Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = spring expansion model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Figure 1

28 pages, 4089 KiB  
Article
Remote Sensing Identification of Major Crops and Trade-Off of Water and Land Utilization of Oasis in Altay Prefecture
by Gaowei Yan, Luguang Jiang and Ye Liu
Land 2025, 14(7), 1426; https://doi.org/10.3390/land14071426 - 7 Jul 2025
Viewed by 263
Abstract
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly [...] Read more.
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly pronounced. Within this fragile balance lies a critical opportunity: efficient water resource management could pave the way for sustainable development across the entire arid oasis regions. This study uses a decision tree model based on a feature threshold to map the spatial distribution of major crops in the Altay Prefecture oasis, assess their water requirements, and identify the coupling relationships between agricultural water and land resources. Furthermore, it proposed optimization planting structure strategies under three scenarios: water-saving irrigation, cash crop orientation, and forage crop orientation. In 2023, the total planting area of major crops in Altay Prefecture was 3368 km2, including spring wheat, spring maize, sunflower, and alfalfa, which consumed 2.68 × 109 m3 of water. Although this area accounted for only 2.85% of the land, it consumed 26.23% of regional water resources, with agricultural water use comprising as much as 82.5% of total consumption, highlighting inefficient agricultural water use as a critical barrier to sustainable agricultural development. Micro-irrigation technologies demonstrate significant water-saving potential. The adoption of such technologies could reduce water consumption by 14.5%, thereby significantly enhancing agricultural water-use efficiency. Cropping structure optimization analysis indicates that sunflower-based planting patterns offer notable water-saving benefits. Increasing the area of sunflower cultivation by one unit can unlock a water-saving potential of 25.91%. Forage crop combinations excluding soybean can increase livestock production by 30.2% under the same level of water consumption, demonstrating their superior effectiveness for livestock system expansion. This study provides valuable insights for achieving sustainable agricultural development in arid regions under different development scenarios. Full article
Show Figures

Figure 1

17 pages, 2250 KiB  
Article
Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China
by Yuxue Cui, Miaomiao Wu, Zhongyi Lin, Yizhao Chen and Honghua Ruan
Forests 2025, 16(5), 756; https://doi.org/10.3390/f16050756 - 28 Apr 2025
Viewed by 448
Abstract
Plantation forests (PFs) play a crucial role in China’s climate change mitigation strategy due to their significant capacity to sequestrate carbon (C). Understanding the long-term trend in PFs’ C uptake capacity and the key drivers influencing it is crucial for optimizing PF management [...] Read more.
Plantation forests (PFs) play a crucial role in China’s climate change mitigation strategy due to their significant capacity to sequestrate carbon (C). Understanding the long-term trend in PFs’ C uptake capacity and the key drivers influencing it is crucial for optimizing PF management and planning for climate mitigation. In this study, we quantified the long-term (1981–2019) C sequestration of PFs in Jiangsu Province, where PFs have expanded considerably in recent decades, particularly since 2015. Seasonal and interannual variations in gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) were assessed using the boreal ecosystem productivity simulator (BEPS), a process-based terrestrial biogeochemical model. The model integrates multiple sources of remote-sensing datasets, such as leaf area index and land cover data, to simulate the critical biogeochemical processes governing land surface dynamics, enabling the quantification of vegetation and soil C stocks and nutrient cycling patterns. The results indicated a significant increasing trend in GPP, NPP, and NEP over the past four decades, suggesting enhanced C sequestration by PFs across the study region. The interannual variability in these indicators was associated with that of nitrogen (N) deposition in recent years, implying that nutrient availability could be a limiting factor for plantation productivity. Seasonal GPP and NPP exhibited peak values in spring (April to May) or late summer (August to September), with increases in growing season productivity in recent years. In contrast, NEP peaked in spring (April to May) but declined to negative values in early summer (July to August), indicating a seasonal C source–sink transition. All three indicators showed a general negative correlation with late-growing-season temperature (August to September), suggesting that summer droughts probably highly constrained the C sequestration of the existing PFs. These findings provide insights for the strategic implementation and management of PFs, particularly in regions with a warm temperate climate undergoing afforestation expansion. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

