Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = starch betainate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4384 KiB  
Article
Untargeted Metabolomic Identifies Potential Seasonal Biomarkers of Semen Quality in Duroc Boars
by Notsile H. Dlamini, Serge L. Kameni and Jean M. Feugang
Biology 2025, 14(8), 995; https://doi.org/10.3390/biology14080995 - 4 Aug 2025
Viewed by 195
Abstract
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) [...] Read more.
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) to identify metabolites and metabolic pathways associated with semen quality during the summer and winter months. Semen samples were collected from mature Duroc boars at a commercial boar stud and classified as Passed or Failed based on motility and morphology. SP from five samples per group was analyzed using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In total, 373 metabolites were detected in positive ion mode and 478 in negative ion mode. Several differentially expressed metabolites (DEMs) were identified, including ergothioneine, indole-3-methyl acetate, and avocadyne in the summer, as well as LysoPC, dopamine, and betaine in the winter. These metabolites are associated with key sperm functions, including energy metabolism, antioxidant defense, and capacitation. KEGG pathway analysis indicated enrichment in starch and sucrose metabolism, pyrimidine metabolism, and amino acid metabolism across the seasons. Overall, the results reveal that SP metabolomic profiles vary with the season, thereby influencing semen quality. The identified metabolites may serve as potential biomarkers for assessing semen quality and enhancing reproductive efficiency in swine production. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

23 pages, 5038 KiB  
Article
Transcriptomic Analysis and Identification of Candidate Genes Involved in Rhizome Development in Agropyron michnoi
by Xintian Huang, Yuchen Li, Jinyu Du, Yan Liang, Huijie Han, Cuiping Gao and Yan Zhao
Agronomy 2025, 15(3), 674; https://doi.org/10.3390/agronomy15030674 - 10 Mar 2025
Cited by 1 | Viewed by 776
Abstract
Agropyron michnoi is a perennial grass with rhizomes in the genus Agropyron. It has a strong tolerance to drought and low temperature, and it is an established species in sandy flat and hilly slope lands, which constitute sandy grassland. So, it is [...] Read more.
Agropyron michnoi is a perennial grass with rhizomes in the genus Agropyron. It has a strong tolerance to drought and low temperature, and it is an established species in sandy flat and hilly slope lands, which constitute sandy grassland. So, it is an important forage species in dry grassland and desert steppes. Rhizomes not only enable asexual reproducibility but also confer strong resilience to stresses in A. michnoi. However, during production and utilization, it has been found that there are significant differences in the development of rhizomes among individuals of A. michnoi, yet the regulatory mechanism remains unclear. Therefore, in this study, the A. michnoi ‘Baiyinxile’ was used as the material, and the anatomical structures of the rhizomes, roots, and stems were analyzed using the paraffin sectioning technique. The results showed that the anatomical structure composition of the cross-section of the rhizome was similar to that of the root, while the arrangement of the vascular bundles in the stele was different from that of the root but similar to that of the stem. Subsequently, the Agropyron michnoi plants were classified into two types: plants with rhizomes and plants without rhizomes. Root, stem, and rhizome samples were collected from each type, and RNA sequencing was conducted. De novo transcriptomic analysis was performed to identify the candidate genes involved in rhizome development. From the RNA sequencing, a total of 103.73 Gb clean bases were obtained, from which 215,282 unigenes with an average length of 905.67 bp were assembled. Among these unigenes, 161,175 (74.87%) were functionally annotated based on seven common public databases. From pairwise comparisons of differentially expressed genes between the five samples, 129 candidate genes that are potentially specifically expressed in rhizomes were selected. Pathway enrichment analysis revealed that the rhizome-expressed genes are highly enriched in pathways of phenylpropanoid biosynthesis and starch and sucrose metabolism. The rhizome-specific expression pattern of 10 of the 129 candidate genes was further validated using qRT-PCR. Through the analysis of metabolites, 11 metabolites closely related to rhizome development, such as choline and betaine, were successfully identified. CYP family genes were selected for functional verification, and phylogenetic analysis revealed that CYP86B1 was grouped with CYP 86B1 of species such as Triticum aestivum and Lolium rigidum and was named AmrCYP86B1. The cloning results showed that its size was 1599 bp, and its subcellular localization was in the endoplasmic reticulum. Through stable genetic transformation, the study found that AmrCYP86B1 can promote the development of plant roots and stems and increase the dry matter content of the roots. Hormone detection showed that overexpression of AmrCYP 86B1 decreased the content of ABA hormone and increased the content of GA3 hormone in the plants. Combined with previous studies, it was determined that AmrCYP 86B1 promoted rhizome elongation by regulating ABA and GA3 hormones. The selected candidate genes involved in rhizome development, along with the preliminary functional verification, provide a preliminary mechanistic interpretation of rhizome development. This will contribute to in-depth research on the molecular mechanism of rhizome development in A. Michnoi. Full article
(This article belongs to the Special Issue Metabolomics-Centered Mining of Crop Metabolic Diversity and Function)
Show Figures

