Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = stainless-steel bipolar plates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2298 KiB  
Review
Degradation and Corrosion of Metal Components in High-Temperature Fuel Cells and Electrolyzers: Review of Protective Approaches
by Pavel Shuhayeu, Olaf Dybiński, Karolina Majewska, Aliaksandr Martsinchyk, Monika Łazor, Katsiaryna Martsinchyk, Arkadiusz Szczęśniak and Jarosław Milewski
Energies 2025, 18(13), 3317; https://doi.org/10.3390/en18133317 - 24 Jun 2025
Viewed by 720
Abstract
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet [...] Read more.
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet reached full commercialization. The main reason for this is material degradation. In particular, the corrosion of metallic components continues to be a leading cause of performance loss and system failure. This review provides a comprehensive assessment of degradation mechanisms in MCFC and MCE systems. It examines key metallic components, such as current collectors and bipolar plates, focusing on the performance of commonly used materials, including stainless steels and advanced alloys, under prolonged exposure to corrosive environments. To address degradation issues, this review evaluates current mitigation strategies and discusses material selection, protective coatings application, and the optimization of operational parameters. Advances in alloy development, coatings, surface treatments, and process controls have been compared in terms of effectiveness, scalability, and long-term stability. The review concludes with a synthesis of current best practices and future directions, emphasizing the need for integrated, multi-functional solutions to achieve the lifetimes required for full commercialization. By linking materials science, electrochemistry, and systems engineering, this review offers directions for the development of corrosion-resistant MCFC and MCE technologies in support of a hydrogen-based, carbon-neutral energy future. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

15 pages, 4194 KiB  
Article
Performance Enhancement of a-C:Cr Thin Films Deposited on 316L Stainless Steel as Bipolar Plates via a Thin Ti Layer by Mid-Frequency Magnetron Sputtering for PEMFC Application
by Yuxing Zhao, Song Li, Saiqiang Wang, Ming Ma, Ming Chen, Jiao Yang, Chunlei Yang and Weimin Li
Energies 2025, 18(13), 3270; https://doi.org/10.3390/en18133270 - 23 Jun 2025
Viewed by 340
Abstract
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film [...] Read more.
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film morphology and microstructure were analyzed via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). At a pressure of 1.4 MPa, the interfacial contact resistance (ICR) of SS316L bipolar plates (BPPs) coated with the films reached as low as 3.30 mΩ·cm2, while that of titanium BPPs was 2.90 mΩ·cm2. Under simulated proton exchange membrane fuel cell (PEMFC) cathode conditions (70 °C, 0.6 V vs. SCE, 0.5 M H2SO4, 5 ppm HF solution), the corrosion current density, Icorr, reached optimal values of 0.69 μA·cm−2 for SS316L and 0.62 μA·cm−2 for titanium. These results demonstrate that parameter optimization enables SS316L BPPs to functionally replace titanium counterparts, offering significant cost reductions for metal BPPs and accelerating the commercialization of PEMFC technology. Full article
Show Figures

Figure 1

11 pages, 10009 KiB  
Article
Influence of Welding Speed on the Microstructure and Mechanical Properties of Laser-Welded Joints in 316L Stainless Steel Sheets
by Jianqiang Liu, Yu Nie, Qiaobo Feng, Xiuyu Liang, Haiyang Lei, Sizhe Niu and Ming Lou
Metals 2025, 15(6), 624; https://doi.org/10.3390/met15060624 - 31 May 2025
Viewed by 653
Abstract
This study investigates the effect of welding speed on the microstructure and mechanical properties of pulsed laser lap-welded 0.2 mm 316L stainless steel sheets, commonly used in fuel cell bipolar plates. Welding speeds ranging from 6 to 26 mm/s were tested while other [...] Read more.
This study investigates the effect of welding speed on the microstructure and mechanical properties of pulsed laser lap-welded 0.2 mm 316L stainless steel sheets, commonly used in fuel cell bipolar plates. Welding speeds ranging from 6 to 26 mm/s were tested while other laser parameters remained constant. Results show that increasing welding speed reduces heat input, overlap factor, and weld dimensions. A transition from full to partial penetration occurs beyond 6 mm/s, with no visible heat-affected zone. The weld microstructure features columnar ferrite near fusion boundaries and globular ferrite in the center. Tensile–shear tests reveal that welds maintain higher strength than the base metal up to 22 mm/s, with all fractures occurring in the base material. An optimal speed range of 10–14 mm/s ensures defect-free joints with improved mechanical performance. These findings provide practical guidance for thin-gauge stainless steel welding in fuel cell applications. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