28 pages, 14780 KiB  
Article
Longyearbyen Lagoon (Spitsbergen): Gravel Spits Movement Rate and Mechanisms
by Nataliya Marchenko and Aleksey Marchenko
Geographies 2025, 5(2), 18; https://doi.org/10.3390/geographies5020018 - 3 Apr 2025
Viewed by 716
Abstract
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and [...] Read more.
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and serving as a natural laboratory. The location’s well-developed infrastructure and accessible logistics make it an ideal testing site available at any time. It can be used for many natural scientific studies. The lagoon continually changes due to the primary action of waves and tides. This article focuses on gravel spit movement, accelerating in recent years to several meters monthly. Using methods of aerial and satellite images, laser scanning, and hydrodynamic measurements, we have delineated processes, rates, and mechanisms behind this movement. The measurements revealed an accelerating eastward movement of the lagoon spit, from 8 m in the first year to 86 m in the fourth year of observation. This can be explained by a combination of the reconstruction of the Longyearbyen riverbed and increased flow because of climate change. Notably, the expansion does not only occur in the summer months: from September 2022 to February 2023, the spit moved by 40 m, and then, by 19 m from February to June 2023. We found that the bed-load transport along the spit coupled with gravel slides are the primary drives of lagoon expansion and growth. We also investigated movements of groundwater in the spit and changes in gravel contents along the spit, influencing the water saturation of the gravel. Modelling these processes aids in forecasting lagoon system development, crucial for informed management and engineering decisions in Arctic coastal regions. Full article
Show Figures

Figure 1

19 pages, 5171 KiB  
Article
Research on Fault Detection Technology for Circuit Breaker Operating Mechanism Combinations Based on Deep Residual Networks
by Hongping Shao, Yizhe Jiang, Jianeng Zhao, Xueteng Li, Mingzhan Zhang, Mingkun Yang, Xinyu Wang and Hao Yang
Energies 2025, 18(5), 1154; https://doi.org/10.3390/en18051154 - 26 Feb 2025
Viewed by 595
Abstract
Due to the complex mechanical structure of the spring-operated mechanism, its failure mechanisms often exhibit a multi-faceted nature, involving various potential failure sources. Therefore, conducting a failure mechanism analysis for multi-source faults in such systems is essential. This study focuses on the design [...] Read more.
Due to the complex mechanical structure of the spring-operated mechanism, its failure mechanisms often exhibit a multi-faceted nature, involving various potential failure sources. Therefore, conducting a failure mechanism analysis for multi-source faults in such systems is essential. This study focuses on the design of composite faults in combination operating mechanisms and develops simulation scenarios with varying levels of fault severity. Given the challenges of traditional simulation methods in performing quantitative analysis of core jamming faults and the susceptibility of the core’s motion trajectory to external interference, this paper innovatively installs a spring-damping device at the extended core position. This ensures that, during the simulation of core jamming faults, the motion trajectory remains stable and unaffected by external factors, while also enabling precise control over the degree of jamming. As a result, the simulation more accurately reflects real fault conditions, thereby enhancing the accuracy and practicality of diagnostic model outcomes. This study employs the Morlet wavelet transform to convert the current and displacement signals in the time series into time-frequency spectrograms. These spectrograms are then processed using the ResNet50 deep residual neural network for feature extraction and fault classification. The results demonstrate that, when addressing the diagnostic problem of small-sample data for operating mechanism faults, ResNet50, with its residual structure design, exhibits significant advantages. The convolutional layer strategy, which first performs dimensionality reduction followed by dimensionality expansion, combined with the use of the ReLU activation function, contributes to superior performance. This approach achieves a fault recognition accuracy of up to 91.67%. Full article
Show Figures

