Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = spinel oxide semiconductors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2226 KB  
Article
Engineered NiCo2O4 Spinel Nanostructures for Enhanced Electrocatalytic Performance in Energy Storage and Non-Enzymatic Glucose Detection
by Ambikapathi Nivetha, Srirangarayan Subramanian Rakesh, Prabu P. Chidambaram, Abdullah F. Al Naim, Nazish Parveen, Senthil Alagarswamy, Sajid Ali Ansari and Mir Waqas Alam
Catalysts 2025, 15(9), 899; https://doi.org/10.3390/catal15090899 - 17 Sep 2025
Viewed by 356
Abstract
The development of multifunctional nanostructured catalysts with high electrochemical activity and stability is crucial for sustainable technologies. Herein, we report the synthesis of CTAB-capped NiCo2O4 (CNC) spinel nanostructures via a facile co-precipitation method, engineered to enhance surface activity and charge [...] Read more.
The development of multifunctional nanostructured catalysts with high electrochemical activity and stability is crucial for sustainable technologies. Herein, we report the synthesis of CTAB-capped NiCo2O4 (CNC) spinel nanostructures via a facile co-precipitation method, engineered to enhance surface activity and charge transport. The optical and structural properties of the nanocomposite were confirmed by UV-Vis and TEM analysis, and the functional group present in the composite was confirmed by FT-IR study. The cubic spinel phase of the CNC was confirmed by XRD analysis. The band gap value was determined to be 2.15 eV, which confirmed the semiconductor nature of the nanocomposite. The photocatalytic degradation efficiency was achieved up to approximately 97% against malachite green. Additionally, CNC demonstrated excellent electrocatalytic performance in non-enzymatic glucose detection, exhibiting high sensitivity and reproducibility across a broad concentration range. Hence, the CNC acted as a potent oxidant for photoelectrochemical reactions. Full article
Show Figures

Figure 1

29 pages, 5116 KB  
Review
Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review
by Hao Chen, Huayang Chen, Jiabao Chen and Mingxin Song
Sensors 2024, 24(10), 2962; https://doi.org/10.3390/s24102962 - 7 May 2024
Cited by 22 | Viewed by 5802
Abstract
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. [...] Read more.
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Figure 1

14 pages, 4561 KB  
Article
Green Synthesis of Cobalt Oxide Nanoparticles Using Hyphaene thebaica Fruit Extract and Their Photocatalytic Application
by Ammara Safdar, Hamza Elsayed Ahmed Mohamed, Khaoula Hkiri, Abdul Muhaymin and Malik Maaza
Appl. Sci. 2023, 13(16), 9082; https://doi.org/10.3390/app13169082 - 9 Aug 2023
Cited by 37 | Viewed by 6628
Abstract
Cobalt oxide, a multifunctional, anti-ferromagnetic p-type semiconductor with an optical bandgap of ~2.00 eV, exhibits remarkable catalytic, chemical, optical, magnetic, and electrical properties. In our study, cobalt oxide nanoparticles (Co3O4 NPs) were prepared by the green synthesis method using dried [...] Read more.
Cobalt oxide, a multifunctional, anti-ferromagnetic p-type semiconductor with an optical bandgap of ~2.00 eV, exhibits remarkable catalytic, chemical, optical, magnetic, and electrical properties. In our study, cobalt oxide nanoparticles (Co3O4 NPs) were prepared by the green synthesis method using dried fruit extracts of Hyphaene thebaica (doum palm) as a cost-effective reducing and stabilizing agent. Scanning electron microscopy (SEM) depicts stable hollow spherical entities which, consist of interconnected Co3O4 NPs, while energy-dispersive X-ray spectroscopy (EDS) indicates the presence of Co and O. The obtained product was identified by X-ray diffraction (XRD) that showed a sharp peak at (220), (311), (222), (400), (511) indicating the high crystallinity of the product. The Raman peaks indicate the Co3O4 spinel structure with an average shift of Δν~9 cm−1 (191~470~510~608~675 cm−1). In the Fourier transform infrared spectroscopy (FT-IR) spectrum, the major bands at 3128 cm−1, 1624 cm−1, 1399 cm−1, 667 cm−1, and 577 cm−1 can be attributed to the carbonyl functional groups, amides, and Co3O4 NPs, respectively. The photocatalytic activity of the synthesized NPs was evaluated by degrading methylene blue dye under visible light. Approximately 93% degradation was accomplished in the reaction time of 175 min at a catalyst loading of 1 g/L under neutral pH. This study has shown that Co3O4 is a promising material for photocatalytic degradation. Full article
Show Figures

