Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.2.1. Map of Plantation Forests
2.2.2. The C Sequestration Indicators
2.2.3. Nitrogen (N) Deposition Dataset
2.2.4. Temperature and Precipitation Dataset
2.3. Climate Responses of the C Sequestration Indicators
3. Results
3.1. Changes in Plantation Areas in Jiangsu Province, China, During 1990–2020
3.2. Long-Term Trends and Seasonal Variations in C Sequestration from Plantation Forests in Jiangsu
3.3. Climate Responses of C Sequestration Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duveneck, M.J.; Scheller, R.M. Climate-Suitable Planting as a Strategy for Maintaining Forest Productivity and Functional Diversity. Ecol. Appl. 2015, 25, 1653–1668. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Gao, J.; Yuan, J.; Huang, Y.; Wang, B.; Peng, Y. Approaches to carbon sequestration enhancement in China’s plantation ecosystem for carbon peaking and carbon neutrality goals. Acta Ecol. Sin. 2023, 43, 5662–5673. (In Chinese) [Google Scholar]
- Feng, R.F.; Yang, W.Q.; Zhang, J. Artificial forest management for global change mitigation. Acta Ecol. Sin. 2006, 26, 3870–3877. (In Chinese) [Google Scholar]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower Land-Use Emissions Responsible for Increased Net Land Carbon Sink during the Slow Warming Period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Yao, L.; Liu, T.; Qin, J.; Jiang, H.; Yang, L.; Smith, P.; Chen, X.; Zhou, C.; Piao, S. Carbon Sequestration Potential of Tree Planting in China. Nat. Commun. 2024, 15, 8398. [Google Scholar] [CrossRef]
- Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S. Forestation at the Right Time with the Right Species Can Generate Persistent Carbon Benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [Google Scholar] [CrossRef]
- Peng, S.-S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China Cools Local Land Surface Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Tian, J.; He, J.; He, H.; Liu, G.; Zhang, Z.; Zhou, L. The Spatial and Temporal Distribution of China’s Forest Carbon. Front. Ecol. Evol. 2023, 11, 1110594. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon Storage through China’s Planted Forest Expansion. Nat. Commun. 2024, 15, 1–11. [Google Scholar] [CrossRef]
- Future Land Carbon Removals in China Consistent with National Inventory—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11608317/ (accessed on 4 March 2025).
- Jiangsu Provincial Forestry Bureau. Main Results of the Eighth National Forest Resource Inventory (2009–2013). 2014. Available online: https://lyj.jiangsu.gov.cn/art/2014/5/12/art_7084_3014207.html (accessed on 10 December 2024). (In Chinese)
- Wang, H.; Yang, J.; Xu, R. Influencing Factors on Forest Biomass Carbon Storage in Eastern China–A Case Study of Jiangsu Province. BioResources 2014, 9, 357–371. [Google Scholar] [CrossRef]
- Cao, X.; Mo, Y.; Yan, W.; Zhang, Z.; Peng, Y. Evaluation of Soil Quality in Five Ages of Chinese Fir Plantations in Subtropical China Based on a Structural Equation Model. Forests 2023, 14, 1217. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Wang, J.; Wei, X.; Schuler, J.; Sun, P.; Harper, R.; Zegre, N. Natural Forests Exhibit Higher Carbon Sequestration and Lower Water Consumption than Planted Forests in China. Glob. Change Biol. 2019, 25, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, J.; Yan, P.; Tian, F.; Peñuelas, J.; Rao, M.P.; Fu, Y.; Hu, Z. Planted Forests in China Have Higher Drought Risk Than Natural Forests. Glob. Change Biol. 2025, 31, e70055. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Gazol, A.; Linares, J.C.; Fajardo, A.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Granda, E.; Gimeno, T.E. Differences in Temperature Sensitivity and Drought Recovery between Natural Stands and Plantations of Conifers Are Species-Specific. Sci. Total Environ. 2021, 796, 148930. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.G.; Hu, H.B.; Li, Y.J.; Dong, Z.P.; Lu, X.R.; Bai, M.W.; Zheng, Z.P.; Fang, K.Y. Differences in the ecological resilience of planted and natural Pinus massoniana and Cunning-hamnia lanceolata forests in response to drought in subtropical China. Chin. J. Appl. Ecol. 2021, 32, 3531–3538. (In Chinese) [Google Scholar] [CrossRef]
- Gong, H.; Song, W.; Wang, J.; Wang, X.; Ji, Y.; Zhang, X.; Gao, J. Climate Factors Affect Forest Biomass Allocation by Altering Soil Nutrient Availability and Leaf Traits. J. Integr. Plant Biol. 2023, 65, 2292–2303. [Google Scholar] [CrossRef]
- Bi, J.; Blanco, J.; Seely, B.; Kimmins, J.P.; Ding, Y.; Welham, C. Yield Decline in Chinese-Fir Plantations: A Simulation Investigation with Implications for Model Complexity. Can. J. For. Res. 2007, 37, 1615–1630. [Google Scholar] [CrossRef]
- Ma, X.Q.; Ye, S.J.; Chen, S.H. Effect of Rotation on Site Productivity Maintenance of Chinese Fir Plantation. Sci. Silvae Sin. 2000, 36, 47–52. (In Chinese) [Google Scholar]
- Wang, W.F.; Duan, Y.X.; Zhang, L.X.; Wang, B.; Li, X.J. Effects of Different Rotations on Carbon Sequestration in Chinese Fir Plantations. Chin. J. Plant Ecol. 2016, 40, 669–678. (In Chinese) [Google Scholar] [CrossRef]
- Luo, C.W.; Li, K. The Relation of Species Diversity to Pest Control in Forest Plantations. Sci. Silvae Sin. 2006, 42, 109–115. (In Chinese) [Google Scholar]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Pe-ña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Jiangsu Provincial Forestry Bureau. The 5th Jiangsu Provincial Forestry Work Conference Was Held in Nanjing. 2021. Available online: https://lyj.jiangsu.gov.cn/art/2021/2/4/art_81539_9668692.html (accessed on 10 December 2024). (In Chinese)
- China Academy of Forestry, Institute of Resource Information. Statistical Table of Forest Resources by Ownership from the Third National First-Class Forest Inventory; CSTR:17575.11.0120220428003.0004.V1; National Forestry and Grassland Science Data Center, National Science & Technology Infrastructure of China: Beijing, China, 1988. [Google Scholar]
- China Academy of Forestry, Institute of Resource Information. Statistical Table of Forest Resources by Ownership from the Fourth National First-Class Forest Inventory; CSTR:17575.11.0120190809111.0015.V1; National Forestry and Grassland Science Data Center, National Science & Technology Infrastructure of China: Beijing, China, 1993. [Google Scholar]
- Jiangsu Provincial Development and Reform Commission. Jiangsu Ecological Protection and Construction Plan (2014–2020). 2015. Available online: https://fzggw.jiangsu.gov.cn/art/2015/6/30/art_83784_10119328.html (accessed on 10 December 2024). (In Chinese)
- Jiangsu Forestry Bureau. The General Office of the State Council’s Opinions on Improving the Ecological Protection Compensation Mechanism. 2017. Available online: https://lyj.jiangsu.gov.cn/art/2017/9/1/art_86531_10574280.html (accessed on 10 December 2024). (In Chinese)
- Xing, W.; Qi, W.-L.; Zhao, Q.; Ge, Z.W. Analysis of Carbon Storage in Poplar Plantations in Jiangsu Province. J. Jiangsu For. Sci. Technol. 2015, 42, 15–18. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, K.; Su, Y.; Guan, H.; Tao, S.; Ren, Y.; Hu, T.; Ma, K.; Tang, Y.; Guo, Q. Mapping China’s planted forests using high resolution imagery and massive amounts of crowdsourced samples. ISPRS J. Photogramm. Remote Sens. 2023, 196, 356–371. [Google Scholar] [CrossRef]