Figure 1

33 pages, 8519 KiB  
Article
Comprehensive Assessment of the Jebel Zaghouan Karst Aquifer (Northeastern Tunisia): Availability, Quality, and Vulnerability, in the Context of Overexploitation and Global Change
by Emna Gargouri-Ellouze, Fairouz Slama, Samiha Kriaa, Ali Benhmid, Jean-Denis Taupin and Rachida Bouhlila
Water 2025, 17(3), 407; https://doi.org/10.3390/w17030407 - 1 Feb 2025
Cited by 1 | Viewed by 1880
Abstract
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to [...] Read more.
Karst aquifers in the Mediterranean region are crucial for water supply and agriculture but are increasingly threatened by climate change and overexploitation. The Jebel Zaghouan aquifer, historically significant for supplying Carthage and Tunis, serves as the focus of this study, which aims to evaluate its availability, quality, and vulnerability to ensure its long-term sustainability. To achieve this, various methods were employed, including APLIS and COP for recharge assessment and vulnerability mapping, SPEI and SGI drought indices, and stable and radioactive isotope analysis. The findings revealed severe groundwater depletion, primarily caused by overexploitation linked to urban expansion. Minimal recharge was observed, even during wet periods. APLIS analysis indicated moderate infiltration rates, consistent with prior reservoir models and the MEDKAM map. Isotopic analysis highlighted recharge from the Atlantic and mixed rainfall, while Tritium and Carbon-14 dating showed a mix of ancient and recent water, emphasizing the aquifer’s complex hydrodynamics. COP mapping classified 80% of the area as moderately vulnerable. Monitoring of nitrate levels indicated fluctuations, with peaks during wet years at Sidi Medien Spring, necessitating control measures to safeguard water quality amid agricultural activities. This study provides valuable insights into the aquifer’s dynamics, guiding sustainable management and preservation efforts. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

13 pages, 1995 KiB  
Conference Report
Investment Opportunities for mRNA Technology in Low- and Middle-Income Countries: Key Findings and Future Perspectives
by Ariane de Jesus Lopes de Abreu, Cheleka A. M. Mpande, Matthias Helble, Martin W. Nicholson, María de los Ángeles Cortés, María Eugenia Pérez Ponsa, Ivan Redini Blumenthal, Francisco Caccavo, Tomas Pippo, Judit Rius Sanjuan and Claudia Nannei
Vaccines 2025, 13(2), 112; https://doi.org/10.3390/vaccines13020112 - 23 Jan 2025
Viewed by 2258
Abstract
In April 2024, a hybrid meeting organized by the WHO, PAHO, and MPP during the World Bank Spring Meetings focused on financing mRNA-based technologies in Low- and Middle-Income Countries (LMICs). This meeting sought to engage multilateral development banks (MDBs) and stakeholders in financing [...] Read more.
In April 2024, a hybrid meeting organized by the WHO, PAHO, and MPP during the World Bank Spring Meetings focused on financing mRNA-based technologies in Low- and Middle-Income Countries (LMICs). This meeting sought to engage multilateral development banks (MDBs) and stakeholders in financing the expansion of vaccine production and enhancing pandemic preparedness. The COVID-19 pandemic underscored the disparities in vaccine production and distribution, highlighting the need for localized production to improve global health equity. The WHO’s mRNA Technology Transfer Programme, initiated in 2021, aims to build local capacity for mRNA vaccine development and manufacturing. Key sessions covered during the meeting include innovative investment models, with MDBs discussing funding instruments and the necessity of an integrated ecosystem for sustainable vaccine manufacturing. Challenges such as technological risks and the need for higher risk appetite were addressed, along with innovative financing mechanisms like blended financing. An analysis of capital and operational expenditures for mRNA vaccine facilities was presented, projecting significant production capacity in LMICs within a decade. Panelists emphasized the need for sustainable R&D investment and shared experiences in securing funding for mRNA technology. The meeting underscored the importance of collaboration, innovative financing, ecosystem development, and public–private partnerships, marking a pivotal step towards advancing mRNA technology in LMICs to tackle global health challenges. Full article
Show Figures

Figure 1

19 pages, 2950 KiB  
Article
Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types
by Madison A. Laprise, Alice Grgicak-Mannion and Sherah L. VanLaerhoven
Insects 2024, 15(10), 822; https://doi.org/10.3390/insects15100822 - 20 Oct 2024
Viewed by 2213
Abstract
Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, [...] Read more.
Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor–Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (−), woods (−), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/−), roads (−), wheat/corn (−), and commercial (−) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (−) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (−), residential (+), distance to streams (+), waste (−), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