Figure 1

46 pages, 5702 KB  
Review
Recent Progress in Spinel Ferrite (MFe2O4) Chemiresistive Based Gas Sensors
by Run Zhang, Cong Qin, Hari Bala, Yan Wang and Jianliang Cao
Nanomaterials 2023, 13(15), 2188; https://doi.org/10.3390/nano13152188 - 27 Jul 2023
Cited by 30 | Viewed by 4356
Abstract
Gas-sensing technology has gained significant attention in recent years due to the increasing concern for environmental safety and human health caused by reactive gases. In particular, spinel ferrite (MFe2O4), a metal oxide semiconductor with a spinel structure, has emerged [...] Read more.
Gas-sensing technology has gained significant attention in recent years due to the increasing concern for environmental safety and human health caused by reactive gases. In particular, spinel ferrite (MFe2O4), a metal oxide semiconductor with a spinel structure, has emerged as a promising material for gas-sensing applications. This review article aims to provide an overview of the latest developments in spinel-ferrite-based gas sensors. It begins by discussing the gas-sensing mechanism of spinel ferrite sensors, which involves the interaction between the target gas molecules and the surface of the sensor material. The unique properties of spinel ferrite, such as its high surface area, tunable bandgap, and excellent stability, contribute to its gas-sensing capabilities. The article then delves into recent advancements in gas sensors based on spinel ferrite, focusing on various aspects such as microstructures, element doping, and heterostructure materials. The microstructure of spinel ferrite can be tailored to enhance the gas-sensing performance by controlling factors such as the grain size, porosity, and surface area. Element doping, such as incorporating transition metal ions, can further enhance the gas-sensing properties by modifying the electronic structure and surface chemistry of the sensor material. Additionally, the integration of spinel ferrite with other semiconductors in heterostructure configurations has shown potential for improving the selectivity and overall sensing performance. Furthermore, the article suggests that the combination of spinel ferrite and semiconductors can enhance the selectivity, stability, and sensing performance of gas sensors at room or low temperatures. This is particularly important for practical applications where real-time and accurate gas detection is crucial. In conclusion, this review highlights the potential of spinel-ferrite-based gas sensors and provides insights into the latest advancements in this field. The combination of spinel ferrite with other materials and the optimization of sensor parameters offer opportunities for the development of highly efficient and reliable gas-sensing devices for early detection and warning systems. Full article
(This article belongs to the Special Issue Advanced Gas Sensors Developed by Nanocomposites)
Show Figures

Figure 1

14 pages, 5163 KB  
Article
Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs)
by Yiwang Dong, Muhammad Yousaf, Muhammad Ali Kamran Yousaf Shah, Muhammad Akbar, Yuzheng Lu, Lei Zhang, Qadeer Akbar Sial, Peng Cao and Changhong Deng
Crystals 2023, 13(6), 975; https://doi.org/10.3390/cryst13060975 - 19 Jun 2023
Cited by 9 | Viewed by 2285
Abstract
Semiconductor ionic electrolytes, especially heterostructure composites, have a significant role in enhancing oxide ion conductivity and peak power density (PPD) because of their interfacial contact. In this work, the fluorite structure CeO2 and spinel-based CoAl2O4 samples, as a heterostructure [...] Read more.
Semiconductor ionic electrolytes, especially heterostructure composites, have a significant role in enhancing oxide ion conductivity and peak power density (PPD) because of their interfacial contact. In this work, the fluorite structure CeO2 and spinel-based CoAl2O4 samples, as a heterostructure composite electrolyte, are successfully fabricated. The p-type CoAl2O4 and n-type CeO2 heterostructure (CeO2-CoAl2O4) used as an electrolyte exhibits a cell performance of 758 mW/cm2 under fuel cell H2/air conditions at 550 °C, which is quite higher than the pure CoAl2O4 and CeO2 fuel cell devices. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) verified the heterostructure formation including the morphological analysis of the prepared heterostructure composite. The heterostructure-based CeO2-CoAl2O4 composite achieved a higher ionic conductivity of 0.13 S/cm at 550 °C temperature, which means that the constructed device successfully works as an electrolyte by suppressing electronic conductivity. Meanwhile, the obtained results demonstrate the semiconductor ionic heterostructure effect by adjusting the appropriate composition to build heterostructure of the n-type (CeO2) and p-type (CoAl2O4) components and built-in electric field. So, this work exhibits that the constructed device can be effective for energy conversion and storage devices. Full article
Show Figures