- He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought Risk of Global Terrestrial Gross Primary Productivity Over the Last 40 Years Detected by a Remote Sensing-Driven Process Model. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005944. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation Structural Change since 1981 Significantly Enhanced the Terrestrial Carbon Sink. Nat. Commun. 2019, 10, 4259. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of Droughts on Carbon Sequestration by China’s Terrestrial Ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M. Simulating the Effects of Past Changes in Climate, Atmospheric Composition, and Fire Disturbance on Soil Carbon in Canada’s Forests and Wetlands. Glob. Biogeochem. Cycles 2008, 22, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A Process-Based Boreal Ecosystem Productivity Simulator Using Remote Sensing Inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily Canopy Photosynthesis Model through Temporal and Spatial Scaling for Remote Sensing Applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling Multi-Year Coupled Carbon and Water Fluxes in a Boreal Aspen Forest. Agric. For. Meteorol. 2006, 140, 136–151. [Google Scholar] [CrossRef]
- Luo, X.; Keenan, T.F.; Fisher, J.B.; Jiménez-Muñoz, J.-C.; Chen, J.M.; Jiang, C.; Ju, W.; Perakalapudi, N.-V.; Ryu, Y.; Tadić, J.M. The Impact of the 2015/2016 El Niño on Global Photosynthesis Using Satellite Remote Sensing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170409. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Thomas, S.C.; Yin, Y.; Maclaren, V.; Liu, J.; Pan, J.; Liu, G.; Tian, Q.; Zhu, Q.; Pan, J.-J.; et al. Enhancing Forest Carbon Sequestration in China: Toward an Integration of Scientific and Socio-Economic Perspectives. J. Environ. Manag. 2007, 85, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, J.M.; Ju, W.M.; Feng, X.; Chen, M.; Chen, P.; Yu, G. Carbon Sinks and Sources in China’s Forests during 1901–2001. J. Environ. Manag. 2007, 85, 524–537. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J. Simulation Study of China’s Net Primary Production. Chin. Sci. Bull. 2008, 53, 434–443. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, W.; He, H.; Wang, S.; Sun, R.; Zhang, Y. Changes of Net Primary Productivity in China during Recent 11 Years Detected Using an Ecological Model Driven by MODIS Data. Front. Earth Sci. 2013, 7, 112–127. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Zhou, G.; Li, X.; Xu, X.; Li, P.; Sun, S. Coupled LAI Assimilation and BEPS Model for Analyzing the Spatiotemporal Pattern and Heterogeneity of Carbon Fluxes of the Bamboo Forest in Zhejiang Province, China. Agric. For. Meteorol. 2017, 242, 96–108. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Ju, W.M.; Liu, Y.B. Characteristics and driving factors of global terrestrial ecosystem carbon fluxes from 1981 to 2019. Trans. Atmos. Sci. 2022, 45, 332–344. (In Chinese) [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, X.; Liu, L.; Lu, X.; Wang, Y. A Database of Atmospheric Inorganic Nitrogen Deposition Fluxes in China from Satellite Monitoring. Sci. Data 2023, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Z. 1-Km Monthly Precipitation Dataset for China (1901–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Peng, S.Z. 1-Km Monthly Mean Temperature Dataset for China (1901–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal Change and Trend Analysis of Potential Evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1-Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of Climate Change Trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Jevšenak, J. New Features in the dendroTools R Package: Bootstrapped and Partial Correlation Coefficients for Monthly and Daily Climate Data. Dendrochronologia 2020, 63, 125753. [Google Scholar] [CrossRef]