24 pages, 11293 KiB  
Article
Optimization of Forming Parameters and Forming Strategy for Stamping of Novel Ultra-Thin Super Ferritic Stainless Steel Bipolar Plates Based on Numerical Simulation
by Jun Lan, Jian Han, Lisong Zhu, Jingwen Song, Meiqing Meng and Zhengyi Jiang
Metals 2025, 15(6), 620; https://doi.org/10.3390/met15060620 - 30 May 2025
Viewed by 329
Abstract
This study investigates the forming process (stamping) of bipolar plates which have applied a novel ultra-thin (0.1 mm) super ferritic stainless steel, i.e., SUS470, whose chromium is sufficiently high for corrosion resistance. A three-dimensional finite element model of the stamping process was developed [...] Read more.
This study investigates the forming process (stamping) of bipolar plates which have applied a novel ultra-thin (0.1 mm) super ferritic stainless steel, i.e., SUS470, whose chromium is sufficiently high for corrosion resistance. A three-dimensional finite element model of the stamping process was developed using the commercial software ABAQUS version 2022. The model incorporated optimized die parameters obtained through Central Composite Design (CCD). This model was used to analyze the effects of key forming parameters, including stamping speed and friction coefficient, on the distribution of stress, strain, and thickness reduction during the stamping process. The finite element modeling (FEM) results disclose that the inner corner of the flow channel is a critical defect-prone region, exhibiting stress concentration, uneven strain distribution, and severe thinning. The optimal forming quality can be achieved at a stamping speed of 100 mm/s and a friction coefficient of 0.185 among all varied options. Further, a comparative study of single-stage, conventional two-stage, and optimized two-stage stamping strategies based on previous investigation demonstrates that the optimized two-stage stamping process can effectively alleviate stress and strain concentrations at the corners, significantly reduce thinning problems, and enhance the uniformity and stability during stamping. In summary, this study provides theoretical support for the design of the forming process (stamping) of high-performance super ferritic stainless steel bipolar plates, which is beneficial to subsequent practical engineering application. Full article
(This article belongs to the Special Issue Modeling, Simulation and Experimental Studies in Metal Forming)
Show Figures

Figure 1

21 pages, 14426 KiB  
Article
Corrosion Resistance and Surface Conductivity of 446 Stainless Steel with Electrochemical Cr-Enrichment and Nitridation for Proton Exchange Membrane Fuel Cell (PEMFC) Bipolar Plates
by Ronghai Xu, Yangyue Zhu, Ruigang Zhu and Moucheng Li
Metals 2025, 15(5), 566; https://doi.org/10.3390/met15050566 - 21 May 2025
Viewed by 495
Abstract
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment [...] Read more.
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment of Cr-enrichment were investigated in the simulated PEMFC anode and cathode environments (i.e., 0.5 mol L−1 H2SO4 + 2 ppm HF solution bubbled with hydrogen or air at 80 °C) using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma–mass spectrometry (ICP-MS), and electrochemical measurement techniques. Extending the nitriding time from 5 to 30 min enhances the surface conductivity but reduces the corrosion resistance. After the pretreatment and 30 min of nitridation, a thin film formed on the specimen surface, which mainly consists of Cr-nitrides and -oxides with atomic fractions of 0.42 and 0.37, respectively. The Cr-enriched and nitrided specimen shows spontaneous passivation in both the simulated cathode and anode environments and higher corrosion potentials, lower passive current densities, and larger polarization resistances in comparison with the directly nitrided specimens. Its stable current densities are about 0.26 and −0.39 μA cm−2 after 5 h of polarization tests at 0.6 VSCE in the cathode environment and at −0.1 VSCE in the anode environment, respectively. Its contact resistance is about 5.0 mΩ cm2 under 1.4 MPa, which is close to that of the specimen directly nitrided for 120 min and slightly decreases after the potentiostatic polarization tests. These results indicate that Cr-rich pretreatment improves not only the corrosion resistance and surface conductivity of nitrided specimens but also the efficiency of electrochemical nitridation. Full article
Show Figures