Figure 1

17 pages, 9549 KiB  
Article
Combined Cold and Drought Stress-Induced Response of Photosynthesis and Osmotic Adjustment in Elymus nutans Griseb.
by Bowen Liu, Ruijia Wang, Jiongjiong Gong, Tianqi Zhu, Si Long, Huan Guo, Tieyuan Liu, Peizhi Yang and Yuefei Xu
Agronomy 2023, 13(9), 2368; https://doi.org/10.3390/agronomy13092368 - 12 Sep 2023
Cited by 5 | Viewed by 1974
Abstract
Elymus nutans Griseb. is a dominant forage in the Qinghai–Tibetan Plateau. However, the combined cold and drought (CD) stress is a major problem inhibiting its growth, development, and yield. Here, the responses of morphological, photosynthetic, osmoregulation levels, and signal transduction under cold, drought, [...] Read more.
Elymus nutans Griseb. is a dominant forage in the Qinghai–Tibetan Plateau. However, the combined cold and drought (CD) stress is a major problem inhibiting its growth, development, and yield. Here, the responses of morphological, photosynthetic, osmoregulation levels, and signal transduction under cold, drought, and CD stress were explored. Both cold- and drought-stressed plants showed varying degrees of damage. In addition, CD stress led to more severe damage than single stress, especially in total biomass, photosynthetic capacity, and electron transfer efficiency. The total biomass, net photosynthetic rate, and maximal quantum yield of photosystem II (PSII) photochemistry reduced by 61.47%, 95.80%, and 16.06% in comparison with the control, respectively. Meanwhile, CD stress was accompanied by lower chlorophyll contents, down-regulated expression level of key photosynthetic enzymes (EnRbcS, EnRbcL, and EnRCA), stomatal closure, disrupted chloroplast ultrastructure, and reduced starch content. Furthermore, CD stress induced some adaptability responses in cold- and drought-tolerant E. nutans seedlings. The combined stress provoked alterations in both cold- and drought-related transcription factors and responsive genes. EnCBF12, EnCBF9, EnCBF14, and EnCOR14α were significantly up-regulated under cold or drought stress, and the transcript level of EnCBF3 and EnCBF12 was even 2.94 and 12.59 times higher than control under CD treatment, which indicated the key role of transcription factors activation in coping with CD stress. In addition, the content of soluble sugar, reducing sugar, proline, glycine betaine, and other osmolytes was significantly improved under CD stress. Therefore, we demonstrated that exposure to CD stress led to severe morphological and photosynthetic damage and revealed the acclimation to the cold and drought stress combination via osmotic adjustment and transcription factors activation in the Tibetan wild E. nutans. Full article
(This article belongs to the Special Issue Advances in Stress Biology of Forage and Turfgrass)
Show Figures

