Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = spherical punch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 22076 KiB  
Article
Thermal–Electrical–Mechanical Coupled Finite Element Models for Battery Electric Vehicle
by Chenxi Ling, Leyu Wang, Cing-Dao Kan and Chi Yang
Machines 2024, 12(9), 596; https://doi.org/10.3390/machines12090596 - 27 Aug 2024
Cited by 2 | Viewed by 2698
Abstract
The safety of lithium-ion batteries is critical to the safety of battery electric vehicles (BEVs). The purpose of this work is to develop a method to predict battery thermal runaway in full electric vehicle crash simulation. The thermal–electrical–mechanical-coupled finite element analysis is used [...] Read more.
The safety of lithium-ion batteries is critical to the safety of battery electric vehicles (BEVs). The purpose of this work is to develop a method to predict battery thermal runaway in full electric vehicle crash simulation. The thermal–electrical–mechanical-coupled finite element analysis is used to model an individual lithium-ion battery cell, a battery module, a battery pack, and a battery electric vehicle with 24 battery modules in a live circuit connection. The lithium-ion battery is modeled using a representative approach, with each internal battery component individually modeled to represent its geometric shape and realistic thermal, mechanical, and electrical properties. A resistance heating solver and Randles circuit model built with a generalized voltage source are used to simulate the electrical behavior of the battery. The thermal simulation of the battery considers the heat capacity and thermal conductivity of different cell components, as well as heat conduction, radiation, and convection at their interfaces. The mechanical property of battery cell and battery module models is validated using spherical punch tests. The electrical property of the battery cell and battery module models is verified against CircuitLab simulation in an external short-circuit test. The simulation results for the battery module’s internal resistance are consistent with both experimental data and literature values. The multi-physics coupling phenomenon is demonstrated with a cylindrical compression simulation on the battery module. The multi-physics BEV model with 24 live battery modules is used to simulate the external short-circuit test and the side pole impact test. The simulation run time is less than 24 h. The results demonstrated the feasibility of using a representative battery model and multi-physics analysis to predict battery thermal runaway in full electric vehicle crash analysis. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

11 pages, 9419 KiB  
Article
Finite Element Analysis of the Mechanical Response for Cylindrical Lithium-Ion Batteries with the Double-Layer Windings
by Young Ju Ahn
Energies 2024, 17(14), 3357; https://doi.org/10.3390/en17143357 - 9 Jul 2024
Cited by 3 | Viewed by 1678
Abstract
The plastic properties for the jellyroll of lithium-ion batteries showed different behavior in tension and compression, showing the yield strength in compression being several times higher than in tension. The crushable foam models were widely used to predict the mechanical responses to compressive [...] Read more.
The plastic properties for the jellyroll of lithium-ion batteries showed different behavior in tension and compression, showing the yield strength in compression being several times higher than in tension. The crushable foam models were widely used to predict the mechanical responses to compressive loadings. However, since the compressive characteristic is dominant in this model, it is difficult to identify distributions of the yield strength in tension. In this study, a simplified jellyroll model consisting of double-layer windings was devised to reflect different plastic characteristics of a jellyroll, and the proposed model was applied to an 18650 cylindrical battery under compressive loading conditions. One winding adopted the crushable foam model for representing the compressive plastic behavior, and the other winding adopted the elastoplastic models for tracking the tensile plastic behavior. The material parameters in the crushable foam model were calibrated by comparing the simulated force–displacement curve with the experimental one for the case where the cell was crushed between two plates when the punch was displaced by 7 mm. A specific cut-off value (10 MPa) was assigned to a yield stress limit in the elastoplastic model. Further, the computational model was validated with two more loading cases, a cylindrical rod indentation and a spherical punch indentation, as the punch was displaced by 6.3 mm and 6.5 mm, respectively. For three loading cases, deformed configurations and plastic strain distributions were investigated by finite element analysis. It was found that the proposed model clearly provides the plastic behavior both in compression and tension. For the crush simulation, the maximum compressive stress approached 222 MPa in the middle of the jellyroll, and the maximum effective plastic strain approached 60% in the middle of the layered roll. For indentation with the cylindrical and the spherical punch, the maximum effective plastic strain approached 52% and 277% in the layered roll, respectively. The local crack or location of a short circuit could be predicted from the maximum effective plastic strain. Full article
(This article belongs to the Special Issue Electrochemical Conversion and Energy Storage System)
Show Figures

Figure 1

17 pages, 2554 KiB  
Article
Modeling of the Combined Effect of the Surface Roughness and Coatings in Contact Interaction
by Irina Goryacheva and Anastasiya Yakovenko
Lubricants 2024, 12(3), 68; https://doi.org/10.3390/lubricants12030068 - 23 Feb 2024
Cited by 3 | Viewed by 1715
Abstract
The model of indentation of a spherical punch with a rough surface into a thin elastic layer lying on an elastic half-space has been developed. A numerical-analytical solution is suggested based on the two-scales approach. At macroscale, the integral equation of the second [...] Read more.
The model of indentation of a spherical punch with a rough surface into a thin elastic layer lying on an elastic half-space has been developed. A numerical-analytical solution is suggested based on the two-scales approach. At macroscale, the integral equation of the second kind is reduced to calculate the nominal contact characteristics, taking into account the surface layer thickness and its mechanical characteristics, as well as additional compliance due to surface roughness calculated from the microscale analysis. The influence of the punch roughness and the surface layer mechanical and geometrical characteristics on the nominal contact pressure distribution, on the nominal contact area and the indentation depth, as well as on the real contact area and pressures at the individual contact spots, is analyzed. The developed contact model can be used to analyze the indentation of the punch into the layered elastic base, taking into account the roughness of the punch surface, and can also be used to give a complete analysis of the roughness effect on the contact process at both scale levels. The results can be used to control the indentation of the rough-coated bodies. Full article
Show Figures

Graphical abstract

15 pages, 3266 KiB  
Article
Mechanical and Electromagnetic Wave Absorption Performance of Carbonyl Iron Powder-Modified Nonwoven Materials
by Wenyan Gu, Jiang Shi, Tianwen Pang, Qilong Sun, Qi Jia, Jiajia Hu and Jiaqiao Zhang
Materials 2023, 16(23), 7403; https://doi.org/10.3390/ma16237403 - 28 Nov 2023
Cited by 10 | Viewed by 2155
Abstract
In order to develop carbonyl iron-enhanced electromagnetic wave-absorbing composites, this paper utilizes two different morphologies of carbonyl iron powder (CIP), spherical and flake-like, which are blended with aqueous polyurethane (PU) in three different ratios to prepare impregnating solutions. Polyester (PET) needle-punched nonwoven materials [...] Read more.
In order to develop carbonyl iron-enhanced electromagnetic wave-absorbing composites, this paper utilizes two different morphologies of carbonyl iron powder (CIP), spherical and flake-like, which are blended with aqueous polyurethane (PU) in three different ratios to prepare impregnating solutions. Polyester (PET) needle-punched nonwoven materials are impregnated with these solutions to produce electromagnetic wave-absorbing composites. First, electromagnetic parameters of the two CIP particle types, spherical carbonyl iron (SCIP) and flake-like carbonyl iron (FCIP), are tested with the coaxial method, followed by calculation of the results of their electromagnetic wave absorption performance. Next, the composites are subjected to microscopic morphology observation, tensile testing, and arched frame method electromagnetic wave absorption performance testing. The results indicate that the microwave absorption performance of FCIP is significantly better than that of SCIP. The minimum reflection loss value for F3, a kind of FCIP-modified nonwoven fabric, at the thickness of 1 mm, at 18 GHz is −17 dB. This value is even better than the calculated RL value of CIP at the thickness of 1 mm. The anisotropic shape of flake-like magnetic materials is further strengthened when adhering to the surface of PET fiber material. Additionally, the modified composites with carbonyl iron exhibit higher tensile strength compared with pure PET. The addition of fibrous skeletal materials is expected to enhance the impedance matching of flake-like magnetic particles, forming a wearable and microwave-absorbing composite. Full article
Show Figures