Figure 1

14 pages, 7492 KiB  
Article
Corrosion-Resistant and Conductive Coatings on 316L Stainless Steel Bipolar Plates Fabricated by Hot Rolling
by Xiaojun Zhao, Zihao Wang, Lairong Xiao, Yitao Zha, Guanzhi Deng, Shaohao Li, Zhenyang Cai and Sainan Liu
Materials 2025, 18(8), 1831; https://doi.org/10.3390/ma18081831 - 16 Apr 2025
Viewed by 548
Abstract
The insufficient corrosion resistance and high interfacial contact resistance (ICR) of 316L stainless steel (316L SS) severely limit its application as bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs). In this study, a graphite/carbon black/PVDF composite coating was first developed by [...] Read more.
The insufficient corrosion resistance and high interfacial contact resistance (ICR) of 316L stainless steel (316L SS) severely limit its application as bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs). In this study, a graphite/carbon black/PVDF composite coating was first developed by hot rolling on the surface of 316L SS to enhance both corrosion resistance and conductivity. By incorporating 5 wt% polyaniline (PANI) as a corrosion inhibitor, the optimized RP5 coating exhibited further improvements in corrosion resistance. The potentiodynamic polarization tests revealed that the RP5 coating achieved a corrosion current density of 0.977 μA·cm−2, representing a two-orders of magnitude reduction compared to bare 316L SS (34.1 μA·cm−2). The coating also exhibits a satisfactory interfacial contact resistance (ICR) of 8.20 mΩ·cm2 at 1.5 MPa, meeting the U.S. Department of Energy (DOE) 2025 targets (<10 mΩ·cm2). Additionally, the RP5 coating exhibited superior hydrophobicity with a water contact angle of 96.5°, which is advantageous for water management within PEMFCs. The results confirm that the RP5 coating achieves an optimal balance between high conductivity, excellent corrosion resistance, and improved hydrophobicity, making it a promising solution for advancing PEMFC bipolar plates’ performance. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

15 pages, 2720 KiB  
Article
Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells
by Li Ding, Chaoqin Ren, Ruijuan Wang, Meng Yang and Yong Pan
Materials 2025, 18(7), 1483; https://doi.org/10.3390/ma18071483 - 26 Mar 2025
Viewed by 571
Abstract
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form [...] Read more.
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form a non-homogeneous modified layer on SS 316 L. The injection of C and Mo ions on the SS 316 L surface caused irradiation damage, producing holes. But with the heat treatment of the ion-implanted samples, the irradiation-damaged surface will be repaired to a certain extent. The corrosion current density (Icorr) of the 600 °C sample in the kinetic potential test (5.32 × 10−4 A/cm2) was 54% lower than that of the naked SS 316 L (1.17 × 10−3 A/cm2). In the electrostatic potential test, the corrosion current of the 600 °C sample stabilized at a low value (about 0.26 μA/cm2), with the lowest concentration of dissolved metal ions (Fe2+ 2.908 mg/L). After anodic electrostatic potential polarization, the interfacial contact resistance (ICR) of (Mo+C)600-1 was much lower than that of the untreated SS 316 L. Heat treatment experiments show that samples treated at 600 °C for 1 h exhibit significantly higher conductivity and anodic corrosion resistance than naked SS 316 L. This improvement is mainly due to the heat treatment under these conditions, which facilitated the formation of Mo carbides from the implanted C and Mo elements. Ion implantation and heat treatment enhance stainless steel surface conductivity and passive film corrosion resistance. These findings are useful in altering stainless steel BPs. Full article
Show Figures

