Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = specific UV extinctions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2231 KiB  
Article
Comparative DFT Study of K2AgSbBr6 and K2NaScBr6: Exploring the Role of BB Cation Substitution on Material Properties
by Abdelkebir Ejjabli, Mohamed Karouchi, Hamza Errahoui, Abdelmounaim Laassouli, Aymane El haji, Youssef Lachtioui and Omar Bajjou
Atoms 2025, 13(6), 53; https://doi.org/10.3390/atoms13060053 - 13 Jun 2025
Cited by 1 | Viewed by 1078
Abstract
The effects of cation substitution are the main emphasis of this investigation into the structural, mechanical, electronic, and optical properties of double perovskites K2AgSbBr6 and K2NaScBr6. Outwardly favorable tolerance and octahedral factors and negative formation energy [...] Read more.
The effects of cation substitution are the main emphasis of this investigation into the structural, mechanical, electronic, and optical properties of double perovskites K2AgSbBr6 and K2NaScBr6. Outwardly favorable tolerance and octahedral factors and negative formation energy confirmed structural stability and thermodynamic feasibility. Mechanical analysis showed that K2AgSbBr6 possesses greater volumetric stability and rigidity, while K2NaScBr6 exhibits greater ductility and isotropic characteristics. The electronic properties determined based on density functional theory (DFT) calculations indicate that K2AgSbBr6 has an indirect bandgap of 0.857 eV, making it suitable for applications using visible light, and K2NaScBr6 has a direct bandgap of 3.107 eV, making it ideal for UV-specific technologies. Optical analyses demonstrate complementary characteristics, particularly in terms of the dielectric function, absorption, reflectivity, energy loss function, refractive index, extinction coefficient, and optical conductivity. K2AgSbBr6 exhibits strong visible light absorptivity. Full article
Show Figures

Figure 1

16 pages, 3458 KiB  
Article
Influence of Sample Preparation on SERS Signal
by Isabela Bianchi-Carvalho, Marcelo José dos Santos Oliveira, Cibely Silva Martin, Santiago Sánchez-Cortés and Carlos José Leopoldo Constantino
Chemosensors 2025, 13(1), 22; https://doi.org/10.3390/chemosensors13010022 - 18 Jan 2025
Cited by 1 | Viewed by 1213
Abstract
Carbendazim (MBC), a commonly used fungicide from the benzimidazole group, was applied in this study as a probe molecule to understand the influence of sample preparation on the SERS (surface-enhanced Raman scattering) signal. We applied the external standard method (ESM), preparing fresh Ag [...] Read more.
Carbendazim (MBC), a commonly used fungicide from the benzimidazole group, was applied in this study as a probe molecule to understand the influence of sample preparation on the SERS (surface-enhanced Raman scattering) signal. We applied the external standard method (ESM), preparing fresh Ag colloid samples (reduced by hydroxylamine) for each concentration and measuring with and without potassium nitrate (KNO₃) as an aggregation-inducing salt. The impact of sample dilution before or after the addition of the salt to the Ag colloid was also explored. SERS signals were correlated with Ag colloid aggregation observed via transmission electron microscopy (TEM), UV-Vis extinction, dynamic light scattering (DLS), and zeta potential, examining diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA) mechanisms. The optimal results were achieved without KNO₃, with more compact aggregates at lower concentrations and more branched ones at higher concentrations. Dilution of the Ag colloid before salt addition enabled lower detection limits than without any dilution. No SERS signal was observed when the salt was added before dilution. These findings emphasize that a consistent relationship between aggregate morphology and the SERS signal cannot be generalized across analytes. Analyte-specific properties play a crucial role in determining optimal aggregation conditions for SERS analysis. Full article
Show Figures

