Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Binding Ability of NH with Taro Starch
2.2. SEM Images
2.3. XRD Analysis
2.4. FT-IR Analysis
2.5. Thermal Properties
2.6. Flow Behaviors
2.7. In Vitro Digestibility
3. Materials and Methods
3.1. Materials
3.2. Preparation of NH–Taro Starch Complexes
3.3. Ability of NH to Bind Taro Starch
3.4. Scanning Electron Microscope (SEM)
3.5. X-ray Diffraction (XRD)
3.6. Fourier Transform Infrared Spectroscopy (FT-IR)
3.7. Differential Scanning Calorimetry (DSC)
3.8. Rheological Properties
3.9. In Vitro Digestion
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Oladele, A.K.; Duodu, K.G.; Emmambux, N.M. Pasting, flow, thermal and molecular properties of maize starch modified with crude phenolic extracts from grape pomace and sorghum bran under alkaline conditions. Food Chem. 2019, 297, 124879. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Nadeem, S.; Bano, R.; Bahadur, A.; Ahmad, Z.; Javed, M.; AL-Anazy, M.M.; Qasier, A.A.; Laref, A.; Shoaib, M.; et al. Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging application. J. Appl. Polym. Sci. 2021, 138, 50604. [Google Scholar] [CrossRef]
- Iqbal, S.; Nadeem, S.; Bahadur, A.; Javed, M.; Ahmad, Z.; Ahmad, M.N.; Shoaib, M.; Liu, G.C.; Mohyuddin, A.; Raheel, M. The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocomposite. JOM 2021, 73, 380–386. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, J.; Kong, X.; Yang, W.; Yin, X.; Xu, E.; Chen, S.; Liu, D.; Ye, X. Physicochemical and digestibility characterisation of maize starch–caffeic acid complexes. LWT-Food Sci. Technol. 2020, 121, 108857. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT-Food Sci. Technol. 2020, 125, 109227. [Google Scholar] [CrossRef]
- Fan, M.; Lian, W.; Li, Y.; Qian, H.; Zhang, H.; Rao, Z.; Wang, L. Evaluation of the physicochemical properties and in vitro digestibility of the complex formed between rice starch and a novel pigment from Vaccinium bracteatum Thunb. leaf. Food Chem. 2022, 374, 131627. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Ou, Y.; Zheng, B. Effect of chlorogenic acid on the structural properties and digestibility of lotus seed starch during microwave gelatinization. Int. J. Biol. Macromol. 2021, 191, 474–482. [Google Scholar] [CrossRef]
- Han, M.; Bao, W.; Wu, Y.; Ouyang, J. Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex. Int. J. Biol. Macromol. 2020, 162, 922–930. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Q.; Ma, S.; Zhou, X. Effect of quercetin on the in vitro Tartary buckwheat starch digestibility. Int. J. Biol. Macromol. 2021, 183, 818–830. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Fang, H.; Zhang, H.; Kong, X.; Wu, D.; Zheng, J.; Liu, D.; Ye, X.; Chen, S. Physicochemical and Digestion Properties of Potato Starch Were Modified by Complexing with Grape Seed Proanthocyanidins. Molecules 2020, 25, 1123. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, D.; Jin, Y.; Zhao, J.; Zhao, J.; Li, H.; Li, L.; Zhang, H.; Wang, H. In vitro and in vivo inhibitory effect of anthocyanin-rich bilberry extract on α-glucosidase and α-amylase. LWT-Food Sci. Technol. 2021, 145, 111484. [Google Scholar] [CrossRef]
- Xu, J.; Dai, T.; Chen, J.; He, X.; Shuai, X.; Liu, C.; Li, T. Effects of three types of polymeric proanthocyanidins on physicochemical and in vitro digestive properties of potato starch. Foods 2021, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, M.; Pan, J.; Zhang, S.; Jiang, Y.; Liu, J.; Zhu, Y.; Zhang, H. Interactions between tea products and wheat starch during retrogradation. Food Biosci. 2020, 34, 100523. [Google Scholar] [CrossRef]
