Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = starch branching enzyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4946 KiB  
Article
Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis
by Haoyu Zhang, Yuhan Shen, Yufei Liu, Xiuyuan Ran, Yongkui Zhang, Jing Chen and Changhong Yao
Foods 2025, 14(11), 2004; https://doi.org/10.3390/foods14112004 - 5 Jun 2025
Viewed by 717
Abstract
Microalgae are considered as sustainable starch producers, yet the carbon sources for this process in terms of starch productivity and functionality require further elucidation. The present study investigated the roles of CO2 and acetate on the starch production in a marine microalga [...] Read more.
Microalgae are considered as sustainable starch producers, yet the carbon sources for this process in terms of starch productivity and functionality require further elucidation. The present study investigated the roles of CO2 and acetate on the starch production in a marine microalga Tetraselmis subcordiformis, and the ordered structure and digestibility of the starches obtained were characterized. CO2 and acetate could serve as efficient carbon sources for T. subcordiformis to accumulate starch, with the maximum starch content, yield, and productivity reaching 66.0%, 2.16 g/L, and 0.71 g/L/day on day 3 and the maximum biomass productivity reaching 0.94 g/L/day on day 2, respectively, when 2.5 g/L sodium acetate and 2% CO2 were simultaneously applied. The addition of acetate under 2% CO2 improved the photosynthetic efficiency and enhanced the activity of ADP-glucose pyrophosphorylase, facilitating the biomass and starch production. The supply of CO2 and acetate changed the amylose/amylopectin ratio by affecting the activity of starch branching enzymes and isoamylases. FTIR and XRD analyzes showed that the supply of CO2 reduced the long- and short-range ordered structure of starch, while acetate promoted the production of additional B- and V-type starch, resulting in a reduced digestibility. The combined supply of 2% CO2 and 5 g/L sodium acetate enabled the most efficient production of functional resistant starch (RS) measured with Englyst’s method, with a maximum RS content and yield reaching 13.7%DW and 0.40 g/L, respectively, on day 3. This study provided novel insights into the efficient production of high value-added functional starch (RS) from microalgae. Full article
Show Figures