Figure 1

22 pages, 605 KiB  
Article
Evaluation of Some Quality Parameters of Pumpkin Seeds and Oil After Roasting with Marjoram
by Mariola Kozłowska, Małgorzata Ziarno, Katarzyna Zawada, Hanna Kowalska, Dorota Derewiaka, Małgorzata Chobot and Iwona Ścibisz
Foods 2025, 14(2), 172; https://doi.org/10.3390/foods14020172 - 8 Jan 2025
Cited by 2 | Viewed by 2352
Abstract
Consumers include pumpkin seeds in their diet as a snack in raw form or minimally processed by roasting. This process enables the seeds to develop a characteristic aroma and color. Herbs and spices are also distinguished by a pleasant and delicate aroma. Among [...] Read more.
Consumers include pumpkin seeds in their diet as a snack in raw form or minimally processed by roasting. This process enables the seeds to develop a characteristic aroma and color. Herbs and spices are also distinguished by a pleasant and delicate aroma. Among them, marjoram is particularly suited to drying, retaining its flavor better than other dried herbs. Marjoram can be used to impart flavor and aroma to food products and extend their shelf life because it can prevent lipid autoxidation. In this study, pumpkin seeds (Cucurbita pepo) were roasted with and without dried marjoram at 110 and 160 °C for 10 and 30 min, after which the oils were extracted. The results showed that with increasing temperature and roasting time, the moisture content and water activity of pumpkin seeds decreased. Furthermore, roasting pumpkin seeds with marjoram, particularly at 110 °C, enriched their aroma profile with terpenes characteristic of the marjoram aroma. Whether pumpkin seeds were roasted with or without marjoram, the fatty acid composition of the oils obtained was dominated by palmitic, stearic, oleic, and linoleic acids. However, the presence of marjoram during pumpkin seeds roasting resulted in lower peroxide values and specific extinction coefficients K232 and K270 in the oils obtained compared to their counterparts roasted without this spice. In addition, all the oils showed the ability to scavenge DPPH· radicals and were characterized by a higher proportion of yellow (positive value of the b* parameter) and green (negative value of the a* parameter) color. In comparison with the oil extracted from unroasted pumpkin seeds, the oil obtained after roasting exhibited a lower chlorophyll and a higher carotenoid content. Thus, roasting pumpkin seeds with spices may enrich their aroma profile with additional components, and the oils obtained may be characterized by better quality parameters. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

20 pages, 3501 KiB  
Article
Development of a Comprehensive Approach to Quality Control of Dermorphin Derivative—Representative of Synthetic Opioid Peptides with Non-Narcotic Type of Analgesia
by Vasilisa A. Sukhanova, Elena V. Uspenskaya, Safdari Ainaz, Hoang Thi Ngoc Quynh and Aleksey A. Timofeev
Sci. Pharm. 2025, 93(1), 3; https://doi.org/10.3390/scipharm93010003 - 31 Dec 2024
Viewed by 2102
Abstract
Peptides occupy a significant share of the pharmaceutical market and are among the top-200 selling drugs in the group of non-insulin drugs with analgesic, antibacterial and cardiovascular effects. The aim of this work is to develop a comprehensive analytical approach for quality control [...] Read more.
Peptides occupy a significant share of the pharmaceutical market and are among the top-200 selling drugs in the group of non-insulin drugs with analgesic, antibacterial and cardiovascular effects. The aim of this work is to develop a comprehensive analytical approach for quality control of novel synthetic peptides with non-narcotic types of analgesia and to provide docking simulations of dermorphin complex formation at the μ-opioid receptor (MOR) binding site. The materials and methods used include the pharmaceutical substance dermorphin tetrapeptide (DMTP) (tyrosyl-D-arginyl-phenylalanyl-glycinamide); Fourier transform infrared spectroscopy (FT-IR); static and dynamic laser light scattering (DLS, LALLS); scanning optical microscopy (SEM); X-ray fluorescence elements analysis; polarimetry for optical activity determining; and Spirotox method for sample biotesting. FT-IR-Spectra indicated specific amino acid chemical groups in the tetrapeptide sequence at 3300–2700 cm−1, 1670 cm−1. UV-absorption spectra of aqueous solutions of dermorphin tetrapeptide showed an absorption maximum at 275 nm, which is in good agreement with the presented spectrum of the bovine serum albumin (BSA) standard; the Pearson’s r of calibration line “A-C%” in 0.0125% to 0.0500% concentration range is 0.999; and the calculated specific extinction value E1cm 1% = 18.38 ± 0.23. Of the 11 elements detected by X-rays, the elements copper (Cu) and cobalt (Co) have the highest X-ray intensity. Dispersion characteristics of dermorphin solutions were studied in the submicron and micron range. Conglomerates and druzes were detected by SEM, ranging in size from 2 µm to 100 µm. The specific optical activity index was calculated αD20 = +36.18 ± 2.04 [°·mL·g−1·dm−1], according to Biot’s Law. Additionally, the orientation and conformation of the dermorphin molecule in the active binding site of the 8E0G receptor were predicted using molecular modeling, revealing that the contact area affects the key amino acid residue arginine (ARG 182). This comprehensive approach to analytical methods for qualitative and quantitative analysis of dermorphin tetrapeptide can be applied in pharmacies to enhance the understanding of its biological activity and aid in the development of regulatory documentation for a new, non-narcotic analgesic based on the dermorphin tetrapeptide. Full article
Show Figures