Figure 1

13 pages, 3667 KiB  
Article
Preparation and Properties of PEDOT-PSS/Waterborne Acrylic Resin Coating
by Congcong Li, Haifeng Bian, Yongkang Wang, Xiao Liu, Linyan Su, Wenhao Bu, Yunfei Wang, Beibei Yang, Duan Bin, Peng Zhu and Hongbin Lu
Coatings 2025, 15(1), 14; https://doi.org/10.3390/coatings15010014 - 27 Dec 2024
Cited by 2 | Viewed by 1098
Abstract
Stainless steel (SS) is highly susceptible to corrosion in acidic environments, which significantly limits its applicability in such conditions. In this paper, a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT-PSS)/waterborne acrylic resin (AR) composite coating was designed and prepared for enhancing the corrosion resistance of 304SS. [...] Read more.
Stainless steel (SS) is highly susceptible to corrosion in acidic environments, which significantly limits its applicability in such conditions. In this paper, a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT-PSS)/waterborne acrylic resin (AR) composite coating was designed and prepared for enhancing the corrosion resistance of 304SS. Corrosion current density (jcorr) of the PEDOT-PSS/AR-coated 304SS at the simulated PEMFCs’ operating temperature (80 °C) is only 0.86 μA·cm−2 which achieves the 2025 DOE goal (jcorr < 1 μA·cm−2). The improved corrosion resistance would be attributed to both the anode protection and barrier effect provided by the PEDOT-PSS/AR coating. Moreover, the 304SS coated by the PEDOT-PSS/AR obtains a lower interfacial contact resistance (ICR) of 37.01 mΩ·cm2 at 1.4 MPa than that coated by the pure AR coating with the ICR of 167.95 mΩ·cm2. This eco-friendly, conducting, and anti-corrosive PEDOT-PSS/AR coating offers a new insight into high-performance applications for SS. Full article
(This article belongs to the Special Issue Recent Progress on Functional Films and Surface Science)
Show Figures

Figure 1

20 pages, 11517 KiB  
Article
Study on Springback Behavior in Hydroforming of Micro Channels for a Metal Bipolar Plate
by Zonghui Su, Wenlong Xie, Yong Xu, Changsheng Li, Liangliang Xia, Baocheng Yang, Mingyu Gao, Hongwu Song and Shihong Zhang
Materials 2024, 17(21), 5386; https://doi.org/10.3390/ma17215386 - 4 Nov 2024
Cited by 1 | Viewed by 1148
Abstract
Bipolar plates are one of the most important components of proton exchange membrane fuel cells. With the miniaturization of bipolar plate flow channel sizes and the increasing demand for precision, springback has become a key focus of research in the bipolar plate forming [...] Read more.
Bipolar plates are one of the most important components of proton exchange membrane fuel cells. With the miniaturization of bipolar plate flow channel sizes and the increasing demand for precision, springback has become a key focus of research in the bipolar plate forming process. In this paper, the hydroforming process for 316L stainless steel bipolar plates was studied, and an FEM model was built to examine the stress and strain at various locations on the longitudinal section of the plate. Modeling accuracy was validated by the comparison of experimental profile and thickness distribution. The effects of forming pressure and grain size on springback behavior are discussed. The results show that with increasing forming pressure, the springback value decreases initially, followed by an increase, but then again decreases. When the forming pressure is 80 MPa–100 MPa, the deformation of the lower element of the upper rounded corner is not uniform with more elastic regions, and the springback is positively correlated with forming pressure. The springback distribution pattern on the cross-section of the bipolar plate changes from a normal distribution to a distribution of “M” shape with increased pressure. The larger the grain size, the lower the yield strength elastic proportion, resulting in a decrease in springback of the sheet. The maximum amount of springback of the bipolar plate is 3.1 μm when the grain size is 60.7 μm. The research results provide a reference for improving the forming quality of metal bipolar plates with different flow channel shapes. Full article
Show Figures