Figure 1

14 pages, 4857 KiB  
Article
Virus-Free Micro-Corm Induction and the Mechanism of Corm Development in Taro
by Shenglin Wang, Yao Xiao, Zihao Li, Tao Liu, Jiarui Cui, Bicong Li, Qianglong Zhu, Sha Luo, Nan Shan, Jingyu Sun, Yingjin Huang and Qinghong Zhou
Int. J. Mol. Sci. 2025, 26(8), 3740; https://doi.org/10.3390/ijms26083740 - 16 Apr 2025
Viewed by 424
Abstract
Taro (Colocasia esculenta (L.) Schott) is the fifth largest rhizome crop, and it is widely distributed in tropical and subtropical areas in the world. Vegetative propagation with virus-infected corms can lead to cultivar degradation, yield decline, and quality deterioration. In this study, [...] Read more.
Taro (Colocasia esculenta (L.) Schott) is the fifth largest rhizome crop, and it is widely distributed in tropical and subtropical areas in the world. Vegetative propagation with virus-infected corms can lead to cultivar degradation, yield decline, and quality deterioration. In this study, the shoot apical meristems excised from taro corms infected with dasheen mosaic virus, which belongs to the genus Potyvirus in the family Potyviridae, were cultured and treated with exogenous abscisic acid and high sucrose concentrations to induce micro-corm formation. Subsequently, candidate genes involved in micro-corm expansion were screened via transcriptome sequencing analysis. The results revealed that the shoot apical meristems could grow into adventitious shoots on the medium 1 mg/L 6-benzylaminopurine + 0.3 mg/L 1-naphthaleneacetic acid, and reverse transcription–polymerase chain reaction detection indicated that dasheen mosaic virus had been successfully eliminated from the test-tube plantlets. Moreover, 8% sucrose or 3% sucrose + 5 μM abscisic acid likewise induced taro corm formation, and genes related to cell division and the cell cycle, as well as starch and sucrose metabolism pathways, were significantly enriched during taro corm expansion. Furthermore, the cyclin-dependent kinases genes, cell cycle protein kinase subunit genes, and cyclin B2 genes, which are related to cell division and the cell cycle, were upregulated with abscisic acid treatment on the 3rd day. The sucrose synthase genes, β-amylase genes, glycogen branching enzyme genes, and soluble starch synthase genes, which are related to starch and sucrose metabolism, were upregulated on the 15th day, indicating that cell division largely occurs during taro corm formation, whereas carbohydrates are synthesized during taro corm expansion. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 4293 KiB  
Article
Changes in Physicochemical Properties and In Vitro Digestibility of Broken Rice Starch by Ultrasound and Quercetin Dual Treatment
by Ping Yang, Chenhao Qiu and Na Zhang
Appl. Sci. 2025, 15(8), 4203; https://doi.org/10.3390/app15084203 - 11 Apr 2025
Viewed by 602
Abstract
Applying physical modification methods to raise the resistant starch content is a feasible strategy for developing foods with a low glycemic index (GI) and regulating postprandial hyperglycemia. Here, broken rice starch (C) was modified via ultrasound and quercetin complexation (US-Q). The structure, physicochemical [...] Read more.
Applying physical modification methods to raise the resistant starch content is a feasible strategy for developing foods with a low glycemic index (GI) and regulating postprandial hyperglycemia. Here, broken rice starch (C) was modified via ultrasound and quercetin complexation (US-Q). The structure, physicochemical properties, and in vitro digestibility of the US-Q product were subsequently determined. Scanning electron microscopy (SEM) images showed that the modification changed the starch granules’ morphology, forming a more compact and stable structure. Fourier transform infrared (FTIR) spectroscopy images revealed the interaction between the starch and quercetin. An X-ray diffraction (XRD) analysis demonstrated that the crystallinity of the US-Q was lower than that of the C, indicating that the combined modification with ultrasound and quercetin disrupted the long-range ordered structure of the starch and facilitated the formation of a short-range ordered structure from amylose. Size exclusion chromatography (SEC) images showed that both the molecular weight (from 72,080.96 kDa to 85,141.95 kDa) and amylose content (from 15.94% to 26.76%) increased significantly, while the branching degree and average degree of polymerization of amylopectin decreased, suggesting that the ultrasonic treatment processing method had a significant impact on the formation of the quercetin–starch complexes. In terms of in vitro digestion, the resistant starch content of the US-Q was significantly increased from 6.57% to 20.23%, whereas the hydrolysis rate was decreased from 92.6% to 78.35%, indicating that the presence of quercetin reduced the digestibility of the starch complexes by inhibiting the starch-hydrolyzing enzyme activity. Overall, this study improves the understanding of ultrasound and quercetin dual treatment of broken rice starch, providing a theoretical basis for the development of low-GI starch foods for industrial applications. Full article
Show Figures

Figure 1

17 pages, 4111 KiB  
Article
Physiological and Metabolomics Analyses Revealed That Overexpression of CBL-Interacting Protein Kinase 23 Accelerate Tuber Sprouting in Potato
by Fang Zhou, Fengjuan Wang, Xing Zhang, Yifei Lu, Bi Ren, Shimin Yang, Liming Lu and Liqin Li
Horticulturae 2025, 11(4), 342; https://doi.org/10.3390/horticulturae11040342 - 21 Mar 2025
Viewed by 398
Abstract
The potato (Solanum tuberosum L.) plays an important role in ensuring global food security. Potato tubers store abundant nutrients and are also reproductive organs. The adjustment of tuber sprouting plays a vital role in timely sowing and improving tuber product quality. CBL-interacting [...] Read more.
The potato (Solanum tuberosum L.) plays an important role in ensuring global food security. Potato tubers store abundant nutrients and are also reproductive organs. The adjustment of tuber sprouting plays a vital role in timely sowing and improving tuber product quality. CBL-interacting protein kinases (CIPKs) exert an important function in the entire life cycle of plants and in coping with stress. In our present study, we found that the StCIPK23 expression level increased during storage and that overexpression of StCIPK23 can accelerate tuber sprouting. Physiological assays indicated that overexpressing StCIPK23 altered carbohydrate metabolism and antioxidant-related enzyme activities during storage. Starch branching enzyme (SBEI) gene expression was upregulated, while sucrose synthase (SS), 3-phosphoglyceric phosphokinase (PGK), and glyceraldehyde-3-phosphate dehydrogenase 1 (GAPC1) gene expression were downregulated in StCIPK23-overexpressing potato. High gibberellin (GA) content and low abscisic acid (ABA) content were also detected in transgenic tubers. We conducted metabolomics analysis on bud eyes, and the results showed a total of 94 differential metabolites were found. Among them, 61 metabolites were increased, the top three metabolites were coumaryl alcohol, glutathione and quercetin–glucoside–glucoside–rhamnoside. Our results suggest that StCIPK23 is a positive regulator of potato tuber sprouting. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