Figure 1

15 pages, 4509 KiB  
Article
Ultra-Low-Density Drilling Fluids for Low-Pressure Coefficient Formations: Synergistic Effects of Surfactants and Hollow Glass Microspheres
by Haodong Chen, Ming Luo, Wandong Zhang, Cheng Han and Peng Xu
Processes 2023, 11(7), 2129; https://doi.org/10.3390/pr11072129 - 17 Jul 2023
Cited by 3 | Viewed by 2035
Abstract
With the increase in drilling fluid density requirements in low-pressure coefficient formations, traditional hollow bead drilling fluids and foam drilling fluids each have different degrees of deficiencies. Through extensive indoor experiments, an amphoteric surfactant (cocoamidopropyl betaine) with better foaming performance was selected to [...] Read more.
With the increase in drilling fluid density requirements in low-pressure coefficient formations, traditional hollow bead drilling fluids and foam drilling fluids each have different degrees of deficiencies. Through extensive indoor experiments, an amphoteric surfactant (cocoamidopropyl betaine) with better foaming performance was selected to formulate an ultra-low-density drilling fluid that combines a foaming agent and hollow glass microbeads to reduce the density of the fluid, with the following specific formulation: 3% bentonite slurry + 0.3% xanthan gum + 0.5% carboxymethyl cellulose + 0.5% starch + 2% lignite resin + 2% blocking agent + 4% hollow glass microspheres + 0.5% foaming agent + 2% nano blocking agent. The performance of the system was evaluated, and the results showed that: the density of the ultra-low-density drilling fluid did not change much before and after aging at 80 °C and was relatively stable; the filter loss amount of the drilling fluid (tested by API) reached 4.6 mL, which meets the requirements for filter loss of drilling fluid; it can bear the pressure of 12 MPa under a 60–90-mesh sand bed and has better pressure sealing capability than hollow glass microbead drilling fluid. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 2nd Volume)
Show Figures

Figure 1

18 pages, 7937 KiB  
Article
Comprehensive Transcriptomic and Metabolic Profiling of Agrobacterium-tumefaciens-Infected Immature Wheat Embryos
by Weiwei Wang, Jinliang Guo, Jiayang Ma, Zhulin Wang, Lining Zhang, Zixu Wang, Min Meng, Chao Zhang, Fengli Sun and Yajun Xi
Int. J. Mol. Sci. 2023, 24(9), 8449; https://doi.org/10.3390/ijms24098449 - 8 May 2023
Cited by 4 | Viewed by 3408
Abstract
The transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in [...] Read more.
The transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in PureWheat, a combination of scanning electron microscopy (SEM), complete transcriptome analysis, and metabolome analysis was conducted to understand the progress. The results of the SEM analysis revealed that Agrobacterium tumefaciens were deposited under the damaged cortex of immature embryos as a result of pretreatment and contacted the receptor cells to improve the TE. Transcriptome analysis indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, plant–pathogen interaction, plant hormone signal transduction, and the MAPK (Mitogen-activated protein kinase) signaling pathway. By analyzing the correlation between differentially expressed genes and metabolites, the expression of many genes and the accumulation of metabolites were changed in glucose metabolism and the TCA cycle (Citrate cycle), as well as the amino acid metabolism; this suggests that the infection of wheat embryos with Agrobacterium is an energy-demanding process. The shikimate pathway may act as a hub between glucose metabolism and phenylpropanoid metabolism during Agrobacterium infection. The downregulation of the F5H gene and upregulation of the CCR gene led to the accumulation of lignin precursors through phenylpropanoid metabolism. In addition, several metabolic pathways and oxidases were found to be involved in the infection treatment, including melatonin biosynthesis, benzoxazinoid biosynthesis, betaine biosynthesis, superoxide dismutase, and peroxidase, suggesting that wheat embryos may be under the stress of Agrobacterium and, thus, undergo an oxidative stress response. These findings explore the physiological and molecular changes of immature embryos during the co-culture stage of the PureWheat technique and provide insights for Agrobacterium-mediated transgenic wheat experiments. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 4267 KiB  
Article
Study on Physicochemical Properties of Biocomposite Films with Spent Coffee Grounds as a Filler and Their Influence on Physiological State of Growing Plants
by Magdalena Zdanowicz, Marta Rokosa, Magdalena Pieczykolan, Adrian Krzysztof Antosik, Justyna Chudecka and Małgorzata Mikiciuk
Int. J. Mol. Sci. 2023, 24(9), 7864; https://doi.org/10.3390/ijms24097864 - 26 Apr 2023
Cited by 7 | Viewed by 2855
Abstract
The aim of the study was to plasticize corn starch with two selected urea (U)-rich plasticizers: choline chloride (CC):U or betaine (B):U eutectic mixtures at a molar ratio of 1:5 with a presence of spent coffee grounds as a filler. The biomaterials were [...] Read more.
The aim of the study was to plasticize corn starch with two selected urea (U)-rich plasticizers: choline chloride (CC):U or betaine (B):U eutectic mixtures at a molar ratio of 1:5 with a presence of spent coffee grounds as a filler. The biomaterials were prepared via a solventless one-step extrusion method and then extrudates were thermoformed using compression molding into sheets. The materials were characterized using mechanical and sorption tests, TGA, DMTA and FTIR. Additionally, a study on the biodegradation and remaining nitrogen content in soil was conducted. For the first time, an influence on physiological state of growing plants of the materials presence in soil was investigated. The addition of the coffee filler slightly increased the mechanical properties and decreased the swelling degree of the materials. The DMTA results indicated that biocomposites were easily thermoformable and the high filler addition (20 pph per polymer matrix) did not affect the processability. According to the biodegradation test results, the materials disappeared in soil within ca. 70 days. The results from this study on the physiological state of growing plants revealed that the materials, especially plasticized with CCU, did not exhibit any toxic effect on the yellow dwarf bean. The percentage of total nitrogen in the soil substrate in comparison with the control increased indicating an effective release of nitrogen from the TPS materials into the substrate. Full article
(This article belongs to the Special Issue Novel Bio-Based Materials from Renewable Sources)
Show Figures

