Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = spherical calcite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4221 KiB  
Article
The Effects of Amino Acids on the Polymorphs and Magnesium Content of Calcium–Magnesium Carbonate Minerals
by Chonghong Zhang, Yuyang Jiang and Shuhao Qian
Minerals 2025, 15(7), 763; https://doi.org/10.3390/min15070763 - 21 Jul 2025
Viewed by 214
Abstract
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic [...] Read more.
Calcium–magnesium (Ca–Mg) carbonates are among the most widely distributed carbonates in the Earth’s surface environment, and their formation mechanisms are of great significance for revealing geological environmental changes and carbon sequestration processes. In this study, the gas diffusion method was employed with L-glutamic acid, L-glycine, and L-lysine as nucleation templates for carbonate minerals to systematically investigate their regulatory effects on the mineralization of Ca–Mg carbonates. The results demonstrated that L-glycine, with the shortest length, was more conducive to forming aragonite, whereas acidic L-glutamic acid, which contains more carboxyl groups, was more beneficial for the structural stability of aragonite. The morphology of the Ca-Mg carbonate minerals became more diverse and promoted the formation of spherical and massive mineral aggregates under the action of amino acids. Moreover, the amino acids significantly increased the MgCO3 content in Mg calcite (L-glutamic acid: 10.86% > L-glycine: 7.91% > L-lysine: 6.63%). The acidic L-glutamic acid likely promotes the dehydration and incorporation of Mg2+ into the Mg calcite lattice through the preferential adsorption of Mg2+ via its side-chain carboxyl groups. This study shows how amino acid functional groups influence Ca–Mg carbonate mineralization and provides insights into biogenic Mg-rich mineral origins and advanced mineral material synthesis. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Graphical abstract

13 pages, 6065 KiB  
Article
The Formation of Calcium–Magnesium Carbonate Minerals Induced by Curvibacter sp. HJ-1 under Different Mg/Ca Molar Ratios
by Chonghong Zhang, Fuchun Li, Kai Yang and Jianrong Zhou
Minerals 2024, 14(6), 606; https://doi.org/10.3390/min14060606 - 12 Jun 2024
Cited by 5 | Viewed by 1996
Abstract
Microbial mineralization of calcium–magnesium carbonate has been a hot research topic in the fields of geomicrobiology and engineering geology in the past decades. However, the formation and phase transition mechanism of calcium–magnesium carbonate polymorphs at different Mg/Ca ratios still need to be explored. [...] Read more.
Microbial mineralization of calcium–magnesium carbonate has been a hot research topic in the fields of geomicrobiology and engineering geology in the past decades. However, the formation and phase transition mechanism of calcium–magnesium carbonate polymorphs at different Mg/Ca ratios still need to be explored. In this study, microbial induced carbonate mineralization experiments were carried out for 50 days in culture medium with Mg/Ca molar ratios of 0, 1.5, and 3 under the action of Curvibacter sp. HJ-1. The roles of bacteria and the Mg/Ca ratio on the mineral formation and phase transition were investigated. Experimental results show that (1) strain HJ-1 could induce vaterite, aragonite, and magnesium calcite formation in culture media with different Mg/Ca molar ratios. The increased stability of the metastable phase suggests that bacterial extracellular secretions and Mg2+ ions inhibit the carbonate phase-transition process. (2) The morphology of bacteriological carbonate minerals and the formation mechanism of spherical minerals were different in Mg-free and Mg-containing media. (3) The increased Mg/Ca ratio in the culture medium has an influence on the formation and transformation of calcium–magnesium carbonate by controlling the metabolism of Curvibacter sp. HJ-1 and the activity of bacterial secretion. Full article
Show Figures