21 pages, 1166 KiB  
Article
Incorporating Boundary Nonlinearity into Structural Vibration Problems
by Alex J. Elliott and Andrea Cammarano
Vibration 2024, 7(4), 949-969; https://doi.org/10.3390/vibration7040050 - 18 Oct 2024
Viewed by 1116
Abstract
This paper presents a methodology for accurately incorporating the nonlinearity of boundary conditions (BCs) into the mode shapes, natural frequencies, and dynamic behaviour of analytical beam models. Such models have received renewed interest in recent years as a result of their successful implementation [...] Read more.
This paper presents a methodology for accurately incorporating the nonlinearity of boundary conditions (BCs) into the mode shapes, natural frequencies, and dynamic behaviour of analytical beam models. Such models have received renewed interest in recent years as a result of their successful implementation in state-of-the-art multiphysics problems. To address the need for this boundary nonlinearity to be more completely captured in the equations of motion, a nonlinear algebra expansion of the classical linear approach for developing solvability conditions for natural frequencies and mode shapes is presented. The method is applicable to any BC that can be accurately represented in polynomial form, either explicitly or through the application of a Taylor expansion; this is the only assumption made in removing the need for the use of analytical approximations of the dynamics themselves. By reducing the BCs of the beam to a system of polynomials, it is possible to utilise the tensor resultant to develop these solvability conditions analogous to the conditions placed on the matrix determinant in linear, classical cases. The approach is first derived for a general set of nonlinear BCs before being applied to two example systems to investigate the importance of including nonlinear tip behaviour in the BCs to accurately predict the system response. In the first, a theoretical, symmetric system, in which a beam is supported by nonlinear springs, is used to explore both the applicability of the methodology and the improvements it can make to the accuracy of the model. Then, the more practical example of a cantilever beam with repulsive magnetic interaction at the tip is used to more explicitly assess the importance of properly incorporating boundary nonlinearity into multiphysics problems. Full article
Show Figures

Figure 1

27 pages, 7573 KiB  
Article
Development of a Novel Beam-Based Finite-Element Approach for the Computationally Efficient Prediction of Residual Stresses and Displacements in Large 3D-Printed Polymer Parts
by Irja B. Hepler and William G. Davids
Appl. Sci. 2024, 14(19), 8834; https://doi.org/10.3390/app14198834 - 1 Oct 2024
Viewed by 1687
Abstract
Recently, 3D printing of large, structural polymer parts has received increasing interest, especially for the creation of recyclable structural parts and tooling. However, the complexity of large-scale 3D polymeric printing often dictates resource-intensive trial and error processes to achieve acceptable parts. Existing computational [...] Read more.
Recently, 3D printing of large, structural polymer parts has received increasing interest, especially for the creation of recyclable structural parts and tooling. However, the complexity of large-scale 3D polymeric printing often dictates resource-intensive trial and error processes to achieve acceptable parts. Existing computational models used to assess the impact of fabrication conditions typically treat the 3D-printed part as a continuum, incorporate oversimplified boundary conditions and take hours to days to run, making design space exploration infeasible. The purpose of this study is to create a structural model that is computationally efficient compared with traditional continuum models yet retains sufficient accuracy to enable exploration of the design space and prediction of part residual stresses and deformations. To this end, a beam-based finite element methodology was created where beads are represented as beams, vertical springs represent inter-bead transverse force transfer and multi-point, linear constraints enforce strain compatibility between adjacent beads. To test this framework, the fabrication of a large Polyethylene terephthalate glycol (PETG) wall was simulated. The PETG was modeled as linearly elastic with an experimentally derived temperature-dependent coefficient of thermal expansion and elastic modulus using temperature history imported from an ABAQUS thermal model. The results of the simulation were compared to those from a continuum model with an identical material definition, showing reasonable agreement of stresses and displacements. Further, the beam-based model required an order of magnitude less run time. Subsequently, the beam-based model was extended to allow separation of the part from the printing bed and the inclusion of part self-weight during fabrication to assess the significance of these effects that pose challenges for existing continuum models. Full article
Show Figures