- Li, H.; Zhai, F.; Li, J.; Zhu, X.; Guo, Y.; Zhao, B.; Xu, B. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols. Int. J. Biol. Macromol. 2021, 166, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, S.; Ji, X.; Liu, H.; Liu, N.; Yang, J.; Lu, M.; Han, L.; Wang, M. Evaluation studies on effects of quercetin with different concentrations on the physicochemical properties and in vitro digestibility of Tartary buckwheat starch. Int. J. Biol. Macromol. 2020, 163, 1729–1737. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, J.; Kong, X.; Wu, D.; Chen, S.; Liu, D.; Ye, X. Proanthocyanidins from Chinese berry leaves modified the physicochemical properties and digestive characteristic of rice starch. Food Chem. 2021, 335, 127666. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Li, S.; Gao, W. Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin. LWT-Food Sci. Technol. 2011, 44, 787–792. [Google Scholar] [CrossRef]
- Gong, N.; Zhang, B.; Yang, D.; Gao, Z.; Du, G.; Lu, Y. Development of new reference material neohesperidin for quality control of dietary supplements. J. Sci. Food Agric. 2015, 95, 1885–1891. [Google Scholar] [CrossRef]
- Karim, N.; Shishir, M.R.I.; Rashwan, A.K.; Ke, H.; Chen, W. Suppression of palmitic acid-induced hepatic oxidative injury by neohesperidin-loaded pectin-chitosan decorated nanoliposomes. Int. J. Biol. Macromol. 2021, 183, 908–917. [Google Scholar] [CrossRef]
- Wang, C.; Xia, N.; Yu, M.; Zhu, S. Physicochemical properties and mechanism of solubilised neohesperidin system based on inclusion complex of hydroxypropyl-β-cyclodextrin. Int. J. Biol. Macromol. 2023, 58, 107–115. [Google Scholar] [CrossRef]
- Tong, L.; Zhou, D.; Gao, J.; Zhu, Y.; Sun, H.; Bi, K. Simultaneous determination of naringin, hesperidin, neohesperidin, naringenin and hesperetin of Fractus aurantii extract in rat plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Martati, E.; Utari, D.P.; Wulan, S.N. Modeling the influence of extraction parameters on the recovery of antioxidant compounds of microwave extracted citrus (Citrus reticulata) peel by Response Surface Methodology. Curr. Anal. Chem. 2022, 18, 914–925. [Google Scholar] [CrossRef]
- Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshiovyi, O. Phytochemical and pharmacological research in Agrimonia eupatoria L. herb extract with anti-inflammatory and hepatoprotective properties. Plants 2022, 11, 2371. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zheng, Y.; He, Y.; Zhang, J.; Peng, W.; Su, W. Microbial metabolism of naringin and the impact on antioxidant capacity. Nutrients 2022, 14, 3765. [Google Scholar] [CrossRef]
- Shen, W.; Xu, Y.; Lu, Y.H. Inhibitory Effects of citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J. Agric. Food Chem. 2012, 60, 9609–9619. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, C.; Yan, Y.; Chen, Q.; Luo, F.; Zhu, X.; Li, X.; Chen, K. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem. 2012, 135, 1471–1478. [Google Scholar] [CrossRef]
- Nagar, C.K.; Dash, S.K.; Rayaguru, K.; Pal, U.S.; Nedunchezhiyan, M. Isolation, characterization, modification and uses of taro starch: A review. Int. J. Biol. Macromol. 2021, 192, 574–589. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, W.; Zhang, E.; Sheng, J.; Yu, X.; Xiong, F. Morphological and physicochemical properties of starches isolated from three taro bulbs. Starch-Stärke 2018, 70, 1700168. [Google Scholar] [CrossRef]