Figure 1

15 pages, 2771 KiB  
Article
Biomineralization and Characterization of Calcite and Vaterite Induced by the Fungus Cladosporium sp. YPLJS-14
by Peilin Ye, Feirong Xiao and Shiping Wei
Minerals 2023, 13(10), 1344; https://doi.org/10.3390/min13101344 - 22 Oct 2023
Cited by 16 | Viewed by 3030
Abstract
Microbially induced calcium carbonate precipitation (MICP) by the urease-producing bacteria has wide applications in the field of geology and environmental engineering. Compared to bacteria, fungi usually possess more tolerance to high salts and heavy metals, enabling MICP induced by the urease-producing fungi to [...] Read more.
Microbially induced calcium carbonate precipitation (MICP) by the urease-producing bacteria has wide applications in the field of geology and environmental engineering. Compared to bacteria, fungi usually possess more tolerance to high salts and heavy metals, enabling MICP induced by the urease-producing fungi to be applied to harsh environments. In this study, the carbonate minerals, induced by the urease-producing fungi isolated from marine sediments, were investigated. One of the urease-producing fungi, designated as YPLJS-14, was identified with the high efficiency of precipitating calcium carbonate. The ITS sequence of YPLJS-14 revealed that it belongs to the genus of Cladosporium. The precipitates induced by this strain were characterized by XRD, SEM, TEM, SAED, and FTIR, respectively. The results show that the mineral phase of fungal precipitates is composed of calcite and vaterite. SEM, TEM, and SAED confirm that the minerals in rhombohedral morphology are calcite and the spherical minerals are vaterite. Thermogravimetric and derivative thermogravimetric (TG/DTG) analyses show that vaterite is a thermodynamically unstable mineral phase compared to calcite and easily decomposes at lower temperatures. These findings provide a foundation for understanding the mineralization mechanism of the urease-producing fungi and the potential applications in environmental engineering. Full article
Show Figures

Figure 1

13 pages, 4957 KiB  
Communication
Heavy Alkyl-Benzene Sulfonate-Controlled Growth of Aragonite-Based Polymorphic CaCO3 Crystals in Emulsion
by Weiwei He, Junqing Hu, Weihao Sun, Jiqiong Liu, Hongguang Guo, Changming Zhao, Qingguo Wang, Xiangbin Liu, Meng Cai and Weiguang Shi
Crystals 2023, 13(7), 1107; https://doi.org/10.3390/cryst13071107 - 16 Jul 2023
Cited by 1 | Viewed by 2123
Abstract
The non-natural mineralization of CaCO3 with special structures or morphologies is generated during the migration of crude oil and is the main form of scale in alkaline/surfactant/polymer (ASP) flooding in oilfields, adversely affecting oil recovery and causing environmental pollution. To date, the [...] Read more.
The non-natural mineralization of CaCO3 with special structures or morphologies is generated during the migration of crude oil and is the main form of scale in alkaline/surfactant/polymer (ASP) flooding in oilfields, adversely affecting oil recovery and causing environmental pollution. To date, the mineralization of aragonite superstructures and the role of heavy alkyl-benzene sulfonate (HABS) in mineralization are still unclear. In this work, aragonite-based superstructures of CaCO3 crystals were obtained in an O/W emulsion with HABS to help deepen the understanding of the diversified growth of CaCO3 scaling in oilfields. As a result, rosette-like, bouquet-like, and dumbbell-shaped CaCO3 crystals with vaterite–aragonite, aragonite, and calcite–aragonite phases were formed with 200 mg/L HABS concentration at 45 °C for 60 min and spherical vaterite phase stabilized at a high HABS concentration (800 mg/L and 1000 mg/L). Rhombohedral calcite content experienced a fluctuation of about 40% as the HABS concentration varied. Needle-like and bundle-like aragonite precipitates were generated with increasing temperatures from 65 °C to 85 °C. Thus, HABS affects the nucleation and growth of the precipitated CaCO3 solid, leading to modifications in the structure and morphology of the crystals. The synergistic effect between HABS and temperature can regulate ion pairs with the calcium ions and block sites that are essential to the incorporation of new solutes into the crystal lattice, which leads to the heterogeneous nucleation of vaterite and aragonite on calcite, forming aragonite-based superstructures in kerosene emulsion. This work may enrich the understanding of CaCO3 mineralization in oilfields, and also provide a novel strategy for manufacturing organic–inorganic composites. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Second Edition)
Show Figures