Figure 1

23 pages, 4665 KiB  
Article
Natural Water Sources and Small-Scale Non-Artisanal Andesite Mining: Scenario Analysis of Post-Mining Land Interventions Using System Dynamics
by Mohamad Khusaini, Rita Parmawati, Corinthias P. M. Sianipar, Gatot Ciptadi and Satoshi Hoshino
Water 2024, 16(17), 2536; https://doi.org/10.3390/w16172536 - 7 Sep 2024
Viewed by 1334
Abstract
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s [...] Read more.
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s water discharge within its watershed. System Dynamics (SD) modeling captures the systemic and systematic impact of mining-induced LUCCs on discharge volumes and groundwater recharge. Agricultural and reservoir-based land reclamation scenarios then reveal post-mining temporal dynamics. The no-mining scenario sees the spring’s discharge consistently decrease until an inflection point in 2032. With mining expansion, reductions accelerate by ~1.44 million tons over two decades, or 65.31 thousand tons annually. LUCCs also decrease groundwater recharge by ~2.48 million tons via increased surface runoff. Proposed post-mining land interventions over reclaimed mining areas influence water volumes differently. Reservoirs on reclaimed land lead to ~822.14 million extra tons of discharge, 2.75 times higher than the agricultural scenario. Moreover, reservoirs can restore original recharge levels by 2039, while agriculture only reduces the mining impact by 28.64% on average. These findings reveal that small-scale non-artisanal andesite mining can disrupt regional hydrology despite modest operating scales. Thus, evidence-based guidelines are needed for permitting such mines based on environmental risk and site water budgets. Policy options include discharge or aquifer recharge caps tailored to small-scale andesite mines. The varied outputs of rehabilitation scenarios also highlight evaluating combined land and water management interventions. With agriculture alone proving insufficient, optimized mixes of revegetation and water harvesting require further exploration. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 7013 KiB  
Article
In Situ Test and Numerical Analysis of the Subway-Induced Vibration Influence in Historical and Cultural Reserves
by Jie Su, Xingyi Liu, Yuzhe Wang, Xingyu Lu, Xiaokai Niu and Jiangtao Zhao
Sensors 2024, 24(9), 2860; https://doi.org/10.3390/s24092860 - 30 Apr 2024
Cited by 2 | Viewed by 1082
Abstract
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric [...] Read more.
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric acceleration sensor capable of monitoring low amplitudes with a sensitivity of 0.298 V/(m/s2), a measuring range of up to 20 m/s2, and a frequency range span from 0.5 to 100 Hz for in situ testing, analyzing the law of vibration propagation in this area, evaluating the impact on buildings, and determining the vibration reduction scheme. The reserve is divided into three zones based on the vertical vibration level measured during the in situ test as follows: severely excessive, generally excessive, and non-excessive vibration. Furthermore, the research develops a dynamic coupling model of vehicle–track–tunnel–stratum–structure to verify the damping effect of the wire spring floating plate track and periodic pile row. It compares the characteristics of three vibration reduction schemes, namely, internal vibration reduction reconstruction, periodic pile row, and anti-vibration reinforcement or reconstruction of buildings, proposing a comprehensive solution. Considering the construction conditions, difficulty, cost, and other factors, a periodic pile row is recommended as the primary treatment measure. If necessary, anti-vibration reinforcement or reconstruction of buildings can serve as supplemental measures. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