- Shi, Z.; Crowell, S.; Luo, Y.; Moore, B. Model Structures Amplify Uncertainty in Predicted Soil Carbon Responses to Climate Change. Nat. Commun. 2018, 9, 2171. [Google Scholar] [CrossRef]
- Schimel, J. Modeling Ecosystem-Scale Carbon Dynamics in Soil: The Microbial Dimension. Soil. Biol. Biochem. 2023, 178, 108948. [Google Scholar] [CrossRef]
- Wei, S.; Yi, C.; Fang, W.; Hendrey, G. A Global Study of GPP Focusing on Light-Use Efficiency in a Random Forest Regression Model. Ecosphere 2017, 8, e01724. [Google Scholar] [CrossRef]
- Li, X.; Liang, S.; Yu, G.; Yuan, W.; Cheng, X.; Xia, J.; Zhao, T.; Feng, J.; Ma, Z.; Ma, M.; et al. Estimation of Gross Primary Production over the Terrestrial Ecosystems in China. Ecol. Model. 2013, 261–262, 80–92. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lv, J. Interannual Variations in GPP in Forest Ecosystems in Southwest China and Regional Differences in the Climatic Contributions. Ecol. Inform. 2022, 69, 101591. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Chen, X.; Hu, S. Variability, Tendencies, and Climate Controls of Terrestrial Evapotranspiration and Gross Primary Productivity in the Recent Decade over China. Ecohydrology 2018, 11, e1951. [Google Scholar] [CrossRef]
- Adachi, M.; Ito, A.; Ishida, A.; Kadir, W.R.; Ladpala, P.; Yamagata, Y. Carbon Budget of Tropical Forests in Southeast Asia and the Effects of Deforestation: An Approach Using a Process-Based Model and Field Measurements. Biogeosciences 2011, 8, 2635–2647. [Google Scholar] [CrossRef]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulze, E.-D.; Wingate, L.; Matteucci, G.; et al. CO2 Balance of Boreal, Temperate, and Tropical Forests Derived from a Global Database. Glob. Change Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Wang, Q. Magnitude, Pattern and Controls of Carbon Flux and Carbon Use Efficiency in China’s Typical Forests. Glob. Planet. Chang. 2019, 172, 464–473. [Google Scholar] [CrossRef]
- Malhi, Y.; Aragão, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.Q.; Costa, A.C.L.D.; et al. Comprehensive Assessment of Carbon Productivity, Allocation and Storage in Three Amazonian Forests. Glob. Change Biol. 2009, 15, 1255–1274. [Google Scholar] [CrossRef]
- Alves, M.P.; da Silva, R.B.C.; Silva, C.M.S.E.; Bezerra, B.G.; Rêgo Mendes, K.; Marinho, L.A.; Barbosa, M.L.; Nunes, H.G.G.C.; Dos Santos, J.G.M.; de Araújo Tiburtino Neves, T.T.; et al. Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates. Remote Sens. 2024, 16, 3606. [Google Scholar] [CrossRef]
- Zhang-Zheng, H.; Adu-Bredu, S.; Duah-Gyamfi, A.; Moore, S.; Addo-Danso, S.D.; Amissah, L.; Valentini, R.; Djagbletey, G.; Anim-Adjei, K.; Quansah, J.; et al. Contrasting Carbon Cycle along Tropical Forest Aridity Gradients in West Africa and Amazonia. Nat. Commun. 2024, 15, 3158. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; Mutti, P.R.; Ferreira, R.R.; Ramos, T.M.; Marques, T.V.; dos Reis, J.S.; de Lima Vieira, M.M.; Silva, A.C.N.; Marques, A.M.S.; et al. Assessment of SITE for CO2 and Energy Fluxes Simulations in a Seasonally Dry Tropical Forest (Caatinga Ecosystem). Forests 2021, 12, 86. [Google Scholar] [CrossRef]