Figure 1

19 pages, 5907 KiB  
Article
Experimental Investigation on the Influence of Crack Width of Asphalt Concrete on the Repair Effect of Microbially Induced Calcite Precipitation
by Ling Fan, Jinghong Zheng, Shuquan Peng, Zhize Xun and Guoliang Chen
Materials 2023, 16(9), 3576; https://doi.org/10.3390/ma16093576 - 7 May 2023
Cited by 8 | Viewed by 2285
Abstract
The appearance of cracks is one of the reasons that affect the performance of asphalt pavement, and traditional repair methods have the potential problem of causing adverse effects on the environment. In this paper, an environmentally friendly method for asphalt concrete crack repair [...] Read more.
The appearance of cracks is one of the reasons that affect the performance of asphalt pavement, and traditional repair methods have the potential problem of causing adverse effects on the environment. In this paper, an environmentally friendly method for asphalt concrete crack repair was investigated using microbially induced calcite precipitation (MICP) for asphalt concrete cracks of different widths (0.5 mm, 1.0 mm, 1.5 mm, and 3 mm), and the effectiveness of repair was evaluated using nondestructive and destructive experiments. A varied ultrasonic pulse velocity was used to evaluate the healing process, and it was found that the samples with an initial crack width of 0.5 mm showed the most significant increase in wave velocity of 18.06% after repair. The results also showed that the uniaxial compressive strength and indirect tensile strength of the MICP-repaired samples recovered up to 47.02% and 34.68%. Static creep test results showed that MICP-repaired samples with smaller width cracks had greater resistance to permanent deformation. The results of uniaxial compressive strength tests on larger width (3 mm) cracks repaired by MICP combined with fibers showed that the strength of the samples was significantly increased by the addition of fibers. In addition, the SEM/EDS results showed that the MICP products were spherical calcite particles with a particle size distribution from 0 to 10 μm. This study shows that MICP has some potential for repairing cracks in asphalt concrete of different widths within the range investigated. Full article
(This article belongs to the Special Issue Green and Sustainable Infrastructure Construction Materials)
Show Figures

Figure 1

19 pages, 8405 KiB  
Article
Degradation Products Assessment of the Wooden Painted Surfaces from a XVIIth Heritage Monastery
by Rodica-Mariana Ion, Lorena Iancu, Ramona Marina Grigorescu, Sofia Slamnoiu-Teodorescu, Ioana Daniela Dulama and Ioan Alin Bucurica
Appl. Sci. 2023, 13(4), 2124; https://doi.org/10.3390/app13042124 - 7 Feb 2023
Cited by 5 | Viewed by 2661
Abstract
Currently, approximately 70% of paintings in museum collections are affected by the presence of metallic soaps, evidenced by spherical globules visible on the surface of the paintings. They are responsible for altering the paintings’ surface through processes such as exfoliation and cracking, or [...] Read more.
Currently, approximately 70% of paintings in museum collections are affected by the presence of metallic soaps, evidenced by spherical globules visible on the surface of the paintings. They are responsible for altering the paintings’ surface through processes such as exfoliation and cracking, or even in the form of surface “skins” that appear in the pictorial layers. The objective of this study is the investigation of the icon paintings from Saint Mary Monastery, Techirghiol, Romania, which underwent some restoration procedures. This study is so important/significant, due to the presence of efflorescence that is correlated with the conversion of some fatty acids, as palmitic acid, stearic acid and azelaic acid, in the so-called metallic soaps through the reaction of the metals contained in the pigments from the painting layer and the binder. The investigated paintings are strongly affected by zinc carboxylate aggregation, and for this, the sample was embedded in polyester resin and the obtained cross-section, after polishing, was investigated by microscopic techniques (optical microscopy (OM), stereomicroscopy, and scanning electron microscopy with electronic dispersion spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and gas-chromatography with mass spectrometry (GC-MS) in good agreement with data from the literature. The potential result of this study is the identification and quantification of the metallic soap generated as a white deposit (probably salts, a kind of white efflorescence), from the binding medium of the metal carboxylate ionomer, by the crystallization of saturated fatty acids, through polymerization in oil. Six pigments (calcite, lithopone, carbon black, red ochre, vermilion, and ultramarine), present in the sublayers of the samples were identified. Full article
Show Figures

