Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = square piezoelectric vibrator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5964 KiB  
Article
Research on Loosening Identification of High-Strength Bolts Based on Relaxor Piezoelectric Sensor
by Ruisheng Feng, Chao Wu, Youjia Zhang, Zijian Pan and Haiming Liu
Buildings 2025, 15(11), 1867; https://doi.org/10.3390/buildings15111867 - 28 May 2025
Viewed by 299
Abstract
Bridges play a key and controlling role in transportation systems. Steel bridges are favored for their high strength, good seismic performance, and convenient construction. As important node connectors of steel bridges, high-strength bolts are extremely susceptible to damage such as corrosion and loosening. [...] Read more.
Bridges play a key and controlling role in transportation systems. Steel bridges are favored for their high strength, good seismic performance, and convenient construction. As important node connectors of steel bridges, high-strength bolts are extremely susceptible to damage such as corrosion and loosening. Therefore, accurate identification of bolt loosening is crucial. First, a new type of adhesive piezoelectric sensor is designed and prepared using PMN-PT piezoelectric single-crystal materials. The PMN-PT sensor and polyvinylidene fluoride (PVDF) sensor are subjected to steel plate fixed frequency load and swept frequency load tests to test the performance of the two sensors. Then, a steel plate component connected by high-strength bolts is designed. By applying exciter square wave load to the structure, the vibration response characteristics of the structure are analyzed to identify the loosening of the bolts. In addition, a piezoelectric smart washer sensor is designed to make up for the shortcomings of the adhesive piezoelectric sensor, and the effectiveness of the piezoelectric smart washer sensor is verified. Finally, a bolt loosening index is proposed to quantitatively evaluate the looseness of the bolt. The results show that the sensitivity of the PMN-PT sensor is 21 times that of the PVDF sensor. Compared with the peak stress change, the natural frequency change is used to identify the bolt loosening more effectively. Piezoelectric smart washer sensor and bolt loosening indicator can be used for bolt loosening identification. Full article
(This article belongs to the Special Issue Research in Structural Control and Monitoring)
Show Figures

Figure 1

16 pages, 3836 KiB  
Article
Energy Harvesting Microelectromechanical System for Condition Monitoring Based on Piezoelectric Transducer Ring
by Kaixuan Wang, Hao Long, Di Song and Hasan Shariar
Micromachines 2025, 16(6), 602; https://doi.org/10.3390/mi16060602 - 22 May 2025
Cited by 1 | Viewed by 2333
Abstract
For complex mechanical transmission equipment, shaft bearings are usually enclosed together with the shaft in the internal space of the housing to maintain good sealing and reliability. However, it is difficult to monitor the status of the shaft bearing through external sensors on [...] Read more.
For complex mechanical transmission equipment, shaft bearings are usually enclosed together with the shaft in the internal space of the housing to maintain good sealing and reliability. However, it is difficult to monitor the status of the shaft bearing through external sensors on the housing, while internal sensors face challenges in energy supply and data transmission. Therefore, a piezoelectric transducer ring-based energy harvesting microelectromechanical system (PTR-EH-MEMS) is proposed for the condition monitoring of shaft bearings. Specifically, the piezoelectric transducer ring is designed to convert mechanical vibrations into electrical energy, which simultaneously acts as a self-powered monitoring sensor through energy harvesting. In addition, the MEMS is embedded for piezoelectric data processing and condition monitoring of the shaft bearings. To verify the proposed PTR-EH-MEMS, an experimental investigation is implemented under different conditions. The experimental results demonstrate that the system can achieve the maximum DC output of 0.8 V and the root mean square power of 43.979 μW within 128 s, which can effectively identify early-stage bearing faults frequency through a self-powered mode. By combining energy harvesting with condition monitoring capability, the PTR-EH-MEMS offers a compact and sustainable approach for predictive maintenance in rotating machinery, reducing the reliance on external power sources and enhancing the reliability of industrial systems. Full article
(This article belongs to the Special Issue Exploration and Application of Piezoelectric Smart Structures)
Show Figures