15 pages, 18066 KiB  
Article
Reconstruction of the Subsurface of Al-Hassa Oasis Using Gravity Geophysical Data
by Abid Khogali, Konstantinos Chavanidis, Panagiotis Kirmizakis, Alexandros Stampolidis and Pantelis Soupios
Appl. Sci. 2024, 14(9), 3707; https://doi.org/10.3390/app14093707 - 26 Apr 2024
Cited by 4 | Viewed by 1818
Abstract
Al-Hassa city, located in Eastern Saudi Arabia, boasts the world’s largest oasis and the most expansive naturally irrigated lands. Historically, a total of 280 natural springs facilitated significant groundwater discharge and irrigation of agricultural land. Furthermore, the water in certain springs formerly had [...] Read more.
Al-Hassa city, located in Eastern Saudi Arabia, boasts the world’s largest oasis and the most expansive naturally irrigated lands. Historically, a total of 280 natural springs facilitated significant groundwater discharge and irrigation of agricultural land. Furthermore, the water in certain springs formerly had a high temperature. The spatial variability of the water quality was evident. At the same time, Al-Hassa Oasis is situated on the northeastern side of the Ghawar field, which is the largest conventional onshore oil field in the world in terms of both reserves and daily output (approximately 3.8 mmb/d). The aforementioned traits suggest an intricate subsurface that has not yet been publicly and thoroughly characterized. Due to the presence of significant cultural noise caused by agricultural and nearby industrial activities, a robust, easy-to-use, and accurate geophysical method (gravity) was used to cover an area of 350 km2, producing the 3D subsurface model of the study area. A total of 571 gravity stations were collected, covering the whole Al-Hassa Oasis and parts of the nearby semi-urban areas. The gravity data were corrected and processed, and a 3D inversion was applied. The resulting 3D geophysical subsurface modeling unveiled an intricate subterranean configuration and revealed lateral variations in density, indicating the presence of a potential salt dome structure, as well as fracture zones that serve as conduits or obstacles to the flow of the subsurface fluids. This comprehensive modeling approach offers valuable insights into the subsurface dynamics of the broader study area, enhancing our understanding of its qualitative tectonic and hydraulic features and their impacts on the area’s natural resources, such as groundwater and hydrocarbons. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 6537 KiB  
Article
Precipitation Changes on the Northern Slope of the Kunlun Mountains in the Past 42 Years
by Zhenhua Xia, Yaning Chen, Xueqi Zhang, Zhi Li, Gonghuan Fang, Chengang Zhu, Yupeng Li, Jinglong Li, Qianqian Xia and Qixiang Liang
Water 2024, 16(9), 1203; https://doi.org/10.3390/w16091203 - 24 Apr 2024
Cited by 1 | Viewed by 1961
Abstract
The precipitation on the northern slope of the Kunlun Mountains significantly impacts the green economy of the Tarim Basin’s southern edge. Observations have noted an expansion of the surface water area in this region, though the reasons for this are not yet fully [...] Read more.
The precipitation on the northern slope of the Kunlun Mountains significantly impacts the green economy of the Tarim Basin’s southern edge. Observations have noted an expansion of the surface water area in this region, though the reasons for this are not yet fully understood. Due to limited instrumental data, this study leverages field measurements from the third Xinjiang comprehensive expedition and multiple gridded datasets. Through trend analysis and a geographical detector model, it examines the precipitation’s decadal, interannual, and seasonal variations across key areas (Hotan River Basin, Keriya River Basin, Qarqan River Basin, and Kumukuli Basin), identifying factors behind the spatial and temporal distribution of regional precipitation. The findings reveal the following: (1) An increase in annual precipitation across the region from 187.41 mm in the 1980s to 221.23 mm in the early 21st century, at a rate of 10.21 mm/decade, with the most significant rise in the eastern Kunlun-Kumukuli Basin. (2) Precipitation exhibits clear seasonal and spatial patterns, predominantly occurring in spring and summer, accounting for 90.27% of the annual total, with a general decrease from the mountains towards downstream areas. (3) Rising average annual temperatures contribute to an unstable atmospheric structure and increased water-holding capacity, facilitating precipitation. Significant influences on precipitation changes include the North Atlantic Oscillation and solar flux, explaining 43.98% and 31.21% of the variation, respectively. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

20 pages, 5616 KiB  
Article
A Static Damage Constitutive Model of Concrete Based on Microscopic Damage Mechanism
by Ying Xie and Zhiwu Yu
Materials 2024, 17(1), 117; https://doi.org/10.3390/ma17010117 - 26 Dec 2023
Cited by 1 | Viewed by 1412
Abstract
In this article, a microscopic constitutive model is established that includes friction, plastic, and spring elements and has clear physical meaning. The friction unit reflects the mutual friction between crack surfaces, the plastic unit reflects the development of concrete plasticity, and the fracture [...] Read more.
In this article, a microscopic constitutive model is established that includes friction, plastic, and spring elements and has clear physical meaning. The friction unit reflects the mutual friction between crack surfaces, the plastic unit reflects the development of concrete plasticity, and the fracture of the spring unit reflects the formation and expansion of interior cracks in concrete. In addition, the integration of the random field theory into this model uncovers the physical underpinnings of the relationship between concrete’s nonlinearity and randomness. The multi-scale modeling of the concrete static damage constitutive model is then realized once the parameters of the random field are discovered using the macro test results. In order to apply the model’s applicability in finite element programs, a subroutine was ultimately constructed. The experimental data and the anticipated values from the numerical simulation are in good agreement, supporting the model’s realism. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop