Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = starch/flavonoid complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6071 KiB  
Article
The Combination of Physiological and Transcriptomic Approaches Reveals New Insights into the Molecular Mechanisms of Leymus chinensis Growth Under Different Shading Intensities
by Xinru Li, Qianqian Yu, Zhongxu Yao, Shuo Li, Lichao Ma, Kunlong Su and Guofeng Yang
Int. J. Mol. Sci. 2025, 26(6), 2730; https://doi.org/10.3390/ijms26062730 - 18 Mar 2025
Viewed by 484
Abstract
Leymus chinensis is a grass species in the family Triticeae that is found in the Eurasian grassland region and is known for its outstanding ecological advantages and economic value. However, the increasing adoption of photovoltaic agriculture has modified the light environment for the [...] Read more.
Leymus chinensis is a grass species in the family Triticeae that is found in the Eurasian grassland region and is known for its outstanding ecological advantages and economic value. However, the increasing adoption of photovoltaic agriculture has modified the light environment for the grass, markedly inhibiting its photosynthesis, growth, and yield. This study used physiological and transcriptomic analyses to investigate the complex response mechanisms of two L. chinensis genotypes (Zhongke No. 3 [Lc3] and Zhongke No. 5 [Lc5]) under shading stress. Growth phenotype analysis revealed the superior growth performance of Lc3 under shading stress, evidenced by enhanced plant height and photosynthetic parameters. Additionally, differentially expressed genes (DEGs) were predominantly enriched in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways, which were the most consistently enriched in both L. chinensis genotypes. However, the flavonoid biosynthesis and galactose metabolism pathways were more enriched in Lc3. Weighted gene co-expression network analysis identified the LcGolS2 gene, which encodes galactinol synthase, as a potential hub gene for resistance to shade stress in comparisons across different cultivars and shading treatments. The use of qRT-PCR analysis further validated the genes involved in these pathways, suggesting that they may play critical roles in regulating the growth and development of L. chinensis under shading conditions. These findings provide new insights into the molecular mechanisms underlying the growth and development of L. chinensis under different shading stress conditions. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3730 KiB  
Article
Study of the Physical–Chemical, Thermal, Structural, and Rheological Properties of Four High Andean Varieties of Germinated Chenopodium quinoa
by Betsy S. Ramos-Pacheco, Carlos A. Ligarda-Samanez, David Choque-Quispe, Yudith Choque-Quispe, Aydeé M. Solano-Reynoso, Katia Choque-Quispe, Henry Palomino-Rincón, Fredy Taipe-Pardo, Diego E. Peralta-Guevara, Elibet Moscoso-Moscoso, Yasmine Diaz-Barrera and Henrry Wilfredo Agreda-Cerna
Polymers 2025, 17(3), 312; https://doi.org/10.3390/polym17030312 - 24 Jan 2025
Viewed by 1347
Abstract
Chenopodium quinoa, a high Andean grain with excellent nutritional value and complex molecular structure, presents significant challenges in the bioavailability of nutrients and the functionality of its components. Germination as a biotechnological strategy generated significant modifications in four varieties of quinoa. The [...] Read more.
Chenopodium quinoa, a high Andean grain with excellent nutritional value and complex molecular structure, presents significant challenges in the bioavailability of nutrients and the functionality of its components. Germination as a biotechnological strategy generated significant modifications in four varieties of quinoa. The ungerminated and germinated samples’ physical–chemical, thermal, structural, and rheological properties were determined. Results showed increases in protein bioavailability (14.13% in Black Collana Quinoa (BCQ) and 12.79% in Red Pasankalla Quinoa (RPQ)), phenolic compounds (30.81 mg Gallic Acid Equivalent/100 g in RPQ), flavonoids (108.53 mg Quercetin Equivalent/100 g in Yellow Marangani Quinoa (YMQ)), and antioxidant capacity (up to 241.43 μmol Trolox Equivalent/g in BCQ). Thermal analysis showed increases in gelatinization temperature (57.53 °C to 59.45 °C in RPQ) and a reduction in enthalpy (1.38 J/g to 0.67 J/g). Structural analysis showed similar functional groups, but variation in spectra intensity was related to starches and proteins. Rheological properties exhibited pseudoplastic behavior at 80 °C. Principal component analysis showed a clear difference between germinated and non-germinated samples. The germination process significantly modified quinoa, improving its nutritional and functional properties and generating new opportunities for its application in the development of biodegradable materials and functional foods. Full article
Show Figures