Figure 1

13 pages, 2211 KiB  
Article
Metabolomic Characteristics of Cecum Contents in High-Fat-Diet-Induced Obese Mice Intervened with Different Fibers
by Qian Zhang, Jinhua Cheng, Xiaole Jiang, Junni Tang, Chenglin Zhu, Hong Chen and Luca Laghi
Foods 2023, 12(7), 1403; https://doi.org/10.3390/foods12071403 - 26 Mar 2023
Cited by 12 | Viewed by 2809
Abstract
The aim of this study was to demonstrate the effect of single or mixed fibers (arabinoxylan, β-glucan, xyloglucan, and inulin) on the metabolome of cecum content in mice with obesity caused by a high-fat diet. Twenty-eight six-week-old male mice were divided randomly into [...] Read more.
The aim of this study was to demonstrate the effect of single or mixed fibers (arabinoxylan, β-glucan, xyloglucan, and inulin) on the metabolome of cecum content in mice with obesity caused by a high-fat diet. Twenty-eight six-week-old male mice were divided randomly into seven groups (n = 4/group), including a normal-diet group (CON), a high-fat-diet group (HFD), and groups with the same high-fat diet but supplemented with arabinoxylan (HFAX), arabinoxylan + β-glucan (HFAβ), arabinoxylan + xyloglucan (HFAG), xyloglucan (HFXG), and xyloglucan + inulin (HFXI). A total of 66 molecules were identified and quantified in cecum content by proton nuclear magnetic resonance (1 H-NMR). The metabolomic profiles combined with statistical analysis revealed compounds distinguishing the control group from those supplemented with fibers. In detail, a high-fat diet could significantly elevate the concentrations of acetone and methionine (p < 0.05) while decreasing the levels of methanol, arabinose, acetate, and 3-hydroxyphenylacetate (p < 0.05) in the cecum contents of mice. Compared to HFD, the supplementation caused higher levels of fumarate and hypoxanthine (p < 0.05) and lower levels of phenylacetate, acetate, fucose, formate, proline, betaine, and trimethylamine N-oxide (TMAO) (p < 0.05). An enrichment analysis highlighted that the pathways mainly altered were amino sugar metabolism, aspartate metabolism, and arginine and proline metabolism. In conclusion, non-starch polysaccharide (NSP) supplementation could change the metabolomic profiles of cecum contents in obese mice as a result of a high-fat diet. Moreover, mixed NSPs exhibited more beneficial effects than singular form on gut metabolism. Full article
Show Figures