33 pages, 6032 KiB  
Article
Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice
by Huimiao Ma, Yan Jia, Weiqiang Wang, Jin Wang, Detang Zou, Jingguo Wang, Weibin Gong, Yiming Han, Yuxiang Dang, Jing Wang, Ziming Wang, Qianru Yuan, Yu Sun, Xiannan Zeng, Shiqi Zhang and Hongwei Zhao
Agronomy 2025, 15(2), 417; https://doi.org/10.3390/agronomy15020417 - 7 Feb 2025
Cited by 4 | Viewed by 1175
Abstract
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading [...] Read more.
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading for varying lengths of time to analyze the effects on leaf and grain metabolism. The objective was to track carbon–nitrogen flow and identify factors affecting grain yield. Low-temperature stress significantly reduced the activity of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT), in functional leaves compared to the control. This reduction decreased nitrogen accumulation, inhibited chlorophyll synthesis, and slowed photosynthesis. To preserve intracellular osmotic balance and lessen the effects of low temperatures, sucrose, fructose, and total soluble sugar levels, as well as sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, surged in response to low-temperature stress. However, low-temperature stress significantly reduced the activity of adenosine diphosphate glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE). At the same time, low-temperature stress reduced the area of vascular bundles and phloem, making it difficult to transport carbon and nitrogen metabolites to grains on time. The response of grains to low-temperature stress differs from that of leaves, with prolonged low-temperature exposure causing a gradual decrease in carbon and nitrogen metabolism-related enzyme activities and product accumulation within the grains. The insufficient synthesis of starch precursors and carbon skeletons results in significantly lower thousand-grain weight and seed-setting rates, ultimately contributing to grain yield loss. This decline was more pronounced in inferior grains compared to superior grains. Compared to SJ10, DN428 exhibited higher values across various indicators and smaller declines under low-temperature stress, suggesting enhanced cold-tolerance and a greater capacity to maintain grain yield stability. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Graphical abstract

21 pages, 3802 KiB  
Article
Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions
by Hongfang Jiang, Yanze Zhao, Liqiang Chen, Xue Wan, Bingchun Yan, Yuzhuo Liu, Yuqi Liu, Wenzhong Zhang and Jiping Gao
Plants 2025, 14(3), 432; https://doi.org/10.3390/plants14030432 - 1 Feb 2025
Viewed by 1292
Abstract
To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen [...] Read more.
To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen levels (210, 178.5, and 147 kg N ha−1; N3, N2, and N1) and two phosphorus levels (105 and 73.5 kg P ha−1; P2 and P1). At the N3 level, the yield of P1 was significantly lower (by 19.26%) compared to P2; at the N2 and N1 levels, P1 yielded higher than P2, peaking at N2P1. Spikelets per panicle showed P2 exceeding P1 at the same nitrogen level, with the highest for both SGs and IGs observed at N2P2, followed by N2P1. Reductions in nitrogen and phosphorus decreased the grain-filling rate but prolonged the duration for grain-filling. N2P1 maintained grain weight by extending the grain-filling duration across the early, middle, and late stages of IGs, and the middle and late stages of SGs. Increased nitrogen enhanced the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), whereas increased phosphorus inhibited these activities in SGs but enhanced them in IGs. Reduced nitrogen and phosphorus fertilizer diminished ADP glucose pyrophosphorylase (AGPP) and granule-bound starch synthase (GBSS) activities in SGs and IGs, inhibiting amylose accumulation while enhancing taste value. Compared with N3P2, the taste value of N2P1 increased significantly by 6.93%, attributed to a higher amylopectin/amylose ratio. N2P1 (178.5 kg N ha−1 and 73.5 kg P ha−1) optimized enzyme activity, starch composition, and grain filling, balancing both yield and taste, and thus demonstrated an effective fertilization strategy for stable rice production. Full article
(This article belongs to the Collection New Trends in Plant Science in China)
Show Figures