Figure 1

22 pages, 17675 KiB  
Article
Proteome Profiling of Cucurbita pepo Phyllosphere After Infection by Podosphaera xanthii and Application of Reynoutria sachalinensis Extract
by Ioannis Theologidis, Manousos Makridakis, Aikaterini Termentzi, Eirini Baira, Jerome Zoidakis and Dimosthenis Kizis
Appl. Sci. 2024, 14(21), 10061; https://doi.org/10.3390/app142110061 - 4 Nov 2024
Viewed by 1433
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew (PM) disease for Cucurbita pepo. Disease control is attained principally by applications of chemical fungicides, along with parallel use of tolerant crop varieties and alternate application of elicitors to control development of disease [...] Read more.
Podosphaera xanthii is the main causal agent of powdery mildew (PM) disease for Cucurbita pepo. Disease control is attained principally by applications of chemical fungicides, along with parallel use of tolerant crop varieties and alternate application of elicitors to control development of disease resistance. To get insight into C. pepo molecular responses to P. xanthii infection and elicitor treatment we studied the proteomic profile differences at the phyllosphere of a zucchini cultivar susceptible to PM, at the onset of P. xanthii (PX) infection and after application of Reynoutria sachalinensis (RS) plant extract, respectively, using a nano-LC-HRMS/MS, Q-Exactive-Orbitrap approach. Analysis of peptide sequences regarding four treatment groups (Control; PX; RS; and RSPX (PX-infected priorly treated with RS)) resulted in 2070 CuGenDB annotations. Three comparisons (treatments vs. Control) encompassed most of the Differentially Expressed Proteins (DEPs). In these three comparisons, KEGG and Gene Ontology functional analyses highlighted unique differentially enriched pathways—some of which included highly expressed proteins—in PX-related (proteasome, pentose phosphate pathway, and carbon fixation), RS-related (biosynthesis of secondary metabolites, flavonoids, and starch and sucrose metabolism), and RSPX-related (pyruvate metabolism and polycomb repressive complex) comparisons, respectively, suggesting distinct mechanisms of early plant responses modulated by PX and RS. Furthermore, in four out of six comparisons the thiamine metabolism pathway was found to be enriched, suggesting a pivotal role in PX-induced responses. Full article
Show Figures

Figure 1

19 pages, 11587 KiB  
Article
Characterization of Polyphenol Composition and Starch and Protein Structure in Brown Rice Flour, Black Rice Flour and Their Mixtures
by Alexandra Uivarasan, Jasmina Lukinac, Marko Jukić, Gordana Šelo, Anca Peter, Camelia Nicula, Anca Mihaly Cozmuta and Leonard Mihaly Cozmuta
Foods 2024, 13(11), 1592; https://doi.org/10.3390/foods13111592 - 21 May 2024
Cited by 2 | Viewed by 2343
Abstract
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, [...] Read more.
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, total minerals, crude fiber, total polyphenols, proanthocyanidins and flavonoids than WRF. A higher amylose content in BRF than in WRF resulted in flour mixtures with slower starch digestion and a lower glycemic response depending on the BRF ratio added. Differences in the chemical composition of WRF and BRF led to improved composition of the flour mixtures depending on the BRF ratio. The presence of anthocyanidins and phenolic acids in higher concentrations in the BRF resulted in a red–blue color shift within the flour mixtures. The deconvoluted FTIR spectra showed a higher proportion of α-helixes in the amide I band of BRF proteins, indicating their tighter folding. An analysis of the FTIR spectra revealed a more compact starch structure in BRF than in WRF. By processing reflection spectra, nine optically active compound groups were distinguished in rice flour, the proportion in BRF being 83.02% higher than in WRF. Due to co-pigmentation, the bathochromic shift to higher wavelengths was expressed by the proanthocyanins and phenolic acids associated with the wavelengths 380 nm to 590 nm and at 695 nm. Anthocyanins, protein–tannin complexes, methylated anthocyanins and acylated anthocyanins, associated with wavelengths 619, 644 and 668 nm, exhibited a hypsochromic effect by shifting the wavelengths to lower values. This research represents a first step in the development of rice-based products with increased nutritional value and a lower glycemic index. Full article
Show Figures