Figure 1

14 pages, 326 KiB  
Article
The Effect of Supplementation with Betaine and Zinc on In Vitro Large Intestinal Fermentation in Iberian Pigs under Heat Stress
by Zaira Pardo, Iván Mateos, Cristina Saro, Rómulo Campos, Héctor Argüello, Manuel Lachica, María José Ranilla and Ignacio Fernández-Fígares
Animals 2023, 13(6), 1102; https://doi.org/10.3390/ani13061102 - 20 Mar 2023
Cited by 1 | Viewed by 2605
Abstract
We investigated the effects of betaine and zinc on the in vitro fermentation of pigs under heat stress (HS). Twenty-four Iberian pigs (43.4 ± 1.2 kg) under HS (30 °C) were assigned to treatments for 4 weeks: control (unsupplemented), betaine (5 g/kg), and [...] Read more.
We investigated the effects of betaine and zinc on the in vitro fermentation of pigs under heat stress (HS). Twenty-four Iberian pigs (43.4 ± 1.2 kg) under HS (30 °C) were assigned to treatments for 4 weeks: control (unsupplemented), betaine (5 g/kg), and zinc (0.120 g/kg) supplemented diet. Rectal content was used as the inoculum in 24-hincubations with pure substrates (starch, pectin, inulin, cellulose). Total gas, short-chain fatty acid (SCFA), and methane production and ammonia concentration were measured. The abundance of total bacteria and several bacterial groups was assessed. Betaine increased the acetate production with pectin and inulin, butyrate production with starch and inulin, and ammonia concentration, and decreased propionate production with pectin and inulin. The abundance of Bifidobacterium and two groups of Clostridium decreased with betaine supplementation. Zinc decreased the production of SCFA and gas with starch and inulin, associated with diminished bacterial activity. Propionate production decreased with starch, pectin, and inulin while butyrate production increased with inulin, and isoacid production increased with cellulose and inulin in pigs supplemented with zinc. The ammonia concentration increased for all substrates. The Clostridium cluster XIV abundance decreased in pigs fed zinc supplemented diets. The results reported were dependent on the substrate fermented, but the augmented butyrate production with both betaine and zinc could be of benefit for the host. Full article
21 pages, 6015 KiB  
Article
Advanced Skin Antisepsis: Application of UVA-Cleavable Hydroxyethyl Starch Nanocapsules for Improved Eradication of Hair Follicle-Associated Microorganisms
by Loris Busch, Anna Maria Hanuschik, Yuri Avlasevich, Katrin Darm, Elisa F. Hochheiser, Christian Kohler, Evgeny A. Idelevich, Karsten Becker, Peter Rotsch, Katharina Landfester, Maxim E. Darvin, Martina C. Meinke, Cornelia M. Keck, Axel Kramer and Paula Zwicker
Pharmaceutics 2023, 15(2), 609; https://doi.org/10.3390/pharmaceutics15020609 - 11 Feb 2023
Cited by 5 | Viewed by 2584
Abstract
Hair follicles constitute important drug delivery targets for skin antisepsis since they contain ≈25% of the skin microbiome. Nanoparticles are known to penetrate deeply into hair follicles. By massaging the skin, the follicular penetration process is enhanced based on a ratchet effect. Subsequently, [...] Read more.
Hair follicles constitute important drug delivery targets for skin antisepsis since they contain ≈25% of the skin microbiome. Nanoparticles are known to penetrate deeply into hair follicles. By massaging the skin, the follicular penetration process is enhanced based on a ratchet effect. Subsequently, an intrafollicular drug release can be initiated by various trigger mechanisms. Here, we present novel ultraviolet A (UVA)-responsive nanocapsules (NCs) with a size between 400 and 600 nm containing hydroxyethyl starch (HES) functionalized by an o-nitrobenzyl linker. A phase transfer into phosphate-buffered saline (PBS) and ethanol was carried out, during which an aggregation of the particles was observed by means of dynamic light scattering (DLS). The highest stabilization for the target medium ethanol as well as UVA-dependent release of ethanol from the HES-NCs was achieved by adding 0.1% betaine monohydrate. Furthermore, sufficient cytocompatibility of the HES-NCs was demonstrated. On ex vivo porcine ear skin, a strong UVA-induced release of the model drug sulforhodamine 101 (SR101) could be demonstrated after application of the NCs in cyclohexane using laser scanning microscopy. In a final experiment, a microbial reduction comparable to that of an ethanol control was demonstrated on ex vivo porcine ear skin using a novel UVA-LED lamp for triggering the release of ethanol from HES-NCs. Our study provides first indications that an advanced skin antisepsis based on the eradication of intrafollicular microorganisms could be achieved by the topical application of UVA-responsive NCs. Full article
(This article belongs to the Special Issue Stimuli-Responsive Therapeutic Formulations for Drug Release)
Show Figures