Figure 1

12 pages, 7742 KiB  
Article
PVD Coatings for Lightweight Bipolar Plates
by Parnia Navabpour, Liam Cooper, Shicai Yang, Jinlong Yin, Kun Zhang, Ahmad El-Kharouf and Hailin Sun
Surfaces 2024, 7(4), 812-823; https://doi.org/10.3390/surfaces7040053 - 2 Oct 2024
Cited by 1 | Viewed by 2085
Abstract
Bipolar plates are one of the main components of proton exchange membrane fuel cells (PEMFCs). Their functions include distributing reactants, supporting the cell, and conducting heat and electricity. They account for a significant proportion of the fuel cell stack’s weight and volume. The [...] Read more.
Bipolar plates are one of the main components of proton exchange membrane fuel cells (PEMFCs). Their functions include distributing reactants, supporting the cell, and conducting heat and electricity. They account for a significant proportion of the fuel cell stack’s weight and volume. The main materials currently used for bipolar plates are graphite and stainless steel. Aluminium has a much lower density than steel and is easier to form than both steel and graphite. Its use, therefore, would allow fuel cells with higher power densities but is hindered due to it being prone to corrosion. This work focused on the development of corrosion-resistant and conductive coatings to address this issue. Carbon coatings with Ti and Cr adhesion layers were deposited on aluminium substrates using closed-field unbalanced magnetron sputtering. These coatings were tested for corrosion properties and performance on the cathode side of a single-cell fuel cell. Coated aluminium samples were also tested for their ability to maintain their corrosion protection after being formed. Coating with a Cr adhesion layer outperformed that with a Ti adhesion layer in both forming and fuel cell tests, demonstrating much lower performance degradation after accelerated stress testing. Full article
Show Figures

Graphical abstract

12 pages, 7370 KiB  
Article
Impact of Surface Pretreatment on the Corrosion Resistance and Adhesion of Thin Film Coating on SS316L Bipolar Plates for Proton-Exchange Membrane Fuel Cell Applications
by Yasin Mehdizadeh Chellehbari, Abhay Gupta, Xianguo Li and Samaneh Shahgaldi
Molecules 2024, 29(18), 4319; https://doi.org/10.3390/molecules29184319 - 12 Sep 2024
Cited by 8 | Viewed by 2002
Abstract
Coated SS316L is a potential alternative to the graphite bipolar plates (BPPs) used in proton-exchange membrane fuel cells (PEMFCs) owing to their low manufacturing cost and machinability. Due to their susceptibility to corrosion and passivation, which increases PEMFC ohmic resistance, protective and conductive [...] Read more.
Coated SS316L is a potential alternative to the graphite bipolar plates (BPPs) used in proton-exchange membrane fuel cells (PEMFCs) owing to their low manufacturing cost and machinability. Due to their susceptibility to corrosion and passivation, which increases PEMFC ohmic resistance, protective and conductive coatings on SS316L have been developed. However, coating adhesion is one of the challenges in the harsh acidic environment of PEMFCs, affecting the performance and durability of BPPs. This study compares mechanical polishing and the frequently adopted chemical etchants for SS316L: Adler’s, V2A, and Carpenter’s etchant with different etching durations and their impact on the wettability, adhesion, and corrosion resistance of a Nb-coated SS316L substrate. Contact angle measurements and laser microscopy revealed that all etching treatments increased the hydrophobicity and surface roughness of SS316L substrates. Ex situ potentiodynamic and potentiostatic polarization tests and interfacial contact resistance analysis revealed high corrosion resistance, interfacial conductivity, and adhesion of the Nb-coated SS316L substrate pretreated with V2A (7 min) and Adler’s (3 min) etchant. Increased hydrophobicity (contact angle = 101°) and surface roughness (Ra = 74 nm) achieved using V2A etchant led to the lowest corrosion rate (3.3 µA.cm−2) and interfacial resistance (15.4 mΩ.cm2). This study established pretreatment with V2A etchant (a solution of HNO3, HCl, and DI water (1:9:23 mole ratio)) as a promising approach for improving the longevity, electrochemical stability, and efficiency of the coated SS316L BPPs for PEMFC application. Full article
Show Figures