- Kapcum, C.; Pasada, K.; Kantiwong, P.; Sroysang, B.; Phiwtawee, J.; Suphantharika, M.; Belur, P.D.; Agoo, E.M.G.; Janairo, J.I.B.; Wongsagonsup, R. Effects of different cooking methods on chemical compositions, in vitro starch digestibility and antioxidant activity of taro (Colocasia esculenta) corms. Int. J. Food Sci. Technol. 2022, 57, 5144–5154. [Google Scholar] [CrossRef]
- Jane, J.; Shen, L.; Chen, J.; Lim, S.; Kasemsuwan, T.; Nip, W.K. Physical and chemical studies of taro starches and flours. Cereal Chem. 1992, 69, 528–535. [Google Scholar]
- Lim, S.T.; Jane, J.L.; Rajagopalan, S.; Seib, P.A. Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol. Prog. 1992, 8, 51–57. [Google Scholar] [CrossRef]
- Zhao, J.; Whistler, R. Spherical aggregates of starch granules as flavor carriers. Food Technol. 1994, 48, 104–105. [Google Scholar]
- Singla, D.; Singh, A.; Dhull, S.B.; Kumar, P.; Malik, T.; Kumar, P. Taro starch: Isolation, morphology, modification and novel applications concern—A review. Int. J. Biol. Macromol. 2020, 163, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Sit, N.; Deka, S.C.; Misra, S. Optimization of starch isolation from taro using combination of enzymes and comparison of properties of starches isolated by enzymatic and conventional methods. J. Food Sci. Technol. 2015, 52, 4324–4332. [Google Scholar] [CrossRef]
- Wang, X.; Reddy, C.K.; Xu, B. A systematic comparative study on morphological, crystallinity, pasting, thermal and functional characteristics of starches resources utilized in China. Food Chem. 2018, 259, 81–88. [Google Scholar] [CrossRef]
- Tian, J.; Ogawa, Y.; Shi, J.; Chen, S.; Zhang, H.; Liu, D.; Ye, X. The microstructure of starchy food modulates its digestibility. Crit. Rev. Food Sci. Nutr. 2019, 59, 3117–3128. [Google Scholar] [CrossRef]
- Simsek, S.; EI, S.N. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydr. Polym. 2012, 90, 1204–1209. [Google Scholar] [CrossRef]
- Naidoo, K.; Amonsou, E.O.; Oyeyinka, S.A. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms. Carbohydr. Polym. 2015, 125, 9–15. [Google Scholar] [CrossRef]
- Kan, L.J.; Capuano, E.; Oliviero, T.; Renzetti, S. Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocoll. 2022, 126, 107459. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-covalent interaction between procyanidins and apple cell wall material. Part, I. Effect of some environmental parameters. Biochim. Biophys. Acta-Gen. Subj. 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Meng, S.; Ma, Y.; Cui, J.; Sun, D.W. Preparation of corn starch–fatty acid complexes by high-pressure homogenization. Starch-Stärke 2014, 66, 809–817. [Google Scholar] [CrossRef]
- Liu, P.; Wang, R.; Kang, X.; Cui, B.; Yu, B. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrason. Sonochem. 2018, 44, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Fanta, G.F.; Shogren, R.L.; Salch, J.H. Steam jet cooking of high-amylose starch–fatty acid mixtures. An investigation of complex formation. Carbohydr. Polym. 1999, 38, 1–6. [Google Scholar] [CrossRef]
- Gao, S.; Liu, H.; Sun, L.; Cao, J.; Yang, J.; Lu, M.; Wang, M. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocoll. 2021, 110, 106209. [Google Scholar] [CrossRef]
- Lefnaoui, S.; Moulai-Mostefa, N. Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient. Saudi Pharm. J. 2015, 23, 698–711. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, P.; Chen, X. Mechanistic insights into the influence of flavonoids from dandelion on physicochemical properties and in vitro digestibility of cooked potato starch. Food Hydrocoll. 2022, 130, 107714. [Google Scholar] [CrossRef]