Figure 1

15 pages, 15888 KB  
Article
Improved Ionic Transport Using a Novel Semiconductor Co0.6Mn0.4Fe0.4Al1.6O4 and Its Heterostructure with Zinc Oxide for Electrolyte Membrane in LT-CFCs
by Yiwang Dong, Naveed Mushtaq, Muhammad. A. K. Yousaf Shah, Muhammad Yousaf, Yuzheng Lu, Peng Cao, Qing Ma and Changhong Deng
Nanomaterials 2023, 13(12), 1887; https://doi.org/10.3390/nano13121887 - 19 Jun 2023
Cited by 2 | Viewed by 1716
Abstract
Improving the ionic conductivity and slow oxygen reduction electro-catalytic activity of reactions occurring at low operating temperature would do wonders for the widespread use of low-operating temperature ceramic fuel cells (LT-CFCs; 450–550 °C). In this work, we present a novel semiconductor heterostructure composite [...] Read more.
Improving the ionic conductivity and slow oxygen reduction electro-catalytic activity of reactions occurring at low operating temperature would do wonders for the widespread use of low-operating temperature ceramic fuel cells (LT-CFCs; 450–550 °C). In this work, we present a novel semiconductor heterostructure composite made of a spinel-like structure of Co0.6Mn0.4Fe0.4Al1.6O4 (CMFA) and ZnO, which functions as an effective electrolyte membrane for solid oxide fuel cells. For enhanced fuel cell performance at sub-optimal temperatures, the CMFA–ZnO heterostructure composite was developed. We have shown that a button-sized SOFC fueled by H2 and ambient air can provide 835 mW/cm2 of power and 2216 mA/cm2 of current at 550 °C, possibly functioning down to 450 °C. In addition, the oxygen vacancy formation energy and activation energy of the CMFA–ZnO heterostructure composite is lower than those of the individual CMFA and ZnO, facilitating ion transit. The improved ionic conduction of the CMFA–ZnO heterostructure composite was investigated using several transmission and spectroscopic measures, including X-ray diffraction, photoelectron, and UV–visible spectroscopy, and density functional theory (DFT) calculations. These findings suggest that the heterostructure approach is practical for LT-SOFCs. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Figure 1

18 pages, 14778 KB  
Article
Nanocomposite Co3O4-ZnO Thin Films for Photoconductivity Sensors
by Victor V. Petrov, Victor V. Sysoev, Irina O. Ignatieva, Irina A. Gulyaeva, Maria G. Volkova, Alexandra P. Ivanishcheva, Soslan A. Khubezhov, Yuri N. Varzarev and Ekaterina M. Bayan
Sensors 2023, 23(12), 5617; https://doi.org/10.3390/s23125617 - 15 Jun 2023
Cited by 15 | Viewed by 2457
Abstract
Thin nanocomposite films based on zinc oxide (ZnO) added with cobalt oxide (Co3O4) were synthesized by solid-phase pyrolysis. According to XRD, the films consist of a ZnO wurtzite phase and a cubic structure of Co3O4 spinel. [...] Read more.
Thin nanocomposite films based on zinc oxide (ZnO) added with cobalt oxide (Co3O4) were synthesized by solid-phase pyrolysis. According to XRD, the films consist of a ZnO wurtzite phase and a cubic structure of Co3O4 spinel. The crystallite sizes in the films increased from 18 nm to 24 nm with growing annealing temperature and Co3O4 concentration. Optical and X-ray photoelectron spectroscopy data revealed that enhancing the Co3O4 concentration leads to a change in the optical absorption spectrum and the appearance of allowed transitions in the material. Electrophysical measurements showed that Co3O4-ZnO films have a resistivity up to 3 × 104 Ohm∙cm and a semiconductor conductivity close to intrinsic. With advancing the Co3O4 concentration, the mobility of the charge carriers was found to increase by almost four times. The photosensors based on the 10Co-90Zn film exhibited a maximum normalized photoresponse when exposed to radiation with wavelengths of 400 nm and 660 nm. It was found that the same film has a minimum response time of ca. 26.2 ms upon exposure to radiation of 660 nm wavelength. The photosensors based on the 3Co-97Zn film have a minimum response time of ca. 58.3 ms versus the radiation of 400 nm wavelength. Thus, the Co3O4 content was found to be an effective impurity to tune the photosensitivity of radiation sensors based on Co3O4-ZnO films in the wavelength range of 400–660 nm. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Graphical abstract