Figure 1

26 pages, 8623 KiB  
Article
Prohexadione Calcium Improves Rice Yield Under Salt Stress by Regulating Source–Sink Relationships During the Filling Period
by Rui Deng, Dianfeng Zheng, Naijie Feng, Aaqil Khan, Jianqin Zhang, Zhiyuan Sun, Jiahuan Li, Jian Xiong, Linchong Ding, Xiaohui Yang, Zihui Huang and Yuecen Liao
Plants 2025, 14(2), 211; https://doi.org/10.3390/plants14020211 - 13 Jan 2025
Cited by 3 | Viewed by 1403
Abstract
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt [...] Read more.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source–sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source–sink, the dynamic changes in related enzyme activities, the effects of the source–sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period. The results of this study showed that Pro-Ca improved photosynthetic efficiency by increasing leaf photosynthetic gas exchange parameters and other stomatal factors on the one hand and, on the other hand, promoted sugar catabolism and reduced sugar synthesis by increasing leaf sucrose synthase activity and decreasing sucrose phosphate synthase activity, alleviating the inhibitory effect of high concentrations of sugars in the leaves on photosynthesis. Meanwhile, Pro-Ca promotes the transport of sugars from source (leaves) to sink (seeds), increases the sugar content in the seeds, and promotes starch synthesis in the seeds by increasing starch phosphorylase, which promotes seed filling, thus increasing the number of solid grains on the primary and secondary branches of the panicle in rice, increasing the 1000-grain weight, and ultimately increasing the seed setting rate and yield. These results indicated that Pro-Ca alleviated the inhibitory effect of salt stress on rice leaf photosynthesis through stomatal and non-stomatal factors. Meanwhile, Pro-Ca promotes the transport of rice sugars from source to sink under salt stress, regulates the source–sink relationship during the filling period of rice, promotes starch synthesis, and ultimately improves rice yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 4230 KiB  
Review
Sugar Transport and Signaling in Shoot Branching
by Joan Doidy, Yuhui Wang, Léo Gouaille, Ingrid Goma-Louamba, Zhengrong Jiang, Nathalie Pourtau, José Le Gourrierec and Soulaiman Sakr
Int. J. Mol. Sci. 2024, 25(23), 13214; https://doi.org/10.3390/ijms252313214 - 9 Dec 2024
Cited by 1 | Viewed by 1941
Abstract
The source–sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new [...] Read more.
The source–sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters—SUTs; sugar will eventually be exported transporters—SWEETs), sucrose hydrolyzing enzymes (cell wall invertase—CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle—TCA; oxidative pentose phosphate pathway—OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength. Full article
(This article belongs to the Special Issue Sugar Signaling in Plants and Its Interaction with Phytohormones)
Show Figures

Figure 1

15 pages, 1495 KiB  
Article
Effect of Modification by β-Amylase and α-Glucosidase on the Structural and Physicochemical Properties of Maize Starch
by Xinge Jia, Jingwen Xu, Yan Cui, Dazhi Ben, Chuyu Wu, Jing Zhang, Mingru Sun, Shuo Liu, Tianhao Zhu, Jingsheng Liu, Ke Lin and Mingzhu Zheng
Foods 2024, 13(23), 3763; https://doi.org/10.3390/foods13233763 - 24 Nov 2024
Cited by 2 | Viewed by 1349
Abstract
Single enzymatic modifications are limited to starch. Complex modification with synergistic amylases will improve starch properties more significantly. In this study, maize starch was compound modified by β-amylase and α-glucosidase. The structure and physicochemical properties of the corn starch were determined by scanning [...] Read more.
Single enzymatic modifications are limited to starch. Complex modification with synergistic amylases will improve starch properties more significantly. In this study, maize starch was compound modified by β-amylase and α-glucosidase. The structure and physicochemical properties of the corn starch were determined by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT–IR), proton nuclear magnetic resonance hydrogen spectroscopy (1HNMR), high-performance anion-exchange chromatography (HPAEC–PAD), differential scanning calorimetry (DSC) and Rapid Visco analyzer (RVA) to determine the changes in the structure and physicochemical properties of maize starch before and after the dual enzyme modification. The branching degree (4.95–7.10%) of maize starch was increased after bi-enzymatic modification, the amylose content (28.77–18.60%) was decreased, and the amylopectin content (70.79–81.71%) was elevated. The relative crystallinity (20.41–30.20%) and short-range ordered structure of the starch increased, and the dual enzyme modification led to a more compact structure. Dual enzyme-modified maize starch showed a decrease in long chains, an increase in short chains, and its degree of branching was elevated. Dual enzyme modification also affected the thermal stability, pasting, light transmittance (1.40–2.16%), solubility (20.15–13.76%), and swelling (33.97–45.79%) of maize starch. It can be concluded that the complex modification of maize starch by β-amylase and α-glucosidase significantly changed the amylose/amylopectin ratio of the starch and made its structure denser. These results can provide a theoretical basis for the enzymatic preparation of maize starch with different amylose/amylopectin ratios and the development and utilization of functional starches. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

