrete-filled steel tubular (CFST) arch bridge maintenance. The main procedure is developed, including the ultimate loading-capacity modeling of CFST members, multi-parameter selection, [...] Read more.
This study focuses on establishing a novel heuristic algorithm for life-cycle performance evaluation. Special attention is given to decision-making algorithms for concrete-filled steel tubular (CFST) arch bridge maintenance. The main procedure is developed, including the ultimate loading-capacity modeling of CFST members, multi-parameter selection, ultimate thresholds presetting based on the finite element method, data processing, crucial parameters determination among sub-parameters, multi-parameter regression, ultimate state prediction, and system maintenance decision-making suggestions based on the multi-parameter performance evaluation. A degenerated ultimate loading-capacity model of CFST members is adopted in the finite element analysis and multi-parameter performance assessment. The multi-source heterogeneous data processing and temperature-effect elimination are performed for the data processing. The key sub-parameters were determined by the Principal Component Analysis method and the Entropy-weight method. The polynomial mathematical model is used in the multi-parameter regression, and the ±95% confidence bounds were verified. The system maintenance decision-making model combines the relative monitoring state, the relative ultimate state by the numerical analysis, and the relative residual life of degenerated members. The optimal system maintenance decision-making suggestions for the bridge maintenance system can be identified, including the most unfavorable maintenance time and parameter index. A case study on a CFST truss-arch bridge is conducted to the proposed algorithms. The obtained results demonstrated that the crack width deserves special attention in concrete bridge maintenance. Additionally, these technologies have enormous potential for the life-cycle performance assessment of the structural health monitoring system for existing concrete bridge structures. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (2nd Edition))
Show Figures

Figure 1

14 pages, 4901 KB  
Article
Structural Stability Analysis of Eye of the Yellow Sea, a Large-Span Arched Pedestrian Bridge
by Zhihua Chen, Hao Lin, Xiaodun Wang, Hongbo Liu, Ken’ichi Kawaguchi and Minoru Matsui
Metals 2022, 12(7), 1138; https://doi.org/10.3390/met12071138 - 3 Jul 2022
Cited by 4 | Viewed by 2429
Abstract
To date, scholars’ research on the stability behavior of the arch structure mainly focuses on solid–web section arches, steel tubular truss arches and concrete-filled steel tubular arches, but the stability behavior of the novel spatial grid arch structure, which integrates the characteristics of [...] Read more.
To date, scholars’ research on the stability behavior of the arch structure mainly focuses on solid–web section arches, steel tubular truss arches and concrete-filled steel tubular arches, but the stability behavior of the novel spatial grid arch structure, which integrates the characteristics of grid structure and arch structure, is not yet clear. Based on the Eye of the Yellow Sea pedestrian bridge project in Rizhao, China, the stability behavior of this large-span spatial grid arch structure was studied, in this paper, by the project’s structure design team. The project is a glass covered steel arch pedestrian bridge with a span of 177 m, a height of 63.5 m, an elliptical section with a long axis of 18 m, and a short axis of 13.5 m. The elastic and the nonlinear elasto-plastic stability behavior considering different initial geometric imperfections, was analyzed by the ABAQUS finite element model. The buckling modes and the full-range load-displacement curve of the structure were analyzed, and the stress distribution, deformation mode and overall structural performance during the whole loading process were analyzed. The effects of initial imperfections, geometric nonlinearity and material nonlinearity on the ultimate load-carrying capacity of the structure were studied. The stability behavior of large-span spatial grid arch structure was studied in this paper, which provides an important reference for the design and analysis of such structures. Full article
(This article belongs to the Special Issue Modelling, Test and Practice of Steel Structures)
Show Figures

Figure 1

11 pages, 4498 KB  
Article
Fatigue Analysis of Long-Span Steel Truss Arched Bridge Part I: Experimental and Numerical Study of Orthotropic Steel Deck
by Peng Liu, Yixuan Chen, Hongping Lu, Jian Zhao, Luming An, Yuanqing Wang and Jianping Liu
Metals 2022, 12(7), 1117; https://doi.org/10.3390/met12071117 - 29 Jun 2022
Cited by 7 | Viewed by 3075
Abstract
The orthotropic steel deck is sensitive to fatigue, and a number of cracks have been found in existing bridges. Based on the long-span Guangzhou Mingzhu Bay steel arched bridge, this paper focus on the cracking process, fatigue mechanism, and fatigue performance evaluation of [...] Read more.
The orthotropic steel deck is sensitive to fatigue, and a number of cracks have been found in existing bridges. Based on the long-span Guangzhou Mingzhu Bay steel arched bridge, this paper focus on the cracking process, fatigue mechanism, and fatigue performance evaluation of an orthotropic steel bridge deck under traffic load. A finite element model of a three-U-rib and three-span bridge deck was first established to investigate the stress state and the most unfavorable wheel loading position under the longitudinal wheel load. Then, four full-scale single-U-rib specimens were fabricated with high-strength lower alloy structural steel Q370qD in compliance with construction standards. High-cycle loading was subsequently implemented according to the Specification for Design of Highway steel bridge (JTG D64-2015), and the crack initiation, propagation process, and fatigue failure modes were studied. The results showed the stress at structural concern points is larger than in other locations, which was located around 35 mm from the welding seam of the U-rib and the lower end of the diaphragm plate. The Mingzhu Bay steel bridge deck meets the fatigue design requirements. However, the bottom of the welding seam between the U-rib and diaphragm plate is a dangerous fatigue position, and attention should be paid to the welding quality at this position during construction. Full article
(This article belongs to the Special Issue Modelling, Test and Practice of Steel Structures)
Show Figures

Figure 1

Back to TopTop