Figure 1

24 pages, 18810 KiB  
Review
Hot Stars, Young Stellar Populations and Dust with Swift/UVOT
by Michael H. Siegel and Caryl Gronwall
Universe 2024, 10(8), 330; https://doi.org/10.3390/universe10080330 - 16 Aug 2024
Cited by 1 | Viewed by 927
Abstract
In this review, we highlight the contributions made by the Swift/UVOT instrument to the understanding of the ultraviolet (UV) attenuation and extinction properties of interstellar dust and provide insight into hot stars and young stellar populations. The study of these two fields is [...] Read more.
In this review, we highlight the contributions made by the Swift/UVOT instrument to the understanding of the ultraviolet (UV) attenuation and extinction properties of interstellar dust and provide insight into hot stars and young stellar populations. The study of these two fields is interconnected: UV-bright objects can only be understood if the effects of foreground dust are accounted for, but foreground dust can only be accounted for by studying the properties of UV-bright objects. Decades worth of work have established that the effects of dust on background starlight vary in the ultraviolet, with proposed extinction laws having a wide variety of slopes and a strong “bump” spectroscopic feature at 2175 Å. We show that UVOT is uniquely suited to probe variations in the UV extinction law, specifically because of the uvm2 filter that is centered on the bump and the telescope’s ability to resolve nearby stellar populations. When used in combination with optical and infrared imaging, UVOT can provide strong constraints on variations in the extinction law, both from galaxy to galaxy and within individual galaxies, as well as the properties of young stellar populations. Surveys of UVOT have included the Milky Way, the galaxies of the Local Group, the Local Volume Legacy Survey (LVLS) and two deep fields. All of these are being utilized to provide the most detailed information yet about the UV dust attenuation law and the connection of its variation to underlying physical processes as well as the UV properties of hot stars and young stellar populations. Full article
Show Figures

Figure 1

20 pages, 4115 KiB  
Article
Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis
by Jamila Gagour, Otmane Hallouch, Abderrahim Asbbane, Abdellatif Laknifli, El Hassan Sakar, Khalid Majourhat and Said Gharby
Analytica 2024, 5(1), 119-138; https://doi.org/10.3390/analytica5010008 - 5 Mar 2024
Cited by 11 | Viewed by 3493
Abstract
This study focuses on evaluating the characteristics of olive oil produced in the Taroudant province (southern Morocco), making this the first comprehensive study focusing on olive oil from the ‘Moroccan Picholine’ cultivar. Our objective was to elucidate the distinctive qualities of olive oil [...] Read more.
This study focuses on evaluating the characteristics of olive oil produced in the Taroudant province (southern Morocco), making this the first comprehensive study focusing on olive oil from the ‘Moroccan Picholine’ cultivar. Our objective was to elucidate the distinctive qualities of olive oil from this region, providing valuable insights into its potential contributions to the country’s olive oil sector. For this purpose, several quality criteria (free fatty acids, moisture content, saponification value, and iodine value), oxidation indices (peroxide value, specific UV extinction coefficients, and oxidizability value), and purity indices (fatty acids and sterol composition) were evaluated. Our results reveal minor-to-significant variations (p < 0.05) in the quality and oxidation parameters. Specifically, our results indicate diverse ranges for free fatty acids (0.33–3.62 g/100 g), peroxide values (0.85–4.01 mEq O2/kg oil), K232 (1.68 to 2.73), and K270 (0.09–0.34). Furthermore, consistently high levels of oleic acid (55.8 to 73.1%) and β-sitosterol (94.2 to 97%) were observed in the studied samples. These outcomes were confirmed through the use principal component analysis and hierarchical cluster analysis. Likewise, important correlations were outlined among the studied parameters. Multidimensional analyses not only highlight inherent variations, but also facilitate the classification of the analyzed olive oils into distinct categories. The results suggest that the Taroudant province exhibits favorable conditions for producing high-quality olive oil. Full article
Show Figures