10 pages, 4414 KiB  
Article
Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds
by Jin-Young Kim, Ye-Ji Lee, Hyo-Ju Lee, Ji-Yun Go, Hye-Mi Lee, Jin-Shil Park, Yong-Gu Cho, Yu-Jin Jung and Kwon-Kyoo Kang
Int. J. Mol. Sci. 2024, 25(22), 12470; https://doi.org/10.3390/ijms252212470 - 20 Nov 2024
Cited by 5 | Viewed by 1039
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major glycolytic enzyme that plays an important role in several cellular processes, including plant hormone signaling, plant development, and transcriptional regulation. In this study, we divided it into four groups through structural analysis of eight GAPDH genes identified [...] Read more.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major glycolytic enzyme that plays an important role in several cellular processes, including plant hormone signaling, plant development, and transcriptional regulation. In this study, we divided it into four groups through structural analysis of eight GAPDH genes identified in the rice genome. Among them, the expression level of five genes of cytosolic GAPDH was shown to be different for each organ. The mutation induction of the GAPDHC7 gene by the CRISPR/Cas9 system revealed that the 7 bp and 2 bp deletion, early end codon, was used in protein production. In addition, the selected mutants showed lower plant heights compared to the wild-type plants. To investigate the effect on carbohydrate metabolism, the expression of the genes of starch-branched enzyme I (SbeI), sucrose synthase (SS), and 3-phosphoglycer phosphokinase (PGK) increased the expression of the SBeI gene threefold in the knockout lines compared to the wild-type (WT) plant, while the expression of the SS and PGK genes decreased significantly. And the starch and soluble sugar content of the knockout lines increased by more than 60% compared to the WT plant. Also, the free amino acid content was significantly increased in the Gln and Asn contents of the knockout lines compared to the WT plants, while the contents of Gly and Ser were decreased. Our results suggest that OsGAPDHC7 has a great influence on energy metabolism, such as pre-harvested sprouting and amino acid content. Full article
(This article belongs to the Special Issue Genetic Analysis Based on CRISPR/Cas9 Technology: 2nd Edition)
Show Figures

Figure 1

18 pages, 7766 KiB  
Article
Molecular Cloning, Characterization, and Application of a Novel Multifunctional Isoamylase (MIsA) from Myxococcus sp. Strain V11
by Siting Feng, Weiqi Zhang, Jun Liu, Yusen Hu, Jialei Wu, Guorong Ni and Fei Wang
Foods 2024, 13(21), 3481; https://doi.org/10.3390/foods13213481 - 30 Oct 2024
Viewed by 1266
Abstract
A novel multifunctional isoamylase, MIsA from Myxococcus sp. strain V11, was expressed in Escherichia coli BL21(DE3). Sequence alignment revealed that MIsA is a typical isoamylase that belongs to glycoside hydrolase family 13 (GH 13). MIsA can hydrolyze the α-1,6-branches of amylopectin and pullulan, [...] Read more.
A novel multifunctional isoamylase, MIsA from Myxococcus sp. strain V11, was expressed in Escherichia coli BL21(DE3). Sequence alignment revealed that MIsA is a typical isoamylase that belongs to glycoside hydrolase family 13 (GH 13). MIsA can hydrolyze the α-1,6-branches of amylopectin and pullulan, as well as the α-1,4-glucosidic bond in amylose. Additionally, MIsA demonstrates 4-α-D-glucan transferase activity, enabling the transfer of α-1,4-glucan oligosaccharides between molecules, particularly with linear maltooligosaccharides. The Km, Kcat, and Vmax values of the MIsA for amylopectin were 1.22 mM, 40.42 µmol·min–1·mg–1, and 4046.31 mM·min–1. The yields of amylopectin and amylose hydrolyzed into oligosaccharides were 10.16% and 11.70%, respectively. The hydrolysis efficiencies were 55%, 35%, and 30% for amylopectin, soluble starch, and amylose, respectively. In the composite enzyme hydrolysis of amylose, the yield of maltotetraose increased by 1.81-fold and 2.73-fold compared with that of MIsA and MTHase (MCK8499120) alone, respectively. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