Figure 1

10 pages, 8679 KiB  
Article
Synthesis and Characterization of Monodispersed Spherical Calcium Oxide and Calcium Carbonate Nanoparticles via Simple Pyrolysis
by Raji Atchudan, Suguna Perumal, Jin Joo and Yong Rok Lee
Nanomaterials 2022, 12(14), 2424; https://doi.org/10.3390/nano12142424 - 15 Jul 2022
Cited by 18 | Viewed by 4249
Abstract
In this study, calcium carbonate nanoparticles (CCNPs) and calcium oxide nanoparticles (CONPs) are synthesized by the carbonization/calcination of calcium oleate. CONPs are an essential inorganic material, and they are used as catalysts and as effective chemisorbents for toxic gases. CCNPs are widely used [...] Read more.
In this study, calcium carbonate nanoparticles (CCNPs) and calcium oxide nanoparticles (CONPs) are synthesized by the carbonization/calcination of calcium oleate. CONPs are an essential inorganic material, and they are used as catalysts and as effective chemisorbents for toxic gases. CCNPs are widely used in plastics, printing ink, and medicines. Here, calcium oleate is used as a starting material for the preparation of CCNPs and CONPs. This calcium oleate is prepared from calcium hydroxide and oleic acid in ethanol under mild reflux conditions. The effect of the calcination temperature of calcium oleate is examined during the synthesis of CCNPs and CONPs. By simple carbonization/calcination, calcite-type CCNPs and CONPs are prepared at <550 °C and >600 °C, respectively. The synthesized nanomaterials are analyzed by various physicochemical characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) with derivative thermogravimetry (DTG), and scanning electron microscopy (SEM) with energy dispersive X-ray analysis. An X-ray diffractometer and the Scherrer formula are used to analyze the crystalline phase and crystallite size of prepared nanoparticles. TGA techniques confirm the thermal stability of the calcium oleate, CCNPs, and CONPs. The SEM analysis illustrates the dispersive behavior and cubic/spherical morphologies of CCNPs/CONPs. Furthermore, the obtained results are compared to the CCNP and CONP samples prepared using calcium hydroxide. As a result, the carbonization/calcination of calcium oleate produces monodispersed CONPs, which are then compared to the CONPs from calcium hydroxide. Additionally, from calcium oleate, CONPs can be prepared on a large scale in a cheap, convenient way, using simple equipment which can be applied in various applications. Full article
Show Figures

Graphical abstract

10 pages, 3203 KiB  
Article
Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks
by Seunghoon Choi, Sungjin Park, Minjoo Park, Yerin Kim, Kwang Min Lee, O-Mi Lee and Hong-Joo Son
Molecules 2021, 26(10), 2967; https://doi.org/10.3390/molecules26102967 - 17 May 2021
Cited by 8 | Viewed by 2625
Abstract
Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete [...] Read more.
Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4–10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20–60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4–0.6 mm width. Full article
(This article belongs to the Special Issue Novel Cementitious Materials)
Show Figures