Figure 1

14 pages, 5499 KiB  
Article
Comparison of Magnetron-Sputtered and Cathodic Arc-Deposited Ti and Cr Thin Films on Stainless Steel for Bipolar Plates
by Nils Fredebeul-Beverungen, Maximilian Steinhorst and Teja Roch
Materials 2024, 17(12), 2864; https://doi.org/10.3390/ma17122864 - 12 Jun 2024
Cited by 2 | Viewed by 1461
Abstract
In this work, the potential of magnetron sputtering, as well as cathodic arc evaporation, is investigated with regard to its suitability as a bipolar plate coating of a PEM fuel cell. For this purpose, Cr and Ti thin films were deposited onto a [...] Read more.
In this work, the potential of magnetron sputtering, as well as cathodic arc evaporation, is investigated with regard to its suitability as a bipolar plate coating of a PEM fuel cell. For this purpose, Cr and Ti thin films were deposited onto a 0.1 mm SS316L by varying the power and bias voltage. The surface structure and thickness of the coatings are examined via SEM and tactile profilometry. Moreover, the coating variants are compared with each other based on the electrical and electrochemical properties relevant to bipolar plates. The sputtered Cr thin films achieve the lowest contact resistance values and exhibit a columnar structure with a smooth surface. Regarding the electrochemical properties, titanium deposited via cathodic arc evaporation has a low current density in the passive region and high breakthrough potential. All in all, both deposition techniques have their individual advantages for the preparation of bipolar plates’ coatings. However, Ti thin films prepared via cathodic arc seem to be the most suitable option due to the combination of a high deposition rate, a low cost and good coating properties. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

13 pages, 21442 KiB  
Article
Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells
by Qizhong Li, Chuan Ding, Mai Yang, Meijun Yang, Tenghua Gao, Song Zhang, Baifeng Ji, Takashi Goto and Rong Tu
Coatings 2024, 14(5), 542; https://doi.org/10.3390/coatings14050542 - 26 Apr 2024
Cited by 4 | Viewed by 1986
Abstract
The large-scale application of stainless steel (SS) bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs) is mainly limited by insufficient corrosion resistance and electrical conductivity. In this work, Ta-Nb-N coatings were prepared on 316L SS substrates by unbalanced magnetron sputtering to [...] Read more.
The large-scale application of stainless steel (SS) bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs) is mainly limited by insufficient corrosion resistance and electrical conductivity. In this work, Ta-Nb-N coatings were prepared on 316L SS substrates by unbalanced magnetron sputtering to improve corrosion resistance and conductivity. The Ta-Nb-N coatings had a dense structure without obvious defects. In simulated PEMFC cathode environments consisting of 0.5 M H2SO4 + 2 ppm HF at 70 ± 0.5 °C, which is harsher than the U.S. Department of Energy specification, the corrosion current density of Ta-Nb-N-coated BPs was reduced to 2.2 × 10−2 μA·cm−2. Ta-Nb-N-coated samples showed better electrical conductivity than 316L SS, which had an excellent interfacial contact resistance of 9.2 mΩ·cm2. In addition, the Ta-Nb-N-coated samples had a water contact angle of 100.7°, showing good hydrophobicity for water management. These results indicate that Ta-Nb-N coatings could be a promising material for BPs. Full article
(This article belongs to the Special Issue Advances in Thin Films for Energy Storage and Conversion)
Show Figures