14 pages, 13465 KiB  
Article
Deciphering Biosynthesis Mechanism and Solution Properties of Cyclic Amylopectin
by Ruolan Li, Yaning Shi and Ming Miao
Foods 2024, 13(21), 3474; https://doi.org/10.3390/foods13213474 - 30 Oct 2024
Viewed by 1014
Abstract
A novel cyclic amylopectin (CA) was synthesized from waxy corn starch (WCS) using Bacillus stearothermophilus branching enzyme (BstBE), providing insights into its biosynthesis mechanism and solution properties. During the first 4 h, BstBE partially cyclized WCS, producing 68.20% CA with a significantly reduced [...] Read more.
A novel cyclic amylopectin (CA) was synthesized from waxy corn starch (WCS) using Bacillus stearothermophilus branching enzyme (BstBE), providing insights into its biosynthesis mechanism and solution properties. During the first 4 h, BstBE partially cyclized WCS, producing 68.20% CA with a significantly reduced molecular weight (MW), from 8.98 × 10⁶ to 3.19 × 10⁴ g/mol and a lower polymer dispersity index (PDI), decreasing from 1.97 to 1.12. This resulted in a uniform CA structure with shorter chain lengths, particularly increasing DP 3–13, especially DP 7–9. Over the subsequent 4–12 h, the PDI slightly increased to 1.18 as the CA content decreased to 50.48%, with an increase in small ring structures (DP 6–12) of CA, suggesting both ring-opening and ring-downsizing due to continued enzyme catalysis. These results propose a two-stage reaction model: initial cyclization followed bybranching and secondary cyclization. CA exhibited excellent solution properties, with BE-4 and BE-12 samples demonstrating high solubility (≥65 g/100 mL), low viscosity (<0.01 Pa·s), and over 90% light transmittance after 14 days at 4 °C, highlighting its broad application potential. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