- Hutley, L.B.; Beringer, J.; Fatichi, S.; Schymanski, S.J.; Northwood, M. Gross Primary Productivity and Water Use Efficiency Are Increasing in a High Rainfall Tropical Savanna. Glob. Change Biol. 2022, 28, 2360–2380. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Du, H.; Mao, F.; Li, X.; Zhou, G.; Xu, C.; Sun, J. Spatiotemporal Patterns of Net Primary Productivity of Subtropical Forests in China and Its Response to Drought. Sci. Total Environ. 2024, 913, 169439. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Lu, C.; Dangal, S.R.S.; Liu, M. Net Primary Production of Major Plant Functional Types in China: Vegetation Classification and Ecosystem Simulation. Acta Ecol. Sin. 2015, 35, 28–36. [Google Scholar] [CrossRef]
- Mao, J.; Dan, L.; Wang, B.; Dai, Y. Simulation and Evaluation of Terrestrial Ecosystem NPP with M-SDGVM over Continental China. Adv. Atmos. Sci. 2010, 27, 427–442. [Google Scholar] [CrossRef]
- Tao, B.; Li, K.; Shao, X. Temporal and Spatial Pattern of Net Primary Production of Terrestrial Ecosystems in China. Acta Geogr. Sin. 2003, 58, 372–380. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhu, B.; Tan, K. Forest Biomass Carbon Stocks in China over the Past 2 Decades: Estimation Based on Integrated Inventory and Satellite Data. J. Geophys. Res. Biogeosci. 2005, 110, 1–10. [Google Scholar] [CrossRef]
- Moore, S.; Adu-Bredu, S.; Duah-Gyamfi, A.; Addo-Danso, S.D.; Ibrahim, F.; Mbou, A.T.; Grandcourt, A.D.; Valentini, R.; Nicolini, G.; Djagbletey, G.; et al. Forest Biomass, Productivity and Carbon Cycling along a Rainfall Gradient in West Africa. Glob. Change Biol. 2018, 24, e496–e510. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Cao, M.; Li, K.; Gu, F.; Ji, J.; Huang, M.; Zhang, L. Spatial Patterns of Terrestrial Net Ecosystem Productivity in China during 1981–2000. Sci. China Ser. D-Earth Sci. 2007, 50, 745–753. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Tang, X.; Jiang, H.; Sun, X.; Zhuang, Q.; Li, H. Impacts of Land Use Changes on Net Ecosystem Production in the Taihu Lake Basin of China from 1985 to 2010. J. Geophys. Res. Biogeosci. 2017, 122, 690–707. [Google Scholar] [CrossRef]
- Lei, Z.; Shaoqiang, W.; Weimin, J.U.; Zhe, X.; Kindermann, G.; Jingming, C.; Hao, S.H.I. Assessment of Carbon Dynamics of Forest Ecosystems in the Poyang Lake Basin Responding to Afforestation and Future Climate Change. J. Resour. Ecol. 2013, 4, 11–19. [Google Scholar] [CrossRef]
- Yu, G.-R.; Zhu, X.-J.; Fu, Y.-L.; He, H.-L.; Wang, Q.-F.; Wen, X.-F.; Li, X.-R.; Zhang, L.-M.; Zhang, L.; Su, W.; et al. Spatial Patterns and Climate Drivers of Carbon Fluxes in Terrestrial Ecosystems of China. Glob. Change Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef]
- Jiangsu Provincial Development and Reform Commission. Jiangsu Province Wetland Conservation Plan (2015–2030). 2015. Available online: https://fzggw.jiangsu.gov.cn/art/2015/4/30/art_83784_10119305.html (accessed on 10 December 2024). (In Chinese)
- Chen, X.; Yu, S.; Xie, Z. A Preliminary Study on the Construction of Eco-protection Forests on Embankments in Eastern Coastal Cities. For. Investig. Des. 2018, 2, 8–12. (In Chinese) [Google Scholar] [CrossRef]
- Cao, H.; Chang, W.; Xu, H. Building an Oasis in Coastal Tidal Flats: The New Landscape of Dongtai Yellow Sea National Forest Park in Yancheng, Jiangsu Province. Land Green. 2019, 10, 56–58. (In Chinese) [Google Scholar]