Figure 1

16 pages, 1201 KiB  
Review
Performance of Stainless-Steel Bipolar Plates (SS-BPPs) in Polymer Electrolyte Membrane Water Electrolyser (PEMWE): A Comprehensive Review
by Eirini Zagoraiou, Soorya Krishan, Amal Siriwardana, Anastasia Maria Moschovi and Iakovos Yakoumis
Compounds 2024, 4(2), 252-267; https://doi.org/10.3390/compounds4020013 - 29 Mar 2024
Cited by 3 | Viewed by 3723
Abstract
Bipolar Plates (BPPs) play a critical role in Polymer Electrolyte Membrane Water Electrolysers (PEMWEs) for effective hydrogen generation. The performance and longevity of the system can be considerably impacted by choosing the suitable material for these components. Polymer electrolyte membrane water electrolysis technology [...] Read more.
Bipolar Plates (BPPs) play a critical role in Polymer Electrolyte Membrane Water Electrolysers (PEMWEs) for effective hydrogen generation. The performance and longevity of the system can be considerably impacted by choosing the suitable material for these components. Polymer electrolyte membrane water electrolysis technology relies on cost-effective and corrosion-resistant BPPs. Tantalum, niobium, and titanium are low-cost, easy-to-machine materials that have good electrical and thermal conductivity; however, they exhibit low corrosion resistance. Noble metal and metal nitride coatings are usually investigated to minimize corrosion and interfacial contact resistance. Because of its performance-to-cost ratio, Stainless Steel (SS) based materials are among the most popular materials for BPP development. This study recommends material and operating parameters to improve PEMWE systems for sustainable hydrogen production’s efficiency, durability, and economic viability. Full article
Show Figures

Graphical abstract

10 pages, 4904 KiB  
Article
Investigation of the Performance of Hastelloy X as Potential Bipolar Plate Materials in Proton Exchange Membrane Fuel Cells
by Jiacheng Zhong, Zimeng Liu, Meng Zhang, Feng Liu, Wenjin Li, Beirui Hou, Wenmin Zhang, Chunwang Zhao and Mingxing Gong
Molecules 2024, 29(6), 1299; https://doi.org/10.3390/molecules29061299 - 14 Mar 2024
Cited by 1 | Viewed by 1778
Abstract
The phase, mechanical properties, corrosion resistance, hydrophobicity, and interfacial contact resistance of Hastelloy X were investigated to evaluate its performance in proton exchange membrane fuel cells (PEMFCs). For comparison, the corresponding performance of 304 stainless steel (304SS) was also tested. Hastelloy X exhibited [...] Read more.
The phase, mechanical properties, corrosion resistance, hydrophobicity, and interfacial contact resistance of Hastelloy X were investigated to evaluate its performance in proton exchange membrane fuel cells (PEMFCs). For comparison, the corresponding performance of 304 stainless steel (304SS) was also tested. Hastelloy X exhibited a single-phase face-centered cubic structure with a yield strength of 445.5 MPa and a hardness of 262.7 HV. Both Hastelloy X and 304SS exhibited poor hydrophobicity because the water contact angles were all below 80°. In a simulated PEMFC working environment (0.5 M H2SO4 + 2 ppm HF, 80 °C, H2), Hastelloy X exhibited better corrosion resistance than 304SS. At 140 N·cm−2, the interfacial contact resistance of Hastelloy X can reach as low as 7.4 mΩ·cm2. Considering its overall performance, Hastelloy X has better potential application than 304SS as bipolar plate material in PEMFCs. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry)
Show Figures

Figure 1

Back to TopTop