20 pages, 2263 KiB  
Article
Response of Different Exogenous Phytohormones to Rice Yield Under Low-Temperature Stress at the Filling Stage
by Ke Li, Yunji Xu, Dalu Gu, Xiaodong Yin, Yanyan Jia, Tinggang Wen, Weiqing Jiang, Yang Che, Qisheng Li, Zhangrong Wen, Xiaofeng Du and Wenfei Yang
Agronomy 2024, 14(10), 2450; https://doi.org/10.3390/agronomy14102450 - 21 Oct 2024
Cited by 1 | Viewed by 1545
Abstract
This paper aims to clarify the effects of different exogenous phytohormones on the physiological traits of rice (Oryza sativa L.) at the early stage of irrigation under low-temperature stress. In this study, two types of rice varieties with different temperature sensitivities screened [...] Read more.
This paper aims to clarify the effects of different exogenous phytohormones on the physiological traits of rice (Oryza sativa L.) at the early stage of irrigation under low-temperature stress. In this study, two types of rice varieties with different temperature sensitivities screened out previously, namely, a cold-tolerant variety (Nan Jing 9108) and a low-temperature-sensitive variety (Hui Liang You 898), were used in pots to simulate the process of low-temperature stress in rice at the early stage of grouting (6–9 days after anthesis) with artificial low-temperature treatments. The experimental treatments were 450 mg L−1 Methyl jasmine acid (MJ), 46 mg L−1 Melatonin (MT), 69 mg L−1 Salicylate (SA), 40 mg L−1 Erythromycin (GA3), 25 mg L−1 Zeatin (Z), 145 mg L−1 Spermidine (SPD), and 5 mg L−1 Abscisic acid (ABA) sprayed on rice before low-temperature stress, while low-temperature treatment without spraying (DK) and conventional planting without spraying (CK) were added as the control. The results showed that compared with the room temperature control (CK, sprayed with deionized water), the low-temperature control (DK, low-temperature treatment, and sprayed with deionized water) all significantly reduced the rice grain yield. Different exogenous hormones sprayed before low-temperature stress could increase rice yield, among which, Z and SPD spraying treatments had a better effect on the yield of Hui Liang You 898, while different exogenous hormone treatments increased the yield of Nan Jing 9108 in an average manner. The Z and SPD treatments increased the yield of Hui Liang You 898 by 24.87% and 26.16% and that of Nan Jing 9108 by 15.87% and 17.80%, respectively. This was mainly attributed to the significant increase in thousand-grain weight and fruiting rate, while there was no significant difference in the number of spikes and number of grains. The different exogenous hormone treatments were able to delay leaf senescence, enhance the photosynthetic production capacity of plants by increasing leaf chlorophyll content, and thus increase the accumulation of photosynthetic assimilation products and population growth rate after flowering. Among them, both Z and SPD treatments resulted in a population growth rate of more than 30% from spike flushing to maturity, which led to a higher dry matter accumulation of the plant at maturity. In addition, in the dry matter distribution of the plant at maturity, the seeds occupied a higher accumulation amount and proportion compared with the respective DK; the SPD treatment resulted in the maximum distribution rate of seeds at maturity of Hui Liang You 898, with an increase of 8.27%, and the Z treatment resulted in the maximum distribution rate of seeds at maturity of Nan Jing 9108, with an increase of 7.34%. At the same time, the Z treatment significantly increased the activities of adenosine diphosphate glucose phosphorylated enzyme (AGP) and starch branching enzyme (SBE) in the grains of both varieties, which resulted in the accumulation of more starch and ultimately increased the rice grain yield. The results verified that different exogenous phytohormones could be used to regulate the insufficiency of grouting caused by low-temperature stress during the grouting and fruiting stages of rice and enriched their agronomic and physiological traits in response at the same time. Full article
(This article belongs to the Special Issue Molecular Regulatory Network of Plant Nutrition Signaling)
Show Figures

Figure 1

15 pages, 3155 KiB  
Article
Transcriptome Analysis Deciphers the Underlying Molecular Mechanism of Peanut Lateral Branch Angle Formation Using Erect Branching Mutant
by Liangqiong He, Conghui Yu, Guanghao Wang, Lei Su, Xin Xing, Tiantian Liu, Zhipeng Huang, Han Xia, Shuzhen Zhao, Zhongkui Gao, Xingjun Wang, Chuanzhi Zhao, Zhuqiang Han and Jiaowen Pan
Genes 2024, 15(10), 1348; https://doi.org/10.3390/genes15101348 - 21 Oct 2024
Viewed by 1260
Abstract
Background The growth habit (GH), also named the branching habit, is an important agronomic trait of peanut and mainly determined by the lateral branch angle (LBA). The branching habit is closely related to peanut mechanized farming, pegging, yield, and disease management. Objectives However, [...] Read more.
Background The growth habit (GH), also named the branching habit, is an important agronomic trait of peanut and mainly determined by the lateral branch angle (LBA). The branching habit is closely related to peanut mechanized farming, pegging, yield, and disease management. Objectives However, the molecular basis underlying peanut LBA needs to be uncovered. Methods In the present study, an erect branching peanut mutant, eg06g, was obtained via 60Co γ-ray-radiating mutagenesis of a spreading-type peanut cultivar, Georgia-06G (G06G). RNA-seq was performed to compare the transcriptome variation of the upper sides and lower sides of the lateral branch of eg06g and G06G. Results In total, 4908 differentially expressed genes (DEGs) and 5833 DEGs were identified between eg06g and G06G from the lower sides and upper sides of the lateral branch, respectively. GO, KEGG, and clustering enrichment analysis indicated that the carbohydrate metabolic process, cell wall organization or biogenesis, and plant hormone signal transduction were mainly enriched in eg06g. Conclusions Further analysis showed that the genes involved in starch biosynthesis were upregulated in eg06g, which contributed to amyloplast sedimentation and gravity perception. Auxin homeostasis and transport-related genes were found to be upregulated in eg06g, which altered the redistribution of auxin in eg06g and in turn triggered apoplastic acidification and activated cell wall modification-related enzymes, leading to tiller angle establishment through the promotion of cell elongation at the lower side of the lateral branch. In addition, cytokinin and GA also demonstrated synergistic action to finely regulate the formation of peanut lateral branch angles. Collectively, our findings provide new insights into the molecular regulation of peanut LBA and present genetic materials for breeding peanut cultivars with ideotypes. Full article
(This article belongs to the Special Issue Genetic Breeding and Improvement of Peanut)
Show Figures