26 pages, 4898 KB  
Review
Magnetic Semiconductors as Materials for Spintronics
by Andrei Telegin and Yurii Sukhorukov
Magnetochemistry 2022, 8(12), 173; https://doi.org/10.3390/magnetochemistry8120173 - 29 Nov 2022
Cited by 37 | Viewed by 7210
Abstract
From the various aspects of spintronics the review highlights the area devoted to the creation of new functional materials based on magnetic semiconductors and demonstrates both the main physical phenomena involved and the technical possibilities of creating various devices: maser, p-n diode with [...] Read more.
From the various aspects of spintronics the review highlights the area devoted to the creation of new functional materials based on magnetic semiconductors and demonstrates both the main physical phenomena involved and the technical possibilities of creating various devices: maser, p-n diode with colossal magnetoresistance, spin valve, magnetic lens, optical modulators, spin wave amplifier, etc. Particular attention is paid to promising research directions such as ultrafast spin transport and THz spectroscopy of magnetic semiconductors. Special care has been taken to include a brief theoretical background and experimental results for the new spintronics approach employing magnetostrictive semiconductors—strain-magnetooptics. Finally, it presents top-down approaches for magnetic semiconductors. The mechano-physical methods of obtaining and features of the physical properties of high-density nanoceramics based on complex magnetic oxides are considered. The potential possibility of using these nanoceramics as an absorber of solar energy, as well as in modulators of electromagnetic radiation, is shown. Full article
(This article belongs to the Special Issue Spintronics, Magnetic Semiconductors and Devices)
Show Figures

Figure 1

13 pages, 3710 KB  
Article
Thermal Stability and Utilization of 1D-Nanostructured Co3O4 Rods Derived by Simple Solvothermal Processing
by Vilko Mandić, Stanislav Kurajica, Milivoj Plodinec and Ivana Panžić
Catalysts 2022, 12(10), 1162; https://doi.org/10.3390/catal12101162 - 2 Oct 2022
Cited by 2 | Viewed by 2311
Abstract
For p-type semiconductor nanoparticles, such as the cobalt oxide spinel, enhancing the nanoparticle geometry can expose more of the surface and bring up the sensitivity and applicability, pointing to even more advantageous behaviour in comparison to n-type semiconductors which are known for a [...] Read more.
For p-type semiconductor nanoparticles, such as the cobalt oxide spinel, enhancing the nanoparticle geometry can expose more of the surface and bring up the sensitivity and applicability, pointing to even more advantageous behaviour in comparison to n-type semiconductors which are known for a somewhat faster reactivity. Here, we present a strategy that relies on fostering a simple synthetic route that can deliver reasonably or comparably performing p-type-semiconducting partially 1D-Co3O4 material prepared under less technically and economically demanding conditions. Structurally monophasic Co3O4 nanoparticles with a spinel structure were indicated by powder X-ray diffraction, while the presence of traces of organic-phase residuals in otherwise chemically homogeneous material was observed by Fourier-transform infrared spectroscopy. Scanning electron microscopy further showed that the observed fine nanoparticle matter formed agglomerates with the possible presence of rod-like formations. Interestingly, using transmission electron microscopy, it was possible to reveal that the agglomerates of the fine nanoparticulated material were actually nanostructured, i.e., the presence of 1D-shaped Co3O4 rods embedded in fine nanoparticulated matrix was confirmed. In conjunction with the N2 adsorption–desorption isotherms, discussion about the orientation, exposure of nanostructured rod domains, and derivative geometry parameters was possible. The nanostructured Co3O4 material was shown to be stable up to 800 °C whereat the decomposition to CoO takes place. The specific surface area of the nanostructured sample was raised. For the purpose of testing the photoactivity of the prepared samples, simple sorption/photodegradation tests using methylene blue as the model pollutant were performed. The degradation performance of the prepared nanostructured Co3O4 was better described by a pseudo-second-order fit, suggesting that the prepared material is worth further development toward improved and stable immobilized photocatalysts. Full article
(This article belongs to the Special Issue Nanomaterials for Photocatalysis)
Show Figures