Figure 1

12 pages, 2081 KiB  
Article
Influence of Urea Content in Deep Eutectic Solvents on Thermoplastic Starch Films’ Properties
by Magdalena Zdanowicz
Appl. Sci. 2023, 13(3), 1383; https://doi.org/10.3390/app13031383 - 20 Jan 2023
Cited by 10 | Viewed by 3221
Abstract
The goal of the study was to prepare deep eutectic solvents (DESs) with different urea (U) contents and apply them as potato-starch plasticizers to investigate the influence of various DES compositions on the physicochemical properties of thermoplastic starch (TPS) obtained via thermocompression. As [...] Read more.
The goal of the study was to prepare deep eutectic solvents (DESs) with different urea (U) contents and apply them as potato-starch plasticizers to investigate the influence of various DES compositions on the physicochemical properties of thermoplastic starch (TPS) obtained via thermocompression. As hydrogen bond acceptors, quaternary ammonium compounds, choline chloride (CC) and betaine (B-anhydrous and monohydrate) were used. The molar ratios of CC or B to U were 1:2, 1:3, 1:4 and 1:5. Before starch processing, the DESs were thermally characterized (DSC, TGA). The increase in U content in the eutectics led to higher phase-transition temperatures and lower thermal stability. The influence of the DESs on thermocompressed TPS mechanical (tensile test) and thermal–mechanical (DMTA) properties, morphology (XRD and FTIR), sorption/dissolution behavior and surface contact angle was investigated. The mechanical tests revealed that the increase in U led to higher elongation at break and a highly amorphous structure. The FTIR results indicated that the starch underwent some carbamation derivatization with the presence of B. The DESs with high U content plasticized starch effectively; therefore, preliminary extrusion tests for starch were performed with selected CC and B-based DES with the molar ratio of 1:5. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

13 pages, 5509 KiB  
Article
Effect of Exogenous Glycine Betaine on the Germination of Tomato Seeds under Cold Stress
by Yingying Zhang, Taoyu Dai, Yahui Liu, Jinyan Wang, Quanhua Wang and Weimin Zhu
Int. J. Mol. Sci. 2022, 23(18), 10474; https://doi.org/10.3390/ijms231810474 - 9 Sep 2022
Cited by 29 | Viewed by 3544
Abstract
Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, [...] Read more.
Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways. Full article
(This article belongs to the Special Issue Genetics and Genomics-Based Crop Improvement and Breeding)
Show Figures

Figure 1

18 pages, 62227 KiB  
Article
Micro-/Nanofibrillated Cellulose-Based Coating Formulations: A Solution for Improving Paper Printing Quality
by Mohit Sharma, Roberto Aguado, Dina Murtinho, Artur J. M. Valente and Paulo J. T. Ferreira
Nanomaterials 2022, 12(16), 2853; https://doi.org/10.3390/nano12162853 - 18 Aug 2022
Cited by 5 | Viewed by 2697
Abstract
The use of micro-/nanofibrillated celluloses (M/NFCs) is often considered for the enhancement of paper properties, while it is still challenging to use them in lower weight gain coatings. This work explores how they might be used on the paper surface to improve the [...] Read more.
The use of micro-/nanofibrillated celluloses (M/NFCs) is often considered for the enhancement of paper properties, while it is still challenging to use them in lower weight gain coatings. This work explores how they might be used on the paper surface to improve the printing quality. In this regard, M/NFCs were produced using different pre-treatment methods, including mechanical (m-MFC), enzymatic (e-MFC), TEMPO-mediated oxidation (t-NFC) and cationization (c-NFC), and uniform coating formulations were developed through the cooking of starch and M/NFCs simultaneously. The formulations, at 6–8% of total solid concentration, were applied to the paper surface by roll coating, resulting in a dry coating weight of 1.5 to 3 g/m2. Besides M/NFCs, other components such as starch betainate (a cationic starch ester; SB), Pluronics® (a triblock co-polymer), precipitated calcium carbonate (PCC) and betaine hydrochloride (BetHCl) were also used in the M/NFC-based coating formulations to observe their combined influence on the printing quality. The presence of M/NFCs improved the paper printing quality, which was further enhanced by the increase in cationic charge density due to the presence of BetHCl/SB, and also by Pluronics®. The cationic charge of c-NFC was also found to be effective for improving the gamut area and optical density of coated papers, whereas whiteness was often reduced due to the quenching of the brightening agent. BetHCl, on the other hand, improved the printing quality of the coated papers, even though it was more effective when combined with M/NFCs, PCC and Pluronics®, and also helped to retain paper whiteness. Full article
Show Figures