Figure 1

27 pages, 15139 KiB  
Article
Nitrogen Level Impacts the Dynamic Changes in Nitrogen Metabolism, and Carbohydrate and Anthocyanin Biosynthesis Improves the Kernel Nutritional Quality of Purple Waxy Maize
by Wanjun Feng, Weiwei Xue, Zequn Zhao, Haoxue Wang, Zhaokang Shi, Weijie Wang, Baoguo Chen, Peng Qiu, Jianfu Xue and Min Sun
Plants 2024, 13(20), 2882; https://doi.org/10.3390/plants13202882 - 15 Oct 2024
Cited by 2 | Viewed by 1695
Abstract
Waxy corn is a special type of maize primarily consumed as a fresh vegetable by humans. Nitrogen (N) plays an essential role in regulating the growth progression, maturation, yield, and quality of waxy maize. A reasonable N application rate is vital for boosting [...] Read more.
Waxy corn is a special type of maize primarily consumed as a fresh vegetable by humans. Nitrogen (N) plays an essential role in regulating the growth progression, maturation, yield, and quality of waxy maize. A reasonable N application rate is vital for boosting the accumulation of both N and carbon (C) in the grains, thereby synergistically enhancing the grain quality. However, the impact of varying N levels on the dynamic changes in N metabolism, carbohydrate formation, and anthocyanin synthesis in purple waxy corn kernels, as well as the regulatory relationships among these processes, remains unclear. To explore the effects of varying N application rates on the N metabolism, carbohydrate formation, and anthocyanin synthesis in kernels during grain filling, a two-year field experiment was carried out using the purple waxy maize variety Jinnuo20 (JN20). This study examined the different N levels, specifically 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha−1. The results of the analysis revealed that, for nearly all traits measured, the N application rate of N2 was the most suitable. Compared to the N0 treatment, the accumulation and content of anthocyanins, total nitrogen, soluble sugars, amylopectin, and C/N ratio in grains increased by an average of 35.62%, 11.49%, 12.84%, 23.74%, 13.00%, and 1.87% under N2 treatment over five filling stages within two years, respectively, while the harmful compound nitrite content only increased by an average of 30.2%. Correspondingly, the activities of related enzymes also significantly increased and were maintained under N2 treatment compared to N0 treatment. Regression and correlation analysis results revealed that the amount of anthocyanin accumulation was highly positively correlated with the activities of phenylalanine ammonia-lyase (PAL) and flavanone 3-hydroxylase (F3H), but negatively correlated with anthocyanidin synthase (ANS) and UDP-glycose: flavonoid-3-O-glycosyltransferase (UFGT) activity, nitrate reductase (NR), and glutamine synthetase (GS) showed significant positive correlations with the total nitrogen content and lysine content, and a significant negative correlation with nitrite, while soluble sugars were negatively with ADP-glucose pyrophosphorylase (AGPase) activity, and amylopectin content was positively correlated with the activities of soluble starch synthase (SSS), starch branching enzyme (SBE), and starch debranching enzyme (SDBE), respectively. Furthermore, there were positive or negative correlations among the detected traits. Hence, a reasonable N application rate improves purple waxy corn kernel nutritional quality by regulating N metabolism, as well as carbohydrate and anthocyanin biosynthesis. Full article
(This article belongs to the Topic Crop Ecophysiology: From Lab to Field, 2nd Volume)
Show Figures

Figure 1

Back to TopTop