- Yang, J.P.; He, H.; Lu, Y.H. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. J. Agric. Food Chem. 2014, 62, 7760–7770. [Google Scholar] [CrossRef]
- Xiao, Y.; Zheng, M.; Yang, S.; Li, Z.; Liu, M.; Yang, X.; Lin, N.; Liu, J. Physicochemical properties and in vitro digestibility of proso millet starch after addition of proanthocyanidins. Int. J. Biol. Macromol. 2021, 168, 784–791. [Google Scholar] [CrossRef]
- Zobel, H.F. Starch crystal transformations and their industrial importance. Starch-Stärke 1988, 40, 1–7. [Google Scholar] [CrossRef]
- Xia, N.; Wang, C.; Zhu, S. Interaction between pH-shifted ovalbumin and insoluble neohesperidin: Experimental and binding mechanism studies. Food Chem. 2022, 390, 133104. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Li, X.; Li, M. Effect of tea polyphenols on the retrogradation of rice starch. Food Res. Int. 2009, 42, 221–225. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, L.; Li, M.; He, X.; Hao, L.; Dai, Y. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. Int. J. Biol. Macromol. 2019, 129, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Shibanuma, K.; Takeda, Y.; Hizukuri, S.; Shibata, S. Molecular structures of some wheat starches. Carbohydr. Polym. 1994, 25, 111–116. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, J.; Wang, S.; Zhou, Y. Effect of high hydrostatic pressure treatment on the formation and in vitro digestion of Tartary buckwheat starch/flavonoid complexes. Food Chem. 2022, 382, 132324. [Google Scholar] [CrossRef]
- He, T.; Wang, K.; Zhao, L.; Chen, Y.; Zhou, W.; Liu, F.; Hu, Z. Interaction with longan seed polyphenols affects the structure and digestion properties of maize starch. Carbohydr. Polym. 2021, 256, 117537. [Google Scholar] [CrossRef]
- Li, C.; Gilbert, R.G. Progress in controlling starch structure by modifying starch-branching enzymes. Planta 2016, 243, 13–22. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Z.; Xiao, Z. Effect of lysine and glycine on pasting and rheological properties of maize starch. Food Res. Int. 2012, 49, 612–617. [Google Scholar] [CrossRef]
- Kong, X.; Kasapis, S.; Bertoft, E.; Corke, H. Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch-Stärke 2010, 62, 302–308. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Q.; Hu, L.; Hu, Y.; Ye, X.; Liu, D.; Chen, J. Physicochemical properties, structure and in vitro digestibility on complex of starch with lotus (Nelumbo nucifera Gaertn.) leaf flavonoids. Food Hydrocoll. 2018, 81, 191–199. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, T.; Li, Z.; Gao, Y.; Cui, S.W.; Qiu, J. Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chem. 2022, 367, 130762. [Google Scholar] [CrossRef]
- Peng, L.; Wei, L.; Yi, Q.; Chen, G.; Yao, Z.; Yan, Z.; Zhao, G. In vitro potential of flavonoids from tartary buckwheat on antioxidants activity and starch digestibility. Int. J. Food Sci. Technol. 2019, 54, 2209–2218. [Google Scholar] [CrossRef]
- Janeček, Š.; Svensson, B.; MacGregor, E.A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 2014, 71, 1149–1170. [Google Scholar] [CrossRef]
- Kelly, J.J.; Alpers, D.H. Properties of human intestinal glucoamylase. Biochim. Biophys. Acta-Enzymol. 1973, 315, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yao, F.; Zhang, M.; Khalifa, I.; Li, K.; Li, C. Effect of persimmon tannin on the physicochemical properties of maize starch with different amylose/amylopectin ratios. Int. J. Biol. Macromol. 2019, 132, 1193–1199. [Google Scholar] [CrossRef]