Graphical abstract

36 pages, 8201 KiB  
Article
Exogenous Proline Optimizes Osmotic Adjustment Substances and Active Oxygen Metabolism of Maize Embryo under Low-Temperature Stress and Metabolomic Analysis
by Shiyu Zuo, Yuetao Zuo, Wanrong Gu, Shi Wei and Jing Li
Processes 2022, 10(7), 1388; https://doi.org/10.3390/pr10071388 - 15 Jul 2022
Cited by 16 | Viewed by 3165
Abstract
Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature [...] Read more.
Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature sensitive) were chosen as the test materials, setting the normal temperature for germination (22 °C/10 °C, 9d), low-temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with proline (15 mmol·L−1) soaking treatment, to study its effects on the osmotic regulation system and antioxidant protection system of maize embryos. Metabolomics analysis was carried out to initially reveal the basis of the metabolic regulation mechanism. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX) and glutathione reductase (GR) were induced to some extent under low-temperature stress. The activities of SOD, POD, APX and GR were further enhanced in the soaking seeds with proline. Proline treatment improved the activities of catalase (CAT), monodehydrated ascorbic acid reductase (MDHAR) and dehydroascorbic acid (DHAR), increased the contents of ascorbic acid (AsA) and glutathione (GSH) and decreased the contents of oxidized ascorbic acid (DHA) and reduced glutathione (GSSG) under low-temperature stress. The ratio of AsA/DHA and GSH/GSSG increased. The increase in antioxidant enzyme activity and the content of antioxidants can help to maintain the stability of the AsA-GSH cycle, and effectively reduce the production rate of superoxide anion (O2), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Based on the UPLC-MS/MS detection platform and self-built database, 589 metabolites were detected in each treated maize embryo; 262 differential metabolites were obtained, including 32 organic acids, 28 amino acids, 20 nucleotides and their derivatives, 26 sugars and alcohols, 46 lipids, 51 alkaloids, 44 phenols and 15 other metabolites. Sixty-eight metabolic pathways involving different metabolites were obtained by KEGG enrichment analysis. The results showed that proline increased the accumulation of sorbitol, planteose, erythritose 4-phosphate, arabinose and other saccharides and alcohols in response to low-temperature stress, increased the content of osmoregulation substances under low-temperature stress. Proline also restored the TCA cycle by increasing the content of α-ketoglutarate and fumaric acid. Proline increased the contents of some amino acids (ornithine, proline, glycine, etc.), alkaloids (cocamidopropyl betaine, vanillylamine, 6-hydroxynicotinic acid, etc.), phenols (phenolic ayapin, chlorogenic acid, etc.) and vitamins (ascorbic acid, etc.) in the embryo under low-temperature stress. Combined with pathway enrichment analysis, proline could enhance the low-temperature stress resistance of germinated maize embryos by enhancing starch and sucrose metabolism, arginine and proline metabolism, biosynthesis of secondary metabolites, flavonoid biosynthesis and pentose phosphate pathway. Full article
(This article belongs to the Special Issue Crops Chemical Control Principle and Technology)
Show Figures

Figure 1

24 pages, 4375 KiB  
Review
Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies
by Adeel Khan, Munir Ahmad, Mukhtar Ahmed and M. Iftikhar Hussain
Plants 2021, 10(1), 43; https://doi.org/10.3390/plants10010043 - 27 Dec 2020
Cited by 69 | Viewed by 8060
Abstract
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in [...] Read more.
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat. Full article
Show Figures

Figure 1

Back to TopTop