Figure 1

23 pages, 19067 KiB  
Article
Performance Assessment of a Piezoelectric Vibration Energy Harvester for Hybrid Excitation with Varying Cross Sections
by Bartłomiej Ambrożkiewicz, Zbigniew Czyż, Vikram Pakrashi, Jakub Anczarski, Paweł Stączek, Andrzej Koszewnik, Mirosław Wendeker and Grzegorz Litak
Sensors 2024, 24(23), 7629; https://doi.org/10.3390/s24237629 - 28 Nov 2024
Cited by 2 | Viewed by 4223
Abstract
This paper experimentally examines the influence of hybrid excitation on the performance of vibrational piezoelectric energy harvesting systems on a bluff body with a variable cross section along its generatrix. A combination of vibrational excitation from a shaker and airflow is considered the [...] Read more.
This paper experimentally examines the influence of hybrid excitation on the performance of vibrational piezoelectric energy harvesting systems on a bluff body with a variable cross section along its generatrix. A combination of vibrational excitation from a shaker and airflow is considered the source from which energy is harvested. Varied excitation frequencies and airflow velocities across five different masses were considered, each defining the natural frequency of the system. The system’s performance in hybrid excitation, enhancements in energy harvesting, and challenges with these was observed, helping to determine optimal operating conditions to function effectively in ambient environments. The tests identified the conditions and ranges within which maximized harvesting responses were observed. Next, computational fluid dynamic (CFD) simulations were carried out to understand the impact of circular and square cross sections controlling the nature of the airflow and representative of the wide range of cross sections that may be utilized for such purposes. The analyses helped contextualize the opportunities and limitations of the use of such cross sections and helped in understanding if a transition from one cross section to another can lead to an assimilation of the advantages observed in using each cross section independently. Full article
(This article belongs to the Special Issue Real-Time Monitoring Technology for Built Infrastructure Systems)
Show Figures

Figure 1

22 pages, 5466 KiB  
Article
Data-Driven and Machine-Learning-Based Real-Time Viscosity Measurement Using a Compliant Mechanism
by Nitin V. Satpute, Pratibha Mahajan, Abhishek M. Bhagawati, Keyur G. Kulkarni, Kaustubh M. Utpat, Ganesh D. Korwar, Jagadish V. Tawade, Joanna Iwaniec and Krzysztof Kołodziejczyk
Appl. Sci. 2024, 14(23), 10992; https://doi.org/10.3390/app142310992 - 26 Nov 2024
Cited by 1 | Viewed by 1310
Abstract
In this work, a novel method of viscosity measurement is proposed using a device comprising a compliant mechanism, a vibration source, and a piezoelectric sensor. The vibration source creates linear harmonic vibrations in the compliant mechanism suspended in the liquid, and the acceleration [...] Read more.
In this work, a novel method of viscosity measurement is proposed using a device comprising a compliant mechanism, a vibration source, and a piezoelectric sensor. The vibration source creates linear harmonic vibrations in the compliant mechanism suspended in the liquid, and the acceleration response of the mechanism is measured using the piezoelectric sensor. The vibration source is located in the central mass of the compliant mechanism, which is designed to have the necessary directional stiffness. As the mechanism vibrates, the links in the mechanism undergo damping due to the shearing action of the fluid because of its viscosity. A series of viscosity measurements are carried out with the use of water–glycerol solutions such that the acceleration of the mass is influenced by the fluid’s viscosity. During the working of the device, the mechanism is immersed in the liquid whose viscosity is to be measured. The acceleration response of the mass is recorded as time domain data using NI Lab View hardware and software, which are used to train a machine learning model. Later, a regression-based machine learning model is used for the estimation of dynamic viscosity for the given acceleration input. Experiments are performed with the prototype device using the water–glycerol solution within a viscosity ranging from 10 cP to 60 cP. The proposed sensor can be used for in-line measurements or used as a handheld instrument for quick measurements. The machine learning model achieved a high level of accuracy, evidenced by an R-squared value of 0.99, indicating that it explains 99% of the variance in the data. Full article
Show Figures