- Jiangsu Provincial Forestry Bureau. 2015 Jiangsu Forestry Overview. 2016. Available online: https://lyj.jiangsu.gov.cn/art/2016/4/19/art_86524_10574012.html (accessed on 10 December 2024). (In Chinese)
- Jiangsu Provincial Forestry Bureau. Forest Cities: Creating a Greener Life. 2019. Available online: https://lyj.jiangsu.gov.cn/art/2019/7/30/art_7118_8646744.html (accessed on 10 December 2024). (In Chinese)
- Xu, Y.Q.; Xiao, F.J.; Yu, L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sin. 2020, 40, 4710–4723. (In Chinese) [Google Scholar]
- Peng, F.; Sun, G. Variation of Leaf Area Index in China from 1982 to 1999 and Its Relationship with Climate Change. Clim. Environ. Res. 2017, 22, 162–176. [Google Scholar] [CrossRef]
- Liu, K.J.; He, N.P.; Hou, J.H. Spatial patterns and influencing factors of specific leaf area in typical temperate forests. Acta Ecol. Sin. 2022, 42, 872–883. (In Chinese) [Google Scholar]
- Cui, J.; Zheng, M.; Bian, Z.; Pan, N.; Tian, H.; Zhang, X.; Qiu, Z.; Xu, J.; Gu, B. Elevated CO2 Levels Promote Both Carbon and Nitrogen Cycling in Global Forests. Nat. Clim. Chang. 2024, 14, 511–517. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wang, B.; Bian, S.J.; Chen, Y.X.; Li, M.Z.; Fan, W.Y. Spatial and Temporal Trends in the Response of Global Forest GPP and NEP to CO2 Fertilization Effects from 1982 to 2015. J. Remote Sens. 2025, 29, 102–117. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef]
- Gu, H.; Qiao, Y.; Xi, Z.; Rossi, S.; Smith, N.G.; Liu, J.; Chen, L. Warming-Induced Increase in Carbon Uptake Is Linked to Earlier Spring Phenology in Temperate and Boreal Forests. Nat. Commun. 2022, 13, 3698. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Uebbing, L.; de Vries, W. Global-Scale Impacts of Nitrogen Deposition on Tree Carbon Sequestration in Tropical, Temperate, and Boreal Forests: A Meta-Analysis. Glob. Change Biol. 2018, 24, e416–e431. [Google Scholar] [CrossRef]
- CO2 Fluxes over an Old, Temperate Mixed Forest in Northeastern China. Agric. For. Meteorol. 2006, 137, 138–149. [CrossRef]
- Mohammed, A.-R.; Tarpley, L. Impact of High Nighttime Temperature on Respiration, Membrane Stability, Antioxidant Capacity, and Yield of Rice Plants. Crop Sci. 2009, 49, 313–322. [Google Scholar] [CrossRef]
- Zhen, Z.Q.; Zhan, Z.Y.; Liu, M.L.; Xiong, J.Q. Characteristic of Temperature Changes in Jiangsu Province over the Last 60 Years. Inn. Mong. Environ. Sci. 2024, 36, 42–46. (In Chinese) [Google Scholar]
- Jing, J.; Sun, J.; Zhao, T.; Fu, B. Response of Vegetation NPP to Multiscale Meteorological Drought in Southwest China. J. Soil. Water Conserv. 2024, 38, 335–344. [Google Scholar]
- Jiang, P.; Yan, J.; Liu, R.; Zhang, X.; Fan, S. Patterns of Deep Fine Root and Water Utilization amongst Trees, Shrubs and Herbs in Subtropical Pine Plantations with Seasonal Droughts. Front. Plant Sci. 2023, 14, 1275464. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Zhang, X.-S.; Huang, Z.-Y. Drought Tolerance in Three Hybrid Poplar Clones Submitted to Different Watering Regimes. J. Plant Ecol. 2010, 3, 79–87. [Google Scholar] [CrossRef]
- Liu, D.; Wang, T.; Peñuelas, J.; Piao, S. Drought Resistance Enhanced by Tree Species Diversity in Global Forests. Nat. Geosci. 2022, 15, 800–804. [Google Scholar] [CrossRef]
Indicator | Value (gC·m−2·yr−1) | Study Region | Methods | Source | Reference |
---|---|---|---|---|---|
GPP | 1966–2257 | Southern China | Model | RFR-LUE | Suhua Wei et al. (2017) [55] |
1430–1619 | Southern China | Model | EC-LUE | Xianglan Li et al. (2013) [56] | |
1174.65–1982.54 | Southern China | Model | MODIS, PML, and VPM | Yuzhen Li et al. (2022) [57] | |