- Kong, X.; Bao, J.; Corke, H. Physical properties of Amaranthus starch. Food Chem. 2009, 113, 371–376. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, J.; Ogawa, Y.; Yin, X.; Xu, E.; Chen, S.; Liu, D.; Kong, X.; Ye, X. Co-extrusion of proanthocyanins from Chinese bayberry leaves modifies the physicochemical properties as well as the in vitro digestion of restructured rice. Food Struct. 2021, 27, 100182. [Google Scholar] [CrossRef]
- Kong, X.; Qiu, D.; Ye, X.; Bao, J.; Sui, Z.; Fan, J.; Xiang, W. Physicochemical and crystalline properties of heat–moisture-treated rice starch: Combined effects of moisture and duration of heating. J. Sci. Food Agric. 2015, 95, 2874–2879. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Feng, Y.Y.; Mu, T.H.; Zhang, M.; Ma, M.M. Effects of ionic polysaccharides and egg white protein complex formulations on dough rheological properties, structure formation and in vitro starch digestibility of wet sweet potato vermicelli. Int. J. Biol. Macromol. 2020, 149, 1170–1179. [Google Scholar] [CrossRef]
Samples | Binding Amount (mg/g) | Loading Efficiency (%) |
---|---|---|
TS + 0.1% NH | 0.067 ± 0.004 f | 6.52 ± 0.36 e |
TS + 0.3% NH | 0.340 ± 0.018 e | 11.33 ± 0.60 d |
TS + 0.5% NH | 0.664 ± 0.004 d | 13.25 ± 0.07 bc |
TS + 0.7% NH | 1.103 ± 0.008 c | 15.74 ± 0.11 a |
TS + 0.9% NH | 1.229 ± 0.007 b | 13.64 ± 0.07 b |
TS + 1.1% NH | 1.439 ± 0.012 a | 13.06 ± 0.11 c |
NH (%) | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) |
---|---|---|---|---|
0 | 46.90 ± 0.41 d | 60.04 ± 0.26 c | 69.09 ± 0.95 a | 5.73 ± 0.14 a |
0.10 | 51.11 ± 2.24 c | 62.15 ± 0.96 b | 69.10 ± 0.51 a | 5.47 ± 0.29 ab |
0.30 | 52.63 ± 1.71 bc | 61.94 ± 0.97 b | 69.10 ± 1.16 a | 5.43 ± 1.21 ab |
0.50 | 53.45 ± 0.45 ab | 63.15 ± 0.20 a | 69.29 ± 0.69 a | 5.41 ± 0.25 ab |
0.70 | 54.37 ± 0.36 ab | 63.44 ± 0.05 a | 69.39 ± 0.39 a | 5.15 ± 0.35 ab |
0.90 | 54.92 ± 0.41 a | 63.46 ± 0.33 a | 69.40 ± 0.64 a | 4.81 ± 0.17 ab |
1.10 | 55.27 ± 0.71 a | 63.43 ± 0.03 a | 69.46 ± 1.53 a | 4.52 ± 0.27 b |
Samples | σ0 (Pa) | Viscosity (Pa·s) | K (Pa·sn) | n | R2 |
---|---|---|---|---|---|
TS + 0% NH | 30.199 ± 0.297 d | 9.536 ± 0.386 d | 8.916 ± 0.561 c | 0.552 ± 0.004 a | 0.996 |
TS + 0.1% NH | 32.488 ± 0.372 c | 10.645 ± 0.273 c | 10.925 ± 0.172 b | 0.553 ± 0.000 a | 0.998 |
TS + 0.3% NH | 37.051 ± 0.309 b | 13.558 ± 0.216 b | 10.933 ± 0.143 b | 0.515 ± 0.007 b | 0.994 |
TS + 0.5% NH | 38.741 ± 0.330 a | 14.441 ± 0.401 a | 11.869 ± 0.233 a | 0.513 ± 0.002 b | 0.992 |
TS + 0.7% NH | 36.794 ± 0.409 b | 14.507 ± 0.353 a | 11.909 ± 0.277 a | 0.517 ± 0.001 b | 0.993 |
TS + 0.9% NH | 38.881 ± 1.545 a | 14.623 ± 0.260 a | 11.964 ± 0.166 a | 0.514 ± 0.000 b | 0.994 |
TS + 1.1% NH | 38.820 ± 0.836 a | 14.680 ± 0.280 a | 12.012 ± 0.133 a | 0.504 ± 0.000 c | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; He, Z.; Yang, W.; Sun, C.; Ye, X.; Tian, J.; Kong, X. Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules 2023, 28, 3901. https://doi.org/10.3390/molecules28093901
Zuo Y, He Z, Yang W, Sun C, Ye X, Tian J, Kong X. Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules. 2023; 28(9):3901. https://doi.org/10.3390/molecules28093901
Chicago/Turabian StyleZuo, Youming, Zirui He, Weidong Yang, Chongde Sun, Xingqian Ye, Jinhu Tian, and Xiangli Kong. 2023. "Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility" Molecules 28, no. 9: 3901. https://doi.org/10.3390/molecules28093901
APA StyleZuo, Y., He, Z., Yang, W., Sun, C., Ye, X., Tian, J., & Kong, X. (2023). Preparation of Neohesperidin–Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules, 28(9), 3901. https://doi.org/10.3390/molecules28093901