Figure 1

14 pages, 6240 KiB  
Article
The Effect of Drive Signals on Output Performance of Piezoelectric Pumps
by Meng Jie, Zhenxiang Qi, Wenxin Yu, Tengfei Ma, Lutong Cai, Yejing Zhao and Yali Gao
Processes 2024, 12(11), 2343; https://doi.org/10.3390/pr12112343 - 25 Oct 2024
Viewed by 1179
Abstract
The output performance of piezoelectric pumps is not only affected by the structural design but is also related to the drive signal. To study the effect of different drive signals on the output performance of piezoelectric pumps, this paper takes dual-chamber serial piezoelectric [...] Read more.
The output performance of piezoelectric pumps is not only affected by the structural design but is also related to the drive signal. To study the effect of different drive signals on the output performance of piezoelectric pumps, this paper takes dual-chamber serial piezoelectric pumps as the investigation object, theoretically deduces the effective value of the drive signal and the output performance of the piezoelectric pump, and tests the displacement of piezoelectric vibrator center, the output performance of the piezoelectric pump, and the operating noise within the range of 0–500 Hz, respectively, driven by square waves, sine waves, and triangular waves (the peak-to-peak values of which are all 300 V). The results show that at low frequencies, the piezoelectric vibrator’s center displacement curve matches the drive signal, which is sinusoidal and decreases with frequency. Under the square drive, the piezoelectric pump has the best performance, with a flow of 147.199 mL/min and pressure of 14.42 kPa, but the noise is also the highest. The output performance of the sine wave is better than that of the triangular wave, and the flow rate of the three signals shows a trend of first increasing and then decreasing. Full article
Show Figures

Figure 1

14 pages, 2442 KiB  
Article
Research on Filtering Algorithm of Vehicle Dynamic Weighing Signal
by Lingcong Xiong, Tieyi Zhang, Anlu Yuan and Zhipeng Zhang
World Electr. Veh. J. 2024, 15(6), 254; https://doi.org/10.3390/wevj15060254 - 12 Jun 2024
Viewed by 1444
Abstract
This study analyzes the advantages and disadvantages of filtering algorithms for dynamic weighing signals. Highway road surface has road surface unevenness and other influencing factors. The body vibration of the vehicle driving process produces a certain amount of interference signals collected by the [...] Read more.
This study analyzes the advantages and disadvantages of filtering algorithms for dynamic weighing signals. Highway road surface has road surface unevenness and other influencing factors. The body vibration of the vehicle driving process produces a certain amount of interference signals collected by the load cell to form noise signals. In addition, piezoelectric sensors and amplification circuits introduce a large amount of electrical noise. These noise signals are non-smooth, nonlinear, and have other characteristics. We study the filtering effects of moving average (MA), wavelet transform (WT), and variational mode decomposition (VMD) filtering algorithms on axle weight signals and evaluate the performance of the filtering algorithms through the Root Mean Square Error (RMSE), signal-to-noise ratio (SNR), and Normalized Correlation Coefficient (NCC). The comprehensive analysis shows that the variational modal decomposition filtering algorithm is more advantageous for axial weight signal processing. The design of the axle weight signal noise filtering algorithm is of great significance for improving the accuracy of the overall dynamic weighing system of the vehicle. Full article
Show Figures