Figure 1

14 pages, 7305 KiB  
Article
Changes in Cooking Characteristics, Structural Properties and Bioactive Components of Wheat Flour Noodles Partially Substituted with Whole-Grain Hulled Tartary Buckwheat Flour
by Mengna Zhang and Zhigang Chen
Foods 2024, 13(3), 395; https://doi.org/10.3390/foods13030395 - 25 Jan 2024
Cited by 10 | Viewed by 1766
Abstract
The whole-grain, hulled Tartary buckwheat flour (HTBF) with outstanding bioactive functions was prepared, and the effects of partial substitution ratios (0, 30%, 51% and 70%) of wheat flour with HTBF on the characteristics of TB noodles (TBNs) were investigated, mainly including the cooking [...] Read more.
The whole-grain, hulled Tartary buckwheat flour (HTBF) with outstanding bioactive functions was prepared, and the effects of partial substitution ratios (0, 30%, 51% and 70%) of wheat flour with HTBF on the characteristics of TB noodles (TBNs) were investigated, mainly including the cooking characteristics, sensory analysis, internal structure, bioactive components, and in vitro starch digestibility. With an increasing replacement level of HTBF, the water absorption index of the noodles decreased, whereas the cooking loss increased. A sensory analysis indicated that there were no off-flavors in all TBN samples. The scanning electron microscope images presented that the wheat noodles, 30% TBNs and 70% TBNs had dense and uniform cross sections. Meanwhile, the deepest color, V-type complexes, and lowest crystallinity (13.26%) could be observed in the 70% TBNs. A HTBF substitution increased the rutin content and the total phenolic and flavonoid contents in the TBNs, and higher values were found in the 70% TBNs. Furthermore, the lowest rapidly digestible starch content (16%) and highest resistant starch content (66%) were obtained in the 70% TBNs. Results demonstrated that HTBF could be successfully applied to make TBNs, and a 70% substitution level was suggested. This study provides consumers with a good option in the realm of special noodle-type products. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

20 pages, 559 KiB  
Article
Effect of Bioactive Compounds from Pumpkin Powder on the Quality and Textural Properties of Shortbread Cookies
by Aliona Ghendov-Mosanu, Natalia Netreba, Greta Balan, Daniela Cojocari, Olga Boestean, Viorica Bulgaru, Angela Gurev, Liliana Popescu, Olga Deseatnicova, Vladislav Resitca, Carmen Socaciu, Adela Pintea, Tamar Sanikidze and Rodica Sturza
Foods 2023, 12(21), 3907; https://doi.org/10.3390/foods12213907 - 25 Oct 2023
Cited by 16 | Viewed by 4582
Abstract
The problem of food with functional ingredients, characterized by low energy intake and a variety of phytonutrients with biological activity, is one of the concerns of the population. The objectives of this study were to investigate the effect of pumpkin powder and its [...] Read more.
The problem of food with functional ingredients, characterized by low energy intake and a variety of phytonutrients with biological activity, is one of the concerns of the population. The objectives of this study were to investigate the effect of pumpkin powder and its bioactive components on the quality, color and textural properties of shortbread cookies. In the drying process of pumpkin powder (Cucurbita moschata) at 60 ± 2 °C, the physicochemical parameters did not change significantly in relation to fresh pulp. The chromatic parameters L*, a* and b* showed that the pumpkin powder was brighter than the pulp, with a greater presence of yellow pigments. Pumpkin powder presented a rich source of bioactive compounds (polyphenols flavonoids, carotenoids) with an antioxidant potential of 161.52 mmol TE/100 g DW and 558.71 mg GAE/100 g DW. Antimicrobial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus), Gram-negative (Escherichia coli, Salmonella Abony and Pseudomonas aeruginosa) bacteria and high antifungal activity against Candida albicans were attested. The sensory, physicochemical, texture parameters and color indicators of shortbread cookies with yellow pumpkin powder (YPP) added in a proportion of 5–20% were analyzed. The optimal score was given to the sample of 15% YPP. The use of 15–20% YPP contributed to improved consistency due to the formation of complexes between starch and protein. Full article
(This article belongs to the Special Issue Characterization of Food Products for Quality Control)
Show Figures