Figure 1

13 pages, 2063 KB  
Article
Useful High-Entropy Source on Spinel Oxides for Gas Detection
by Takeshi Hashishin, Haruka Taniguchi, Fei Li and Hiroya Abe
Sensors 2022, 22(11), 4233; https://doi.org/10.3390/s22114233 - 1 Jun 2022
Cited by 16 | Viewed by 3946
Abstract
This study aimed to identify a useful high-entropy source for gas detection by spinel oxides that are composed of five cations in nearly equal molar amounts and free of impurities. The sensor responses of the spinel oxides [1# (CoCrFeMnNi)3O4, [...] Read more.
This study aimed to identify a useful high-entropy source for gas detection by spinel oxides that are composed of five cations in nearly equal molar amounts and free of impurities. The sensor responses of the spinel oxides [1# (CoCrFeMnNi)3O4, 2# (CoCrFeMnZn)3O4, 3# (CoCrFeNiZn)3O4, 4# (CoCrMnNiZn)3O4, 5# (CoFeMnNiZn)3O4, and 6# (CrFeMnNiZn)3O4] were evaluated for the test gases (7 ppm NO2, 5000 ppm H2, 3 ppm NH3, and 3 ppm H2S). In response to NO2, 1# and 2# showed p-type behavior while 3–6# showed n-type semiconductor behavior. There are three p-type and one n-type AO structural compositions in AB2O4[AO·B2O3] type spinel, and 1# showed a stable AO composition because cation migration from site B to site A is unlikely. Therefore, it was assumed that 1# exhibited p-type behavior. The p-type behavior of 2# was influenced by Cr oxide ions that were present at the B site and the stable p-type behavior of zinc oxide at the A site. The spinel oxides 3# to 6# exhibited n-type behavior with the other cationic oxides rather than the dominant p-type behavior exhibited by the Zn oxide ions that are stable at the A site. In contrast, the sensor response to the reducing gases H2, NH3, and H2S showed p-type semiconductor behavior, with a particularly selective response to H2S. The sensor responses of the five-element spinel oxides in this study tended to be higher than that of the two-element Ni ferrites and three-element Ni-Zn ferrites reported previously. Additionally, the susceptibility to sulfurization was evaluated using the thermodynamic equilibrium theory for the AO and B2O3 compositions. The oxides of Cr, Fe, and Mn ions in the B2O3 composition did not respond to H2S because they were not sulfurized. The increase in the sensor response due to sulfurization was attributed to the decrease in the depletion layer owing to electron sensitization, as the top surface of the p-type semiconductors, ZnO and NiO, transformed to n-type semiconductors, ZnS and NiS, respectively. High-entropy oxides prepared using the hydrothermal method with an equimolar combination of five cations from six elements (Cr, Mn, Fe, Co, Ni, and Zn) can be used as a guideline for the design of high-sensitivity spinel-type composite oxide gas sensors. Full article
Show Figures

Figure 1

9 pages, 1753 KB  
Article
Synthesis of Iron Gallate (FeGa2O4) Nanoparticles by Mechanochemical Method
by Musa Mutlu Can, Yeşim Akbaba and Satoru Kaneko
Coatings 2022, 12(4), 423; https://doi.org/10.3390/coatings12040423 - 22 Mar 2022
Cited by 3 | Viewed by 2822
Abstract
The study was focused on optimizing the procedure of synthesizing iron gallate (FeGa2O4) nanoparticles by mechanochemical techniques. Due to a lack of information in the literature about the sequence of synthesis procedures of FeGa2O4 structures, the [...] Read more.
The study was focused on optimizing the procedure of synthesizing iron gallate (FeGa2O4) nanoparticles by mechanochemical techniques. Due to a lack of information in the literature about the sequence of synthesis procedures of FeGa2O4 structures, the study is based on the establishment of a recipe for FeGa2O4 synthesis using mechanochemical techniques. Rotation speed, grinding media, and milling durations were the optimized parameters. At the end of each step, the structure of the resulting samples was investigated using the X-ray diffraction (XRD) patterns of samples. At the end of the processes, the XRD patterns of the samples milled under an air atmosphere were coherent with the XRD pattern of the FeGa2O4 structure. XRD patterns were analyzed employing Rietveld refinements to determine lattice parameters under the assumption of an inverse spinel crystal formation. Furthermore, a fluctuation at band gap values in the range of 2.39 to 2.55 eV was realized and associated with the excess Fe atoms in the lattice, which settled as defects in the crystal structures. Full article
Show Figures