Figure 1

15 pages, 6425 KiB  
Article
Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate
by Namanu Panayanthatta, Giacomo Clementi, Merieme Ouhabaz, Samuel Margueron, Ausrine Bartasyte, Mickael Lallart, Skandar Basrour, Roberto La Rosa, Edwige Bano and Laurent Montes
Sensors 2024, 24(9), 2815; https://doi.org/10.3390/s24092815 - 28 Apr 2024
Viewed by 1580
Abstract
Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction [...] Read more.
Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 μW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 7166 KiB  
Article
Electric-Force Conversion Performance of Si-Based LiNbO3 Devices Based on Four Cantilever Beams
by Huiyi Zhang, Xiaojun Qiao, Huifen Wei, Xiaohuang Li, Xiaohui Wu, Nanxin Yu, Hao Lu, Tao Guo, Xiujian Chou and Wenping Geng
Micromachines 2023, 14(11), 1988; https://doi.org/10.3390/mi14111988 - 27 Oct 2023
Cited by 1 | Viewed by 1970
Abstract
In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with “electric-force” conversion based on the inverse piezoelectric effect of lithium niobate [...] Read more.
In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with “electric-force” conversion based on the inverse piezoelectric effect of lithium niobate (LiNbO3, LN) single-crystal materials. A new compact piezoelectric smart device model is proposed, designed as a single mass block connected by four beams, where devices exhibit smaller lateral errors (0.39–0.41%). The relationship between the displacement characteristics of cantilever beams and driving voltage was researched by applying excitation signals. The results show that the device has the maximum displacement at a first-order intrinsic frequency (fosc = 11.338 kHz), while the displacement shows a good linear relationship (R2 = 0.998) with driving voltage. The square wave signals of the same amplitude have greater “electrical-force” conversion efficiency. The output displacement can reach 12 nm, which is much higher than the output displacement with sinusoidal excitation. In addition, the relative displacement deviation of devices can be maintained within ±1% under multiple cycles of electrical signal loading. The small size, high reliability, and ultra-stability of Si–LN ferroelectric single-crystal cantilever beam devices with lower vibration amplitudes are promising for nanopositioning techniques in microscopy, diagnostics, and high-precision manufacturing applications. Full article
(This article belongs to the Topic Piezoelectric Materials and Applications)
Show Figures

Figure 1

17 pages, 7451 KiB  
Article
Rod-Shaped Linear Inertial Type Piezoelectric Actuator
by Andrius Čeponis, Vytautas Jūrėnas, Dalius Mažeika, Vytautas Bakanauskas and Dovilė Deltuvienė
Actuators 2023, 12(10), 379; https://doi.org/10.3390/act12100379 - 7 Oct 2023
Cited by 3 | Viewed by 2133
Abstract
This article presents a numerical and experimental investigation of a novel rod-shaped linear piezoelectric actuator that consists of a square cross-section-shaped rod with eight piezo ceramic plates and a cylindrical guidance rail. The rod has a hollow cut made with an offset from [...] Read more.
This article presents a numerical and experimental investigation of a novel rod-shaped linear piezoelectric actuator that consists of a square cross-section-shaped rod with eight piezo ceramic plates and a cylindrical guidance rail. The rod has a hollow cut made with an offset from the longitudinal axis of the symmetry. A cylindrical guidance rail is placed on one side of the rod, while T-shaped clamping is formed on the opposite side. The slider is mounted on the rail and is moved along it. The actuator is compact, making it possible to mount it directly on a printed circuit board (PCB) or in another device with limited mounting space, restricted mass, or actuator footprint. The operation of the actuator is based on the excitation of the first longitudinal vibration mode of the rod that induces in-plane bending vibration of the nodal zone of the rod due to a hollowed cut asymmetrically placed in the central part of the actuator. The actuator is driven by two sawtooth waveform electric signals with the phase difference of π that allows exciting longitudinal deformations of the rod and controls the reverse motion of the slider. The results of numerical investigations confirmed the operation principle of the actuator at the frequency of 59.72 kHz. The maximum displacement amplitude of the guidance rail in the longitudinal direction reaches up to 152.9 μm while the voltage of 200 Vp-p was applied. An experimental investigation of the actuator was made, and a maximum linear speed of 45.6 mm/s and thrust force of 115.4 mN was achieved. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

20 pages, 7869 KiB  
Article
The Use of a Radial Basis Function Neural Network and Fuzzy Modelling in the Assessment of Surface Roughness in the MDF Milling Process
by Krzysztof Szwajka, Joanna Zielińska-Szwajka and Tomasz Trzepieciński
Materials 2023, 16(15), 5292; https://doi.org/10.3390/ma16155292 - 27 Jul 2023
Cited by 13 | Viewed by 1765
Abstract
Wood-based composites are increasingly used in the industry not only because of the shortage of solid wood, but above all because of the better properties, such as high strength and aesthetic appearance compared to wood. Medium-density fiberboard (MDF) is a wood-based composite that [...] Read more.
Wood-based composites are increasingly used in the industry not only because of the shortage of solid wood, but above all because of the better properties, such as high strength and aesthetic appearance compared to wood. Medium-density fiberboard (MDF) is a wood-based composite that is widely used in the furniture industry. In this work, an attempt was made to predict the surface roughness of the machined MDF in the milling process based on acceleration signals from an industrial piezoelectric sensor installed in the cutting zone. The surface roughness parameter Sq was adopted for the evaluation and measurement of surface roughness. The surface roughness prediction was performed using a radial basis function (RBF) artificial neural network (ANN) and a Takagi–Sugeno––Kang (TSK) fuzzy model with subtractive clustering. In the research, as inputs to the ANNs and fuzzy model, the kinematic parameters of the cutting process and selected measures of the acceleration signal were adopted. At the output, the values of the surface roughness parameter Sq were obtained. The results of the experiments show that the surface roughness is influenced not only by the kinematic parameters of the cutting, but also by the vibrations generated during the milling process. Therefore, by combining information on the cutting kinematics parameters and vibration, the accuracy of the surface roughness prediction in the milling process of MDF can be improved. The use of TSK fuzzy modelling based on the subtractive clustering method for integrating the information from many acceleration signal measurements in the examined range of cutting conditions meant the surface roughness was predicted with high accuracy and high reliability. With the help of two tested artificial intelligence tools, it is possible to estimate the surface roughness of the workpiece with only a small error. When using a radial neural network, the root mean square error for estimating the value of the Sq parameter was 0.379 μm, while the estimation error based on fuzzy logic was 0.198 μm. The surface of the sample made with the cutting parameters vc = 76 m/min and vf = 1200 mm/min is characterized by a less concentrated distribution of ordinate densities, compared to the surface of the sample cut with lower feed rates but at the same cutting speed. The most concentrated distribution of ordinate density (for the cutting speed vc = 76 m/min) is characterized by the surface, where the feed rate value was vf = 200 mm/min, with 90% of the material concentrated in the profile height of 28.2 μm. When using an RBF neural network, the RMSE of estimating the value of the Sq parameter was 0.379 μm, while the estimation error based on fuzzy logic was 0.198 μm. Full article
Show Figures

Figure 1

11 pages, 4032 KiB  
Article
Lateral Extensional Mode Piezoelectric ZnO-on-Nickel RF MEMS Resonators for Back-End-of-Line Integration
by Adnan Zaman, Abdulrahman Alsolami, Mian Wei, Ivan Rivera, Masoud Baghelani and Jing Wang
Micromachines 2023, 14(5), 1089; https://doi.org/10.3390/mi14051089 - 22 May 2023
Cited by 4 | Viewed by 2112
Abstract
High motional resistance and incompatibility with post-CMOS fabrication due to thermal budget constraints are imperative issues associated with the back-end-of-line integration of lateral extensional vibrating micromechanical resonators. This paper presents piezoelectric ZnO-on-nickel resonators as a viable means for mitigating both of the issues. [...] Read more.
High motional resistance and incompatibility with post-CMOS fabrication due to thermal budget constraints are imperative issues associated with the back-end-of-line integration of lateral extensional vibrating micromechanical resonators. This paper presents piezoelectric ZnO-on-nickel resonators as a viable means for mitigating both of the issues. Lateral extensional mode resonators equipped with thin-film piezoelectric transducers can exhibit much lower motional impedances than their capacitive counterparts due to piezo-transducers’ higher electromechanical coupling coefficients. Meanwhile, the employment of electroplated nickel as the structural material allows the process temperature to be kept lower than 300 °C, which is low enough for the post-CMOS resonator fabrication. In this work, various geometrical rectangular and square plates resonators are investigated. Moreover, parallel combination of several resonators into a mechanically coupled array was explored as a systematic approach to lower motional resistance from ~1 kΩs to 0.562 kΩs. Higher order modes were investigated for achieving higher resonance frequencies up to 1.57 GHz. Local annealing by Joule heating was also exploited for quality factor improvement after device fabrication by ~2× enhancement and breaking the record of MEMS electroplated nickel resonators in lowering insertion loss to ~10 dB. Full article
(This article belongs to the Special Issue Smart Materials for MEMS Devices)
Show Figures