Figure 1

15 pages, 2991 KiB  
Article
Untargeted Metabolomics Analysis of Liquid Endosperm of Cocos nucifera L. at Three Stages of Maturation Evidenced Differences in Metabolic Regulation
by Rufino Gómez-Tah, Ignacio Islas-Flores, Jean Wildort Félix, María Inés Granados-Alegría, Miguel Tzec-Simá, José Antonio Guerrero-Analco, Juan Luis Monribot-Villanueva and Blondy Canto-Canché
Horticulturae 2023, 9(8), 866; https://doi.org/10.3390/horticulturae9080866 - 29 Jul 2023
Cited by 7 | Viewed by 4179
Abstract
Cocos nucifera L. is one of the most cultivated palm trees in the world since it is used to obtain both raw materials and food. From a human point of view, the coconut fruit is a very valuable product, producing an aromatic and [...] Read more.
Cocos nucifera L. is one of the most cultivated palm trees in the world since it is used to obtain both raw materials and food. From a human point of view, the coconut fruit is a very valuable product, producing an aromatic and tasty liquid endosperm (coconut water) containing high levels of sugars, amino acids and other molecules of nutritional and nutraceutical value. Most of the chemical composition studies conducted on coconut to date have focused on the determination of fatty acid content in coconut oil and the extension of the shelf life of coconut water. Despite the economic importance of this species, the maturation of the coconut fruit is a complex biological process scarcely studied from the metabolic approach and biochemical changes occurring during fruit maturation are not well-known. The objective of this study is to investigate and elucidate the metabolic changes that occur during the maturation process of coconut (Cocos nucifera L.) fruits, specifically focusing on the liquid endosperm of the Yucatan green dwarf variety. In this study, the liquid endosperm of coconut fruits at the immature, intermediate and mature stages have been analyzed through an untargeted metabolomics approach by ultra performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS). A total of 591 spectrometric features were detected and the corresponding identified compounds were classified into 24 chemical classes. The principal component analysis (PCA) showed segregation among the samples, according to their stage of maturation. Most of the metabolites detected were related to the metabolism of flavonoids, carbohydrates and organooxygen compounds. Pathway analysis showed that sphingolipid, starch and sucrose metabolisms were among the most over-accumulated during ripening, followed by the metabolism of glyoxylates and dicarboxylates and the metabolism of amino acids such as alanine, aspartate and glutamate, and others. This is the first study that focuses on elucidating the metabolic profiles of the liquid endosperm of coconut Yucatan green dwarf variety during three stages of maturation with an untargeted metabolomics approach through UPLC-MS. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

29 pages, 8451 KiB  
Article
Genome-Scale Metabolic Reconstruction, Non-Targeted LC-QTOF-MS Based Metabolomics Data, and Evaluation of Anticancer Activity of Cannabis sativa Leaf Extracts
by Fidias D. González Camargo, Mary Santamaria-Torres, Mónica P. Cala, Marcela Guevara-Suarez, Silvia Restrepo Restrepo, Andrea Sánchez-Camargo, Miguel Fernández-Niño, María Corujo, Ada Carolina Gallo Molina, Javier Cifuentes, Julian A. Serna, Juan C. Cruz, Carolina Muñoz-Camargo and Andrés F. Gonzalez Barrios
Metabolites 2023, 13(7), 788; https://doi.org/10.3390/metabo13070788 - 24 Jun 2023
Cited by 5 | Viewed by 4674
Abstract
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading [...] Read more.
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

14 pages, 2430 KiB  
Article
Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility
by Youming Zuo, Zirui He, Weidong Yang, Chongde Sun, Xingqian Ye, Jinhu Tian and Xiangli Kong
Molecules 2023, 28(9), 3901; https://doi.org/10.3390/molecules28093901 - 5 May 2023
Cited by 2 | Viewed by 2281
Abstract
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH–taro starch complex is prepared, and the effects of NH complexation on the physicochemical [...] Read more.
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH–taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH–TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH–taro starch complex’s modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications. Full article
(This article belongs to the Collection Starch Chemistry in Food Products)
Show Figures

Figure 1

21 pages, 4037 KiB  
Article
Comparative Transcriptome Profiling of Cassava Tuberous Roots in Response to Postharvest Physiological Deterioration
by Ruimei Li, Shuai Yuan, Yangjiao Zhou, Shijia Wang, Qin Zhou, Zhongping Ding, Yajie Wang, Yuan Yao, Jiao Liu and Jianchun Guo
Int. J. Mol. Sci. 2023, 24(1), 246; https://doi.org/10.3390/ijms24010246 - 23 Dec 2022
Cited by 7 | Viewed by 2917
Abstract
Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive [...] Read more.
Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8. The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from 68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS. GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis. By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism and flavonoid biosynthesis. The protein–protein interaction (PPI) networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub genes were characterized to have a degree in excess of 15, among which eight genes were associated with photosynthesis. These results provide new information for the study of cassava resistance to PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties. Full article
(This article belongs to the Special Issue Biochemical and Molecular Approaches to Postharvest Research)
Show Figures