1211–1604 | Southern China | Model | MODIS algorithm parameterized by FLUXNET sites | Wang, L. et al. (2017) [58] | |
1509 ± 734 | Southern China | Model | VIP | Xingguo Mo et al. (2018) [59] | |
3150 | Tropical forests in Malaysia | Model | VPISIT | M. Adachi et al. (2011) [60] | |
3551 ± 160 | Global tropical forests | Observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
1709 ± 80 | Sites in Southern China | Site observation | FLUXNET | Zhi Chen et al. (2019) [62] | |
1826 | Sites in Southern China | Site observation | FLUXNET | Wang, L. et ail. (2017) [58] | |
3040–3140 | Tropical forests in the Amazon | Site observation | FLUXNET | Malhi et al. (2009) [63] | |
4860 | Tropical forests in the Amazon | Site observation | FLUXNET | Alves et al. (2024) [64] | |
4010 | Tropical forests in West African | Site observation | In situ biometric measurements | Zhang-Zheng et al. (2024) [65] | |
1314 | Caatinga ecosystem in Brazil | Site observation | FLUXNET | Mendes et al. (2021) [66] | |
2144 ± 123 | Savanna ecosystem in North Australia | Site observation | FLUXNET | Lindsay et al. (2021) [67] | |
1216.66 | Jiangsu Province, China | Model | BEPS | This study | |
NPP | 687 | Southern China | Model | BEPS | Shiyan Yin et al. (2024) [68] |
1018 | Southern China | Model | DLEM | Shufen Pan et al. (2015) [69] | |
891 | Southern China | Model | M-SDGVM | Mao et al. (2010) [70] | |
721 | Southern China | Model | CEVSA | Tao et al. (2003) [71] | |
417.9 | Southern China | Model | CASA | Piao et al. (2005) [72] | |
864 ± 96 | Global tropical forests | Site observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
1300 ± 50 | Evergreen forests in Ghana, West Africa | Site observation | In situ biometric measurements | Sam Moore et al. (2017) [73] | |
1000–1440 | Tropical forests in the Amazon | Site observation | FLUXNET | Malhi et al. (2009) [63] | |
536.27 | Jiangsu Province, China | Model | BEPS | This study | |
NEP | 15–60 | Southern China | Model | CEVESA | Tao, B. et al. (2007) [74] |
160.4–193.3 | Taihu Lake Basin, China | Model | BIOME-BGC | Xibao Xu et al. (2017) [75] | |
266 | Poyang Lake Basin, China | Model | InTEC | Zhou Lei et al. (2013) [76] | |
30 | Tropical forests in Malaysia | Model | VPISIT | M. Adachi et al. (2011) [60] | |
424 ± 95 | Savanna ecosystem in North Australia | Site observation | FLUXNET | Lindsay et al. (2021) [67] | |
403 ± 102 | Global tropical forests | Site observation and model | Data synthesis | S. Luyssaert et al. (2007) [61] | |
254 | Poyang Lake Basin, China | Site observation | FLUXNET | Zhou Lei et al. (2013) [76] | |
385.36 ± 117.81 | Sites in Southern China | Site observation | FLUXNET | Yu GR et al. (2012) [77] | |
668 | Tropical forests in the Amazon | Site observation | FLUXNET | Alves et al. (2024) [64] | |
16.32 | Jiangsu Province, China | Model | BEPS | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Wu, M.; Lin, Z.; Chen, Y.; Ruan, H. Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests 2025, 16, 756. https://doi.org/10.3390/f16050756
Cui Y, Wu M, Lin Z, Chen Y, Ruan H. Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests. 2025; 16(5):756. https://doi.org/10.3390/f16050756
Chicago/Turabian StyleCui, Yuxue, Miaomiao Wu, Zhongyi Lin, Yizhao Chen, and Honghua Ruan. 2025. "Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China" Forests 16, no. 5: 756. https://doi.org/10.3390/f16050756
APA StyleCui, Y., Wu, M., Lin, Z., Chen, Y., & Ruan, H. (2025). Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China. Forests, 16(5), 756. https://doi.org/10.3390/f16050756