Figure 1

16 pages, 7644 KiB  
Article
Acoustic Performance of Stress Gradient-Induced Deflection of Triangular Unimorphic/Bimorphic Cantilevers for MEMS Applications
by Ning-Hsiu Yuan, Chih-Chia Chen, Yiin-Kuen Fuh and Tomi T. Li
Materials 2023, 16(5), 2129; https://doi.org/10.3390/ma16052129 - 6 Mar 2023
Cited by 1 | Viewed by 2311
Abstract
This paper reports two piezoelectric materials of lead zirconium titanate (PZT) and aluminum nitride (AlN) used to simulate microelectromechanical system (MEMS) speakers, which inevitably suffered deflections as induced via the stress gradient during the fabrication processes. The main issue is the vibrated deflection [...] Read more.
This paper reports two piezoelectric materials of lead zirconium titanate (PZT) and aluminum nitride (AlN) used to simulate microelectromechanical system (MEMS) speakers, which inevitably suffered deflections as induced via the stress gradient during the fabrication processes. The main issue is the vibrated deflection from the diaphragm that influences the sound pressure level (SPL) of MEMS speakers. To comprehend the correlation between the geometry of the diaphragm and vibration deflection in cantilevers with the same condition of activated voltage and frequency, we compared four types of geometries of cantilevers including square, hexagon, octagon, and decagon in triangular membranes with unimorphic and bimorphic composition by utilizing finite element method (FEM) for physical and structural analyses. The size of different geometric speakers did not exceed 10.39 mm2; the simulation results reveal that under the same condition of activated voltage, the associated acoustic performance, such as SPL for AlN, is in good comparison with the simulation results of the published literature. These FEM simulation results of different types of cantilever geometries provide a methodology design toward practical applications of piezoelectric MEMS speakers in the acoustic performance of stress gradient-induced deflection in triangular bimorphic membranes. Full article
(This article belongs to the Special Issue Acoustic Properties of Materials)
Show Figures

Figure 1

9 pages, 3022 KiB  
Article
Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever
by Mingyong Xin, Xueling Jiang, Changbao Xu, Jing Yang and Caijiang Lu
Micromachines 2023, 14(1), 127; https://doi.org/10.3390/mi14010127 - 3 Jan 2023
Cited by 8 | Viewed by 2560
Abstract
To improve the response-ability of the energy harvester to multidirectional wind, this paper proposes a wind energy harvester to scavenge wind-induced vibration energy. The harvester comprises a cylindrical beam instead of conventional thin rectangular cantilevers, a bluff body (square prism or circle cylinder), [...] Read more.
To improve the response-ability of the energy harvester to multidirectional wind, this paper proposes a wind energy harvester to scavenge wind-induced vibration energy. The harvester comprises a cylindrical beam instead of conventional thin rectangular cantilevers, a bluff body (square prism or circle cylinder), and a piezoelectric tube bonded to the bottom side of the beam for energy conversion. Benefiting from the symmetry of the cylindrical structure, this harvester can respond to airflow from every direction of the two-dimensional plane. The performance of the harvester under a wind speed range of 1.5–8 m/s has been tested. The results demonstrate that the proposed harvester can respond to the wind from all directions of the two-dimensional plane. It provides a direction for the future in-depth study of multidirectional wind energy harvesting. Full article
Show Figures

Figure 1

17 pages, 17815 KiB  
Article
Analysis of Ultrasonic Machining Characteristics under Dynamic Load
by Zhangping Chen, Xinghong Zhao, Shixing Chen, Honghuan Chen, Pengfei Ni and Fan Zhang
Sensors 2022, 22(21), 8576; https://doi.org/10.3390/s22218576 - 7 Nov 2022
Cited by 4 | Viewed by 2897
Abstract
This research focuses on the load characteristics of piezoelectric transducers in the process of longitudinal vibration ultrasonic welding. We are primarily interested in the impedance characteristics of the piezoelectric transducer during loading, which is studied by leveraging the equivalent circuit theory of piezoelectric [...] Read more.
This research focuses on the load characteristics of piezoelectric transducers in the process of longitudinal vibration ultrasonic welding. We are primarily interested in the impedance characteristics of the piezoelectric transducer during loading, which is studied by leveraging the equivalent circuit theory of piezoelectric transducers. Specifically, we propose a cross-value mapping method. This method can well map the load change in ultrasonic welding to the impedance change, aiming to obtain an equivalent model of impedance and load. The least-squares strategy is used for parameter identification during data fitting. Extensive simulations and physical experiments are conducted to verify the proposed model. As a result, we can empirically find that the result from our model agrees with the impedance characteristics from the real-life data measured by the impedance meter, indicating its potential for real practice in controller research and transducer design. Full article
(This article belongs to the Special Issue The Development of Piezoelectric Sensors and Actuators)
Show Figures

Figure 1

13 pages, 3650 KiB  
Article
Transmission Properties of Electromagnetic Waves in Magneto-Electro-Elastic Piezoelectric Electromagnetic Metamaterials
by Wen-Chao Bai, Hui Hu, Ben-Hu Zhou, Gui-Xiang Liu, Ge Tang, Yang-Yu Huang, Yan Cao, Han Zhang and Han-Zhuang Zhang
Symmetry 2022, 14(9), 1942; https://doi.org/10.3390/sym14091942 - 18 Sep 2022
Viewed by 2195
Abstract
We designed magneto-electro-elastic piezoelectric, electromagnetic (EM) metamaterials (MEEPEM) by using a square lattice of the periodic arrays of conducting wires, piezoelectric photonic crystal (PPC), and split-ring resonators (SRRs). We analyzed the mechanism for multi-field coupling in MEEPEM. The magnetic field of the EM [...] Read more.
We designed magneto-electro-elastic piezoelectric, electromagnetic (EM) metamaterials (MEEPEM) by using a square lattice of the periodic arrays of conducting wires, piezoelectric photonic crystal (PPC), and split-ring resonators (SRRs). We analyzed the mechanism for multi-field coupling in MEEPEM. The magnetic field of the EM wave excites an attractive Ampère force in SRRs, which periodically compress MEEPEM, and this can create electric polarization due to the piezoelectric effect. The electric field of the EM wave can excite a longitudinal superlattice vibration in the PPC, which can also create electric polarization. The electric polarization can couple to the electric field of the periodic arrays of conducting wires. The coupled electric field will couple to the EM wave. These interactions result in multi-field coupling in MEEPEM. The coupling creates a type of polariton, called multi-field coupling polaritons, corresponding to a photonic band gap, namely, the multi-field coupling photonic band gap. We calculated the dielectric functions, the reflection coefficients, and the effective magnetic permeability of MEEPEM. By using them, we analyzed the transmission properties of EM waves in the MEEPEM. We analyzed the possibility of MEEPEM as left-handed metamaterials and zero refractive index material. Full article
(This article belongs to the Special Issue Asymmetric and Symmetric Study on Quantum Optics)
Show Figures

Figure 1

Back to TopTop