Figure 1

19 pages, 3195 KiB  
Article
Modulation in Techno-Functional, Textural Properties, In Vitro Starch Digestibility and Macromolecular–Structural Interactions of Pasta with Potato (Solanum tuberosum L.)
by Savita Sharma, Nancy Malhotra, Arashdeep Singh, Rajan Sharma, Rubén Domínguez and José Manuel Lorenzo
Molecules 2022, 27(22), 7835; https://doi.org/10.3390/molecules27227835 - 14 Nov 2022
Cited by 7 | Viewed by 2135
Abstract
The replacement of semolina with potato flour (PF) and potato mash (PM) at different levels was assessed for its effects on pasta quality. The results showed that the addition of PF and PM increased the pasting viscosity of the blends; in addition, PF [...] Read more.
The replacement of semolina with potato flour (PF) and potato mash (PM) at different levels was assessed for its effects on pasta quality. The results showed that the addition of PF and PM increased the pasting viscosity of the blends; in addition, PF enhanced the functional properties, while PM reduced them. The minimum cooking time decreased with PF and PM, while the PF pasta exhibited a higher cooking loss (5.02 to 10.44%) than the PM pasta, which exhibited a lower cooking loss. The pasta with PF and PM showed an increase in the total phenolic and flavonoid content, with reduced in vitro digestibility as confirmed by Fourier transform infrared spectroscopy. The PF pasta exhibited lower lightness and higher yellowness than the PM pasta, and its firmness and toughness also modulated owing to the complex interaction between potato starches and the gluten protein matrix, as evident from scanning electron microscopy. Sensory data revealed that pasta containing 30% PF and 16% PM was highly acceptable. Full article
(This article belongs to the Special Issue Food Processing and Health: Novel Insights and Applications)
Show Figures

Figure 1

19 pages, 6327 KiB  
Article
Enhanced Bioaccessibility of Microencapsulated Puerarin Delivered by Pickering Emulsions Stabilized with OSA-Modified Hydrolyzed Pueraria montana Starch: In Vitro Release, Storage Stability, and Physicochemical Properties
by Zafarullah Muhammad, Rabia Ramzan, Ruifen Zhang, Dong Zhao, Nazia Khalid, Mei Deng, Lihong Dong, Mahwash Aziz, Rizwana Batool and Mingwei Zhang
Foods 2022, 11(22), 3591; https://doi.org/10.3390/foods11223591 - 11 Nov 2022
Cited by 20 | Viewed by 2809
Abstract
Puerarin is a bioactive flavonoid isolated from Kudzu roots that possesses numerous health benefits. However, its poor bioavailability and existing complex delivery systems with safety issues are challenging tasks for its incorporation into functional foods. Preparing modified-starch-stabilized Pickering emulsions containing microencapsulated puerarin with [...] Read more.
Puerarin is a bioactive flavonoid isolated from Kudzu roots that possesses numerous health benefits. However, its poor bioavailability and existing complex delivery systems with safety issues are challenging tasks for its incorporation into functional foods. Preparing modified-starch-stabilized Pickering emulsions containing microencapsulated puerarin with improved bioaccessibility was the key objective of the present research work. Acid-hydrolyzed high-amylose Pueraria montana starch (PMS) was modified with octenyl succinic anhydride (OSA) and evaluated as an emulsifier to prepare emulsions. The FTIR, SEM, and XRD results showed that PMS was successfully modified. Furthermore, the emulsification index (EI), mean droplet size, and ζ-potential values showed that modified starch with a higher degree of substitution (DS) enhanced the storage stability of emulsions. Similarly, the retention degree and encapsulation efficiency results of puerarin proved the assumption after storage of 16 d. The Pickering emulsions also helped in the controlled release of microencapsulated puerarin in vitro. The study outcomes proved that Pickering emulsions stabilized with OSA-modified PMS have promising applicability in functional foods as efficient food-grade delivery systems, enhancing oral supplementation and accessibility of puerarin. Full article
(This article belongs to the Special Issue Encapsulation and Delivery of Food Functional Ingredients)
Show Figures