Graphical abstract

1 pages, 120 KiB  
Proceeding Paper
Formation of Monohydrocalcite in the Microbialites from Laguna de Los Cisnes (Isla Grande de Tierra Del Fuego, Chile)
by Lyubov V. Zaytseva, Olga S. Samylina and Alexandr A. Prokin
Environ. Sci. Proc. 2021, 6(1), 2; https://doi.org/10.3390/iecms2021-09340 - 25 Feb 2021
Viewed by 1240
Abstract
Monohydrocalcite (CaCO3·H2O) is a mineral rarely found in natural environments. Here, we report finding of this mineral in the composition of the microbialites in Laguna de los Cisnes (Isla Grande, Chile), a saline alkaline lake with high Mg/Ca ratio. [...] Read more.
Monohydrocalcite (CaCO3·H2O) is a mineral rarely found in natural environments. Here, we report finding of this mineral in the composition of the microbialites in Laguna de los Cisnes (Isla Grande, Chile), a saline alkaline lake with high Mg/Ca ratio. We have made a detailed structural and mineralogical description of these microbialites with the use of light and scanning electron microscopy, infrared spectroscopy and X-ray analysis. The predominantly carbonate composition of microbialites was revealed. Carbonates were represented mainly by high-magnesium calcites and monohydrocalcite. Calcite and aragonite were found in minor quantities. In addition, a small amount of silicates and amorphous hydromagnesite were found. The yellowish-brown surface layer of microbialites consists of numerous crystals within a mineralized exopolysaccharide (EPS) matrix. A large number of unicellular and filamentous algae, as well as areas of released EPS, are also seen here. Below is a slimy green layer. This layer is not mineralized; it represents an "algal-bacterial mat" consisting of algae, cyanobacteria, and diatoms developed in EPS. Chisel-shaped crystals of monohydrocalcite and its amorphous spherical precursors are numerous in these upper layers. The deeper layers are mineralized; they predominantly consist of Mg-carbonates with varying degrees of Mg. Algae and cyanobacteria are decomposed or fossilized there. Thus, monohydrocalcite occurs in the composition of the microbialites, being one of the main mineral components. As in other lacustrine localities, it is formed in the presence of algae and cyanobacteria. To our knowledge, this is the first report on the discovery of monohydrocalcite in South America. This research was funded by the Ministry of Science and Higher Education of the Russian Federation. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Mineral Science)
14 pages, 28662 KiB  
Article
Synthesis and Characterization of Spherical Calcium Carbonate Nanoparticles Derived from Cockle Shells
by Abbas Ibrahim Hussein, Zuryati Ab-Ghani, Ahmad Nazeer Che Mat, Nur Atikah Ab Ghani, Adam Husein and Ismail Ab. Rahman
Appl. Sci. 2020, 10(20), 7170; https://doi.org/10.3390/app10207170 - 14 Oct 2020
Cited by 61 | Viewed by 7789
Abstract
Cockle shells are a natural reservoir of calcium carbonate (CaCO3), which is widely used in bone repair, tissue scaffolds, and the development of advanced drug delivery systems. Although many studies report on the preparation of CaCO3, the development of [...] Read more.
Cockle shells are a natural reservoir of calcium carbonate (CaCO3), which is widely used in bone repair, tissue scaffolds, and the development of advanced drug delivery systems. Although many studies report on the preparation of CaCO3, the development of a nanosized spherical CaCO3 precursor for calcium oxide (CaO) that is suitable to be incorporated in dental material was scarce. Therefore, this study aimed to synthesize a nanosized spherical CaCO3 precursor for CaO derived from cockle shells using a sol–gel method. Cockle shells were crushed to powder form and mixed with hydrochloric acid, forming calcium chloride (CaCl2). Potassium carbonate (K2CO3) was then fed to the diluted CaCl2 to obtain CaCO3. The effect of experimental parameters on the morphology of CaCO3, such as volume of water, type of solvents, feeding rate of K2CO3, and drying method, were investigated using field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry (XRD), Brunauer–Emmett–Teller surface area analysis, and thermogravimetric analysis. Optimized CaCO3 was then calcined to form CaO. XRD analysis of CaCO3 nanoparticles was indicative of the formation of a calcite phase. The well-structured spherical shape of CaCO3 was obtained by the optimum condition of the addition of 50 mL of water into CaCl2 in ethanolic solution with a 1 h feeding rate of K2CO3. Less agglomeration of CaCO3 was obtained using a freeze-drying technique with the surface area of 26 m2/g and average particle size of 39 nm. Spherical shaped nanosized CaO (22–70 nm) was also synthesized. The reproducibility, low cost, and simplicity of the method suggest its potential applications in the large-scale synthesis of the nanoparticles, with spherical morphology in an industrial setting. Full article
Show Figures

Figure 1

34 pages, 6583 KiB  
Article
Effect of a Coccolithophore Bloom on the Underwater Light Field and the Albedo of the Water Column
by Oleg Kopelevich, Sergey Sheberstov and Svetlana Vazyulya
J. Mar. Sci. Eng. 2020, 8(6), 456; https://doi.org/10.3390/jmse8060456 - 20 Jun 2020
Cited by 15 | Viewed by 3731
Abstract
The goal of this work is to study the influence of coccolithophore blooms on the underwater light field and albedo of the water column. A coccolithophore is a single-celled alga with spherical cells surrounded by disk-shaped calcite plates (coccolites), which produce strong light [...] Read more.
The goal of this work is to study the influence of coccolithophore blooms on the underwater light field and albedo of the water column. A coccolithophore is a single-celled alga with spherical cells surrounded by disk-shaped calcite plates (coccolites), which produce strong light scattering. Because of that, we can observe coccolithophore blooms on satellite ocean color images. We calculated the angular underwater radiance distributions and their integral parameters by the exact numerical method with the input parameters, corresponding to real conditions observed in the Barents Sea and Black Sea. Using the results of the exact calculations, we estimated, for various situations, the accuracy of the approximating formulas applied to the assessment of the water radiance reflectance and the diffuse attenuation coefficients and we make recommendations for their application. As a finding of practical importance, we can note the estimate of the accuracy of the widely used Gordon’s formula for the diffuse attenuation coefficient; this formula results in large errors under strong coccolithophore blooms. We also mention the interesting and important results concerning the features of the asymptotic regime under such conditions. Full article
(This article belongs to the Special Issue Light Fields in the Ocean from Natural and Artificial Sources)
Show Figures

Graphical abstract

19 pages, 7348 KiB  
Article
Valentinite and Colloform Sphalerite in Epithermal Deposits from Baia Mare Area, Eastern Carpathians
by Gheorghe Damian, Andrei Buzatu, Ionut Andrei Apopei, Zsolt László Szakács, Ioan Denuț, Gheorghe Iepure and Daniel Bârgăoanu
Minerals 2020, 10(2), 121; https://doi.org/10.3390/min10020121 - 30 Jan 2020
Cited by 9 | Viewed by 4819
Abstract
Valentinite forms through the alteration of stibnite in sulphide deposits. Colloform sphalerite is a widespread mineral in low-temperature deposits, particularly those of the Mississippi-Valley type. We identified valentinite and colloform sphalerite in hydrothermal deposits occurring in the Baia Mare area. The Baia Mare [...] Read more.
Valentinite forms through the alteration of stibnite in sulphide deposits. Colloform sphalerite is a widespread mineral in low-temperature deposits, particularly those of the Mississippi-Valley type. We identified valentinite and colloform sphalerite in hydrothermal deposits occurring in the Baia Mare area. The Baia Mare metallogenic district of Neogene age occurs in the northwestern part of the Neogene volcanic chain within the Eastern Carpathians. The Neogene volcanism from Baia Mare area is related to the subduction processes of the East European plate under two microplates, Alcapa and Tisza-Dacia/Tisia, in the post-collisional compressive phase. We have identified valentinite in the Dealul Crucii and Baia Sprie deposits, associated with other epithermal minerals, in the absence of the stibnite. Valentinite is deposited in the final phase of the epithermal process after calcite and manganese-bearing calcite. Micro-Raman and microprobe determinations indicate the presence of valentinite. The formula of valentinite is close to stoichiometric Me2O3 and contains small amounts of tin as an antimony substituent. Colloform sphalerite was identified in the Baia Sprie ore deposit associated with minerals formed in the final epithermal phase. It was deposited on idiomorphic crystals of stibnite, which it corrodes. Its structure and an alternate banding, exhibited on the nano-/microscale, were identified by optical microscopy, SEM (scanning electron microscopy), and BSE (backscattered electron microscopy) imaging. These structures are typical for colloform sphalerite and suggest a genesis due to episodic precipitation. The spherical nano/micro-particles (nodules) are characteristic of the colloform sphalerite from Baia Sprie. Raman analysis indicates the presence of a colloform sphalerite with low iron content. The typical diffraction lines for sphalerite were identified in X-ray diffraction: 3.118 Å (111), 1.907 Å (220), 1.627 Å (311). Microprobe analysis certifies the presence of sphalerite with the stoichiometric formula close to ZnS. Iron content is low (0%–0.0613%), but Sb (0.7726%–2.6813%), Pb (0.56%–1.1718%), Bi (0%–0.1227%) are also present. The negative correlation between Zn and Sb suggests the simultaneous deposition from the same epithermal fluids. Valentinite and colloform sphalerite were formed at low temperatures (100–150 °C) at the end of the epithermal process. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

28 pages, 11151 KiB  
Article
Subsolidus Evolution of the Magnetite-Spinel-UlvöSpinel Solid Solutions in the Kovdor Phoscorite-Carbonatite Complex, NW Russia
by Gregory Yu. Ivanyuk, Andrey O. Kalashnikov, Yakov A. Pakhomovsky, Ayya V. Bazai, Pavel M. Goryainov, Julia A. Mikhailova, Victor N. Yakovenchuk and Nataly G. Konopleva
Minerals 2017, 7(11), 215; https://doi.org/10.3390/min7110215 - 9 Nov 2017
Cited by 20 | Viewed by 10948
Abstract
The Kovdor phoscorite-carbonatite ore-pipe rocks form a natural series, where apatite and magnetite first gradually increase due to the presence of earlier crystallizing forsterite in the pipe marginal zone and then decrease as a result of carbonate development in the axial zone. In [...] Read more.
The Kovdor phoscorite-carbonatite ore-pipe rocks form a natural series, where apatite and magnetite first gradually increase due to the presence of earlier crystallizing forsterite in the pipe marginal zone and then decrease as a result of carbonate development in the axial zone. In all lithologies, magnetite grains contain (oxy)exsolution inclusions of comparatively earlier ilmenite group minerals and/or later spinel, and their relationship reflects the concentric zonation of the pipe. The temperature and oxygen fugacity of titanomagnetite oxy-exsolution decreases in the natural rock sequence from about 500 °C to about 300 °C and from NNO + 1 to NNO − 3 (NNO is Ni-NiO oxygen fugacity buffer), with a secondary positive maximum for vein calcite carbonatite. Exsolution spinel forms spherical grains, octahedral crystals, six-beam and eight-beam skeletal crystals co-oriented with host magnetite. The ilmenite group minerals occur as lamellae oriented along {111} and {100} planes of oxy-exsolved magnetite. The kinetics of inclusion growth depends mainly on the diffusivity of cations in magnetite: their comparatively low diffusivities in phoscorite and carbonatites of the ore-pipe internal part cause size-independent growth of exsolution inclusions; while higher diffusivities of cations in surrounding rocks, marginal forsterite-rich phoscorite and vein calcite carbonatite result in size-dependent growth of inclusions. Full article
(This article belongs to the Special Issue Fundamentals and Frontiers in Mineralogy)
Show Figures

Graphical abstract

17 pages, 7491 KiB  
Article
Carbonate Apatite Precipitation from Synthetic Municipal Wastewater
by Jessica Ross, Lu Gao, Orysia Meouch, Essie Anthony, Divya Sutarwala, Helina Mamo and Sidney Omelon
Minerals 2017, 7(8), 129; https://doi.org/10.3390/min7080129 - 25 Jul 2017
Cited by 5 | Viewed by 7431
Abstract
An important component of phosphorite (phosphate rock) is carbonate apatite, as it is required for phosphorous fertilizer production due to its increased phosphate solubility caused by carbonate substitution in the apatite mineral lattice. High phosphate concentrations in municipal wastewater treatment plants are commonly [...] Read more.
An important component of phosphorite (phosphate rock) is carbonate apatite, as it is required for phosphorous fertilizer production due to its increased phosphate solubility caused by carbonate substitution in the apatite mineral lattice. High phosphate concentrations in municipal wastewater treatment plants are commonly reduced by precipitating iron phosphate by addition of iron chloride. We investigated the possibility of precipitating carbonate apatite from a potential range of phosphate concentrations that could be available from municipal wastewater treatment plants with anaerobic digestion reactors (5 mM–30 mM). Synthetic phosphate solutions at neutral pH were mixed in batch experiments with a calcium carbonate solution produced by dissolving calcite in contact with carbon dioxide gas, with and without carbonate apatite seed. Batch experiments were used to identify the carbonate apatite supersaturation ranges for homogeneous and heterogeneous nucleation, and the precipitates analyzed with Raman spectroscopy, powder X-ray diffraction, inorganic carbon coulometry, and scanning electron microscopy. Some precipitates contained carbonate weight fractions within the range reported for geological phosphate rock (1.4–6.3 wt %). The precipitates were spherical, poorly crystalline carbonate apatite, suggesting an amorphous precursor transformed to a poorly crystalline carbonate apatite without changing morphology. Full article
Show Figures

Figure 1

13 pages, 7896 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites
by Lian-Hua Fu, Yan-Jun Liu, Ming-Guo Ma, Xue-Ming Zhang, Zhi-Min Xue and Jie-Fang Zhu
Polymers 2016, 8(9), 316; https://doi.org/10.3390/polym8090316 - 20 Sep 2016
Cited by 28 | Viewed by 9648
Abstract
In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA) nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O)), or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP), [...] Read more.
In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA) nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O)), or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP), creatine phosphate disodium salt tetrahydrate (CP), or D-fructose 1,6-bisphosphate trisodium salt octahydrate (FBP)) through the microwave-assisted hydrothermal method. The effects of the phosphorus sources, heating time, and heating temperature on the phase, size, and morphology of the products were systematically investigated. The experimental results revealed that the phosphate sources played a critical role on the phase, size, and morphology of the minerals in the nanocomposites. For example, the pure HA was obtained by using NaH2PO4·2H2O as phosphorus source, while all the ATP, CP, and FBP led to the byproduct, calcite. The HA nanostructures with various morphologies (including nanorods, pseudo-cubic, pseudo-spherical, and nano-spherical particles) were obtained by varying the phosphorus sources or adjusting the reaction parameters. In addition, this strategy is surfactant-free, avoiding the post-treatment procedure and cost for the surfactant removal from the product. We believe that this work can be a guidance for the green synthesis of cellulose/HA nanocomposites in the future. Full article
(This article belongs to the Special Issue Nanocomposites of Polymers and Inorganic Particles 2016)
Show Figures

Graphical abstract

Back to TopTop