Figure 1

13 pages, 4231 KiB  
Article
Influence of Profile Geometry on Frictional Energy Dissipation in a Dry, Compliant Steel-on-Steel Fretting Contact: Macroscopic Modeling and Experiment
by Emanuel Willert
Machines 2023, 11(4), 484; https://doi.org/10.3390/machines11040484 - 18 Apr 2023
Cited by 2 | Viewed by 2023
Abstract
Dry, frictional steel-on-steel contacts under small-scale oscillations are considered experimentally and theoretically. As indenting bodies, spheres, and truncated spheres are used to retrace the transition from smooth to sharp contact profile geometries. The experimental apparatus is built as a compliant setup, with the [...] Read more.
Dry, frictional steel-on-steel contacts under small-scale oscillations are considered experimentally and theoretically. As indenting bodies, spheres, and truncated spheres are used to retrace the transition from smooth to sharp contact profile geometries. The experimental apparatus is built as a compliant setup, with the characteristic macroscopic values of stiffness being comparable to or smaller than the contact stiffness of the fretting contact. A hybrid macroscopic–contact model is formulated to predict the time development of the macroscopic contact quantities (forces and global relative surface displacements), which are measured in the experiments. The model is well able to predict the macroscopic behavior and, accordingly, the frictional hysteretic losses observed in the experiment. The change of the indenter profile from spherical to truncated spherical “pushes” the fretting contact towards the sliding regime if the nominal normal force and tangential displacement oscillation amplitude are kept constant. The transition of the hysteretic behavior, depending on the profile geometry from the perfectly spherical to the sharp flat-punch profile, occurs for the truncated spherical indenter within a small margin of the radius of its flat face. Already for a flat face radius which is roughly equal to the contact radius for the spherical case, the macroscopic hysteretic behavior cannot be distinguished from a flat punch contact with the same radius. The compliance of the apparatus (i.e., the macrosystem) can have a large influence on the energy dissipation and the fretting regime. Below a critical value for the stiffness, the fretting contact exhibits a sharp transition to the “sticking” regime. However, if the apparatus stiffness is large enough, the hysteretic behavior can be controlled by changing the profile geometry. Full article
(This article belongs to the Special Issue Dry Friction: Theory, Analysis and Applications)
Show Figures

Figure 1

15 pages, 3775 KiB  
Article
Mechanical Behavior of Titanium Alloys at Moderate Strain Rates Characterized by the Punch Test Technique
by Vladimir V. Skripnyak, Kristina V. Iohim and Vladimir A. Skripnyak
Materials 2023, 16(1), 416; https://doi.org/10.3390/ma16010416 - 1 Jan 2023
Cited by 2 | Viewed by 2116
Abstract
Material characterization at moderate strain rates is an important factor for improving the adequacy and accuracy of analysis of structures operating under extreme conditions. In this paper, the deformation and fracture of Ti-5Al-2.5Sn alloys were studied utilizing the punch test at strain rates [...] Read more.
Material characterization at moderate strain rates is an important factor for improving the adequacy and accuracy of analysis of structures operating under extreme conditions. In this paper, the deformation and fracture of Ti-5Al-2.5Sn alloys were studied utilizing the punch test at strain rates up to several hundred per second. Loading velocities from 0.0003 to 15 m/s were realized during the spherical body penetration through a thin titanium plate. To describe the plastic flow and fracture of the Ti-5Al-2.5Sn alloy at strain rates ranging from 0.001 to 103 s−1, a micromechanical damage model was coupled with a viscoplastic constitutive model based on the dislocation dynamics. Numerical simulations of the punch test at 15 and 2 m/s were carried out to validate used constitutive relations. It was verified that the simulated fracture shape and deflections were similar to experimental ones. It was found that dynamic punch test is suitable for validation of damage kinetics under complex stress states. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

11 pages, 3786 KiB  
Article
Finite Element Analysis of Nanoindentation Responses in Bi2Se3 Thin Films
by Shu-Wei Cheng, Bo-Syun Chen, Sheng-Rui Jian, Yu-Min Hu, Phuoc Huu Le, Le Thi Cam Tuyen, Jyh-Wei Lee and Jenh-Yih Juang
Coatings 2022, 12(10), 1554; https://doi.org/10.3390/coatings12101554 - 15 Oct 2022
Cited by 5 | Viewed by 3375
Abstract
In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous [...] Read more.
In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous contact stiffness measurements option built into a Berkovich nanoindenter. Concurrently, FEM was conducted to establish a model describing the contact mechanics at the film/substrate interface, which was then used to reproduce the nanoindentation load-depth and hardness-depth curves. As such, the appropriate material parameters were obtained by correlating the FEM results with the corresponding experimental load-displacement curves. Moreover, the detailed nanoindentation-induced stress distribution in the vicinity around the interface of Bi2Se3 thin film and c-plane sapphires was mapped by FEM simulation for three different indenters, namely, the Berkovich, spherical and flat punch indenters. The results indicated that the nanoindentation-induced stress distribution at the film/substrate interface is indeed strongly dependent on the indenter’s geometric shape. Full article
(This article belongs to the Special Issue Recent Advances in the Growth and Characterizations of Thin Films)
Show Figures

Figure 1

20 pages, 16699 KiB  
Article
Elastoplastic Indentation Response of Sigmoid/Power Functionally Graded Ceramics Structures
by Mohamed A. Eltaher, Ahmed Wagih, Ammar Melaibari, Ghazi S. Alsoruji and Mohamed A. Attia
Polymers 2022, 14(6), 1225; https://doi.org/10.3390/polym14061225 - 17 Mar 2022
Cited by 10 | Viewed by 2352
Abstract
Due to the applicability of new advanced functionally graded materials (FGMs) in numerous tribological systems, this manuscript aims to present computational and empirical indentation models to investigate the elastoplastic response of FG substrate under an indention process with spherical rigid punch. The spatial [...] Read more.
Due to the applicability of new advanced functionally graded materials (FGMs) in numerous tribological systems, this manuscript aims to present computational and empirical indentation models to investigate the elastoplastic response of FG substrate under an indention process with spherical rigid punch. The spatial variation of the ceramic volume fraction through the specimen thickness is portrayed using the power law and sigmoid functions. The effective properties of two-constituent FGM are evaluated by employing a modified Tamura–Tomota–Ozawa (TTO) model. Bilinear hardening behavior is considered in the analysis. The finite element procedure is developed to predict the contact pressure, horizontal displacement, vertical deformation, and permanent deformation of FG structure under the rigid cylindrical indentation. The empirical forms for permanent deformation were evaluated and assigned. Model validation with experimental works was considered. The convergence of the mesh and solution procedure was checked. Numerical studies were performed to illustrate the influence of gradation function, gradation index, and indentation parameters on the contact pressure, von Mises stresses, horizontal/vertical displacements, and permanent plastic deformation. The present model can help engineers and designers in the selection of an optimum gradation function and gradation index based on their applications. Full article
(This article belongs to the Special Issue Advanced Polymer-Based Composites)
Show Figures

Figure 1

15 pages, 4706 KiB  
Article
Novel Fabrication Routes of Metallic Micromembranes for In Situ Mechanical Testing
by Andrea García-Junceda, Luca Puricelli, Andrea Valsesia, François Rossi, Pascal Colpo and Ana Ruiz-Moreno
Metals 2022, 12(3), 468; https://doi.org/10.3390/met12030468 - 10 Mar 2022
Viewed by 2123
Abstract
A methodology to miniaturize mechanical tests of metal alloys based on membrane deformation was developed in this investigation. The buildup of this new path for miniaturization tests requires small amounts of material for testing. This is of particular interest for irradiated structural nuclear [...] Read more.
A methodology to miniaturize mechanical tests of metal alloys based on membrane deformation was developed in this investigation. The buildup of this new path for miniaturization tests requires small amounts of material for testing. This is of particular interest for irradiated structural nuclear materials. Micrometric metallic circular membranes were fabricated starting from thin alloy foils and using two different paths. Serial fabrication of microspecimens was performed by means of successive focused ion beam (FIB) steps. On the other hand, high-throughput parallel fabrication was achieved by differential sputtering (DS) based on reactive ion etching followed by a final fine FIB polishing to flatten the membranes and straighten the mechanical response. Micro-punch tests were performed using spherical tips and the in situ load–displacement curves were recorded while monitoring the test in a scanning electron microscope. The values reached after testing of the DS membranes were more reliable than those of FIB samples, showing a large stretching section and higher values of maximum force (64 mN) and displacement (22.2 μm). The micro-punch testing methodology developed in this work combines the advantage of facilitating the interpretation of the mechanical response, by producing a bi-axial stress distribution during membrane stretching, while being amenable to high-throughput microspecimen fabrication. Full article
Show Figures

Figure 1

10 pages, 578 KiB  
Article
Spherical Indentation of a Micropolar Solid: A Numerical Investigation Using the Local Point Interpolation–Boundary Element Method
by Gaël Pierson, M’Barek Taghite, Pierre Bravetti and Richard Kouitat Njiwa
Appl. Mech. 2021, 2(3), 581-590; https://doi.org/10.3390/applmech2030033 - 21 Aug 2021
Cited by 2 | Viewed by 2008
Abstract
The load-penetration curve in elastic nanoindentation of an elastic micropolar flat by a diamond spherical punch is analyzed. The presented results are obtained by a specifically developed numerical tool based on a judicious combination of the conventional boundary element method and strong form [...] Read more.
The load-penetration curve in elastic nanoindentation of an elastic micropolar flat by a diamond spherical punch is analyzed. The presented results are obtained by a specifically developed numerical tool based on a judicious combination of the conventional boundary element method and strong form local point interpolation method. The results show that the usual linear relationship between the material depression and the square of the radius of the contact area is also valid in this case of micropolar elastic material. It is also shown that the relation between the indentation stress (applied load over the contact surface) and the indentation strain (ratio of contact radius by the punch radius) is linear. The proportionality coefficient which is none other than the indentation stiffness varies with the coupling factor of the micropolar elastic medium. A relation between the indentation stiffness of a micropolar solid and that of a conventional solid with the same Young modulus and Poisson ratio is derived. Full article
(This article belongs to the Special Issue Mechanics and Control using Fractional Calculus)
Show Figures

Figure 1

22 pages, 10896 KiB  
Article
Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading
by Zhijie Li, Jiqing Chen, Fengchong Lan and Yigang Li
Energies 2021, 14(5), 1219; https://doi.org/10.3390/en14051219 - 24 Feb 2021
Cited by 16 | Viewed by 3728
Abstract
Internal short circuits and thermal runaway in lithium-ion batteries (LIBs) are mainly caused by deformation-induced failures in their internal components. Understanding the mechanisms of mechanical failure in the internal materials is of much importance for the design of LIB pack safety. In this [...] Read more.
Internal short circuits and thermal runaway in lithium-ion batteries (LIBs) are mainly caused by deformation-induced failures in their internal components. Understanding the mechanisms of mechanical failure in the internal materials is of much importance for the design of LIB pack safety. In this work, the constitutive behaviors and deformation-induced failures of these component materials were tested and simulated. The stress-strain constitutive models of the anode/cathode and the separator under uniaxial tensile and compressive loads were proposed, and maximum tensile strain failure criteria were used to simulate the failure behaviors on these materials under the biaxial indentations. In order to understand the deformation failure mechanisms of ultrathin and multilayer materials within the prismatic cell, a mesoscale layer element model (LEM) with a separator-cathode-separator-anode structure was constructed. The deformation failure of LEM under spherical punches of different sizes was analyzed in detail, and the results were experimentally verified. Furthermore, the n-layer LEM stacked structure numerical model was constructed to calculate the progressive failure mechanisms of cathodes and anodes under punches. The results of test and simulation show the fracture failure of the cathodes under local indentation will trigger the failure of adjacent layers successively, and the internal short circuits are ultimately caused by separator failure owing to fractures and slips in the electrodes. The results improve the understanding of the failure behavior of the component materials in prismatic lithium-ion batteries, and provide some safety suggestions for the battery structure design in the future. Full article
(This article belongs to the Special Issue Lithium Batteries for Vehicular Applications)
Show Figures

Figure 1

21 pages, 3276 KiB  
Article
Critical Comparison of Spherical Microindentation, Small Punch Test, and Uniaxial Tensile Testing for Selective Laser Melted Inconel 718
by Zachary S. Courtright, Nicolas P. Leclerc, Hyung Nun Kim and Surya R. Kalidindi
Appl. Sci. 2021, 11(3), 1061; https://doi.org/10.3390/app11031061 - 25 Jan 2021
Cited by 12 | Viewed by 3350
Abstract
Standardized mechanical tests have become one of the central bottlenecks in the efficient and cost-effective exploration of the process space in advanced manufacturing processes such as additive manufacturing (AM). This paper presents a critical comparison of the relative advantages and disadvantages between emergent [...] Read more.
Standardized mechanical tests have become one of the central bottlenecks in the efficient and cost-effective exploration of the process space in advanced manufacturing processes such as additive manufacturing (AM). This paper presents a critical comparison of the relative advantages and disadvantages between emergent high-throughput mechanical test protocols, specifically, spherical microindentation and small punch test, and standardized tension tests. The critical comparison considers the effectiveness and viability of the testing protocols to rapidly screen stress-strain data and mechanical properties of candidate AM-processed metal specimens. These comparisons were performed on samples of Inconel 718 produced by selective laser melting (SLM). Modulus, yield strength, and ultimate tensile strength were evaluated, and the combination of high-throughput mechanical test protocols displayed results consistent with standard tension tests. This study shows that high-throughput mechanical test protocols can successfully produce reliable stress-strain data using significantly smaller material volume and reduced labor compared to the standardized tension tests. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Show Figures

Figure 1

9 pages, 2904 KiB  
Communication
Micromechanical Punching: A Versatile Method for Non-Spherical Microparticle Fabrication
by Ritika Singh Petersen, Anja Boisen and Stephan Sylvest Keller
Polymers 2021, 13(1), 83; https://doi.org/10.3390/polym13010083 - 28 Dec 2020
Cited by 14 | Viewed by 3658
Abstract
Microparticles are ubiquitous in applications ranging from electronics and drug delivery to cosmetics and food. Conventionally, non-spherical microparticles in various materials with specific shapes, sizes, and physicochemical properties have been fabricated using cleanroom-free lithography techniques such as soft lithography and its high-resolution version [...] Read more.
Microparticles are ubiquitous in applications ranging from electronics and drug delivery to cosmetics and food. Conventionally, non-spherical microparticles in various materials with specific shapes, sizes, and physicochemical properties have been fabricated using cleanroom-free lithography techniques such as soft lithography and its high-resolution version particle replication in non-wetting template (PRINT). These methods process the particle material in its liquid/semi-liquid state by deformable molds, limiting the materials from which the particles and the molds can be fabricated. In this study, the microparticle material is exploited as a sheet placed on a deformable substrate, punched by a robust mold. Drawing inspiration from the macro-manufacturing technique of punching metallic sheets, Micromechanical Punching (MMP) is a high-throughput technique for fabrication of non-spherical microparticles. MMP allows production of microparticles from prepatterned, porous, and fibrous films, constituting thermoplastics and thermosetting polymers. As an illustration of application of MMP in drug delivery, flat, microdisk-shaped Furosemide embedded poly(lactic-co-glycolic acid) microparticles are fabricated and Furosemide release is observed. Thus, it is shown in the paper that Micromechanical punching has potential to make micro/nanofabrication more accessible to the research and industrial communities active in applications that require engineered particles. Full article
(This article belongs to the Special Issue Polymer Micro/Nanofabrication and Manufacturing)
Show Figures