Graphical abstract

37 pages, 1874 KiB  
Review
Encapsulation of Bioactive Compounds for Food and Agricultural Applications
by Giovani Leone Zabot, Fabiele Schaefer Rodrigues, Lissara Polano Ody, Marcus Vinícius Tres, Esteban Herrera, Heidy Palacin, Javier S. Córdova-Ramos, Ivan Best and Luis Olivera-Montenegro
Polymers 2022, 14(19), 4194; https://doi.org/10.3390/polym14194194 - 6 Oct 2022
Cited by 167 | Viewed by 24620
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, [...] Read more.
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review. Full article
(This article belongs to the Special Issue Biopolymer Matrices for Incorporation of Bioactive Compounds)
Show Figures

Figure 1

23 pages, 3408 KiB  
Article
Caucasian Dragonheads: Phenolic Compounds, Polysaccharides, and Bioactivity of Dracocephalum austriacum and Dracocephalum botryoides
by Nina I. Kashchenko, Gunay S. Jafarova, Javanshir I. Isaev, Daniil N. Olennikov and Nadezhda K. Chirikova
Plants 2022, 11(16), 2126; https://doi.org/10.3390/plants11162126 - 15 Aug 2022
Cited by 12 | Viewed by 2868
Abstract
Dracocephalum botryoides Steven and Dracocephalum austriacum L. are unexplored species of the Dracocephalum genus (Lamiaceae family) with a distribution in the Caucasus, where they are used in folk medicine and local cuisine. There are no data on the chemical composition of these Dracocephalum [...] Read more.
Dracocephalum botryoides Steven and Dracocephalum austriacum L. are unexplored species of the Dracocephalum genus (Lamiaceae family) with a distribution in the Caucasus, where they are used in folk medicine and local cuisine. There are no data on the chemical composition of these Dracocephalum species. In this study, the application of a liquid chromatography-mass spectrometry technique for the metabolite profiling of methanol extracts from herbs and roots of D. austriacum and D. botryoides resulted in the identification of 50 compounds, including benzoic acid derivatives, phenylpropanoids, flavonoids and lignans. Water-soluble polysaccharides of the herbs and roots of D. austriacum and D. botryoides were isolated and characterized as mostly pectins with additive arabinogalactan-protein complexes and starch-like compounds. The antioxidant potential of the studied extracts of Dracocephalum and selected phenolics and water-soluble polysaccharides were investigated via radical-scavenging and ferrous (II) ion chelating assays. This paper demonstrates that herbs and roots of D. austriacum and D. botryoides are rich sources of metabolites and could be valuable plants for new biologically active products. To the best of our knowledge, this is the first study of whole plant metabolites and their antioxidant activity in D. austriacum and D. botryoides. Full article
Show Figures

Figure 1

27 pages, 8158 KiB  
Article
Functional Ecology of External Secretory Structures in Rivea ornata (Roxb.) Choisy (Convolvulaceae)
by Natthaphong Chitchak, Alyssa B. Stewart and Paweena Traiperm
Plants 2022, 11(15), 2068; https://doi.org/10.3390/plants11152068 - 8 Aug 2022
Cited by 9 | Viewed by 3527
Abstract
Plants have evolved numerous secretory structures that fulfill diverse roles and shape their interactions with other organisms. Rivea ornata (Roxb.) Choisy (Convolvulaceae) is one species that possesses various external secretory organs hypothesized to be ecologically important. This study, therefore, aimed to investigate five [...] Read more.
Plants have evolved numerous secretory structures that fulfill diverse roles and shape their interactions with other organisms. Rivea ornata (Roxb.) Choisy (Convolvulaceae) is one species that possesses various external secretory organs hypothesized to be ecologically important. This study, therefore, aimed to investigate five secretory structures (nectary disc, petiolar nectaries, calycinal glands, staminal hairs, and foliar glands) using micromorphology, anatomy, histochemistry, and field observations of plant–animal interactions in order to assess the functional contributions of these structures. Results show that the nectary disc and petiolar nectaries are complex working units consisting of at least epidermis and ground tissue, while the other structures are glandular trichomes. Various groups of metabolites (lipids, phenolic compounds, polysaccharides, terpenoids, flavonoids, and alkaloids) were detected in all structures, while starch grains were only found in the nectary disc, petiolar nectaries, and their adjacent tissues. Integrating preliminary observation of animal visitors with micromorphological, anatomical, and histochemical results, two hypotheses are proposed: (I) nectary disc and staminal hairs are important for pollination as they potentially attract and reward floral visitors, and (II) petiolar nectaries, calycinal glands, and foliar glands contribute to plant defense. Specifically, petiolar nectaries and calycinal glands provide protection from herbivores via guard ants, while calycinal and foliar glands may use plant metabolites to help prevent tissue damage from dehydration and insolation. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

Back to TopTop