Figure 1

26 pages, 8120 KB  
Review
Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation
by Zeyu Chi, Jacob J. Asher, Michael R. Jennings, Ekaterine Chikoidze and Amador Pérez-Tomás
Materials 2022, 15(3), 1164; https://doi.org/10.3390/ma15031164 - 2 Feb 2022
Cited by 54 | Viewed by 9955
Abstract
Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve [...] Read more.
Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve the XXI century climatic goals. Ultra-wide bandgap (UWBG) semiconductors are at the very frontier of electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and solar-blind deeper ultraviolet optoelectronics. Gallium oxide—Ga2O3 (4.5–4.9 eV), has recently emerged pushing the limits set by more conventional WBG (~3 eV) materials, such as SiC and GaN, as well as for transparent conducting oxides (TCO), such asIn2O3, ZnO and SnO2, to name a few. Indeed, Ga2O3 as the first oxide used as a semiconductor for power electronics, has sparked an interest in oxide semiconductors to be investigated (oxides represent the largest family of UWBG). Among these new power electronic materials, AlxGa1-xO3 may provide high-power heterostructure electronic and photonic devices at bandgaps far beyond all materials available today (~8 eV) or ZnGa2O4 (~5 eV), enabling spinel bipolar energy electronics for the first time ever. Here, we review the state-of-the-art and prospects of some ultra-wide bandgap oxide semiconductor arising technologies as promising innovative material solutions towards a sustainable zero emission society. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials Section)
Show Figures

Figure 1

32 pages, 5825 KB  
Review
Removal of Organic Dyes from Water and Wastewater Using Magnetic Ferrite-Based Titanium Oxide and Zinc Oxide Nanocomposites: A Review
by António B. Mapossa, Washington Mhike, José L. Adalima and Shepherd Tichapondwa
Catalysts 2021, 11(12), 1543; https://doi.org/10.3390/catal11121543 - 18 Dec 2021
Cited by 49 | Viewed by 6882
Abstract
Heterogeneous photocatalysis using titanium dioxide (TiO2) and zinc oxide (ZnO) has been widely studied in various applications, including organic pollutant remediation in aqueous systems. The popularity of these materials is based on their high photocatalytic activity, strong photosensitivity, and relatively low [...] Read more.
Heterogeneous photocatalysis using titanium dioxide (TiO2) and zinc oxide (ZnO) has been widely studied in various applications, including organic pollutant remediation in aqueous systems. The popularity of these materials is based on their high photocatalytic activity, strong photosensitivity, and relatively low cost. However, their commercial application has been limited by their wide bandgaps, inability to absorb visible light, fast electron/hole recombination, and limited recyclability since the nanomaterial is difficult to recover. Researchers have developed several strategies to overcome these limitations. Chief amongst these is the coupling of different semi-conductor materials to produce heterojunction nanocomposite materials, which are both visible-light-active and easily recoverable. This review focuses on the advances made in the development of magnetic ferrite-based titanium oxide and zinc oxide nanocomposites. The physical and magnetic properties of the most widely used ferrite compounds are discussed. The spinel structured material had superior catalytic and magnetic performance when coupled to TiO2 and ZnO. An assessment of the range of synthesis methods is also presented. A comprehensive review of the photocatalytic degradation of various priority organic pollutants using the ferrite-based nanocomposites revealed that degradation efficiency and magnetic recovery potential are dependent on factors such as the chemical composition of the heterojunction material, synthesis method, irradiation source, and structure of pollutant. It should be noted that very few studies have gone beyond the degradation efficiency studies. Very little information is available on the extent of mineralization and the subsequent formation of intermediate compounds when these composite catalysts are used. Additionally, potential degradation mechanisms have not been adequately reported. Full article
Show Figures

Figure 1

31 pages, 5772 KB  
Review
Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications
by Pu-Xian Gao, Paresh Shimpi, Haiyong Gao, Caihong Liu, Yanbing Guo, Wenjie Cai, Kuo-Ting Liao, Gregory Wrobel, Zhonghua Zhang, Zheng Ren and Hui-Jan Lin
Int. J. Mol. Sci. 2012, 13(6), 7393-7423; https://doi.org/10.3390/ijms13067393 - 15 Jun 2012
Cited by 34 | Viewed by 11102
Abstract
Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and [...] Read more.
Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)6) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing. Full article
(This article belongs to the Section Materials Science)
Show Figures

Back to TopTop