Graphical abstract

14 pages, 6105 KiB  
Article
Mechanical Properties and Fracture Behavior of an EBW T2 Copper–45 Steel Joint
by Peng Liu, Jiafeng Bao and Yumei Bao
Materials 2019, 12(10), 1714; https://doi.org/10.3390/ma12101714 - 27 May 2019
Cited by 7 | Viewed by 3951
Abstract
The dissimilar joining of T2 copper to 45 steel was performed by electron beam welding (EBW). Full-strength joints were obtained, and the highest tensile strength was found to be 270 MPa, which is almost equal to the strength of copper. Moreover, the macroscopic [...] Read more.
The dissimilar joining of T2 copper to 45 steel was performed by electron beam welding (EBW). Full-strength joints were obtained, and the highest tensile strength was found to be 270 MPa, which is almost equal to the strength of copper. Moreover, the macroscopic morphology of the tensile fracture exhibited an obvious necking phenomenon and features such as dimples, and spherical structures were found via scanning electron microscopy (SEM). These results indicated that the fracture of the T2 copper–45 steel joint is a mixed mode of cleavage and ductile fracture. Meanwhile, the fracture toughness was determined using the small punch test (SPT) with a drop rate of 0.5 mm/min. SEM imaging of the fracture surfaces revealed that the fracture was controlled by microscopic void nucleation and always occurred in the copper-side heat affected zone (HAZ). Finally, mutual verification between the numerical simulation of the finite element and the SPT results confirmed that the fracture first occurred in the copper-side HAZ due to the toughness difference. Full article
Show Figures

Figure 1

15 pages, 4757 KiB  
Article
Optimization of Processing Parameters for a Reverse Drawing–Flanging Combined Process for a B550CL High-Strength Steel Spoke Based on Grey Relational Analysis
by Yuli Liu, Zhiyuan Jiang and Chunmei Liu
Metals 2018, 8(1), 7; https://doi.org/10.3390/met8010007 - 26 Dec 2017
Cited by 6 | Viewed by 3523
Abstract
Undesired wall thickness distribution and flanging cracking easily occur in reverse drawing–flanging combined processes of steel spokes when improper process parameters are used. Thus, based on GRA (grey relational analysis) and FEM (finite element method), a GRA model for a reverse drawing–flanging combined [...] Read more.
Undesired wall thickness distribution and flanging cracking easily occur in reverse drawing–flanging combined processes of steel spokes when improper process parameters are used. Thus, based on GRA (grey relational analysis) and FEM (finite element method), a GRA model for a reverse drawing–flanging combined process for high strength steel B550CL spoke was established and validated. The results show that: (1) the most significant factors affecting uneven wall thickness distribution and excessive thinning in the mounting zone and center hole cracking are the friction coefficient and the shape of punch, respectively; (2) the non-uniformity of wall thickness U increases with the increase of the friction coefficient. The conical punch has a lower thinning ratio T, the spherical punch has a lower value of damage D; (3) considering synthetically the indexes of uneven wall thickness distribution, the excessive thinning in the mounting zone and center hole cracking, optimal results for the process parameters are obtained. Full article
Show Figures

Figure 1

Back to TopTop