Graphical abstract

14 pages, 3894 KiB  
Article
Frequency Response Analysis of FAU, LTA and MFI Zeolites Using UV-Vis and Electrochemical Impedance Spectroscopy
by Fabian N. Murrieta-Rico, Joel Antúnez-García, Rosario I. Yocupicio-Gaxiola, Armando Reyes Serrato, Vitalii Petranovskii, Mufei Xiao, Oleg Sergiyenko, Wendy Flores-Fuentes and Julio C. Rodríguez-Quiñonez
Optics 2023, 4(3), 459-472; https://doi.org/10.3390/opt4030033 - 28 Jul 2023
Cited by 2 | Viewed by 1879
Abstract
Zeolites are porous materials that have cavities interconnected by channels. These crystalline materials are composed of Si-O tetrahedral structures, and according to the assembly of such tetrahedral structures, specific crystalline structures are obtained. Until now, it has been said that there are more [...] Read more.
Zeolites are porous materials that have cavities interconnected by channels. These crystalline materials are composed of Si-O tetrahedral structures, and according to the assembly of such tetrahedral structures, specific crystalline structures are obtained. Until now, it has been said that there are more than 245 different zeolitic frameworks, and since each one has a specific distribution of pores and cavities, each kind of zeolite has a specific area-to-volume ratio. As a result of the type of zeolite structure, the zeolite can exhibit specific properties, i.e., electrical or optical. Moreover, the physical properties of zeolites can be modified after the inclusion of another chemical species in their structure or in their voids, which can result in tuning a zeolite for specific applications. In this work, synthetic zeolites of types LTA, FAU and MFI are characterized by a number of methods. In particular, the data from UV-Vis spectroscopy are analyzed, and the effect of crystalline structure on properties such as optical bandgap, refractive index, absorption coefficient, incident photon frequency, and extinction coefficient is studied. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

16 pages, 4819 KiB  
Article
UV Sterilization Effects and Osteoblast Proliferation on Amorphous Carbon Films Classified Based on Optical Constants
by Kazuya Kanasugi, Keita Arimura, Ali Alanazi, Yasuharu Ohgoe, Yoshinobu Manome, Masanori Hiratsuka and Kenji Hirakuri
Bioengineering 2022, 9(10), 505; https://doi.org/10.3390/bioengineering9100505 - 26 Sep 2022
Cited by 7 | Viewed by 2041
Abstract
Optical classification methods that distinguish amorphous carbon films into six types based on refractive index and extinction coefficient have garnered increasing attention. In this study, five types of amorphous carbon films were prepared on Si substrates using different plasma processes, including physical and [...] Read more.
Optical classification methods that distinguish amorphous carbon films into six types based on refractive index and extinction coefficient have garnered increasing attention. In this study, five types of amorphous carbon films were prepared on Si substrates using different plasma processes, including physical and chemical vapor deposition. The refractive index and extinction coefficient of the amorphous carbon films were measured using spectroscopic ellipsometry, and the samples were classified into five amorphous carbon types—amorphous, hydrogenated amorphous, tetrahedral amorphous, polymer-like, and graphite-like carbon—based on optical constants. Each amorphous carbon type was irradiated with 253.7 nm UV treatment; the structure and surface properties of each were investigated before and after UV treatment. No significant changes were observed in film structure nor surface oxidation after UV sterilization progressed at approximately the same level for all amorphous carbon types. Osteoblast proliferation associated with amorphous carbon types was evaluated in vitro. Graphite-like carbon, which has relatively high surface oxidation levels, was associated with higher osteoblast proliferation levels than the other carbon types. Our findings inform the selection of suitable amorphous carbon types based on optical constants for use in specific medical devices related to osteoblasts, such as artificial joints and dental implants. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

16 pages, 11452 KiB  
Article
UV-LED Curable Acrylic Films Containing Phosphate Glass Powder: Effect of the Filler Loading on the Thermal, Optical, Mechanical and Flame Retardant Properties
by Diego Pugliese and Giulio Malucelli
Polymers 2022, 14(9), 1899; https://doi.org/10.3390/polym14091899 - 6 May 2022
Cited by 5 | Viewed by 2493
Abstract
In this work, we thoroughly investigate the effects of the incorporation of a phosphate glass micrometric powder on the morphology, as well as on the thermal, optical, mechanical and flame retardant properties of UV-LED curable acrylic films. To this aim, the filler loading [...] Read more.
In this work, we thoroughly investigate the effects of the incorporation of a phosphate glass micrometric powder on the morphology, as well as on the thermal, optical, mechanical and flame retardant properties of UV-LED curable acrylic films. To this aim, the filler loading was changed within 10 and 50 wt.%. UV-LED initiated curing was selected as a fast and reliable system, as the standard UV-curing process was not suitable because of the presence of the glass powder that decreased the quantum efficiency during the UV exposure, hence preventing the transformation of the liquid system into a solid network. The glass powder slightly increased the glass transition temperature of the acrylic network, hence showing a limited effect on the chain segments mobility; besides, increasing filler loadings were responsible for a progressive decrease of the transparency of films, irrespective of a marginal effect on their refractive index. Conversely, the presence of increasing amounts of phosphate glass improved the thermal and thermo-oxidative stability of the cured products. Besides, phosphate glass was capable of remarkably enhancing the flame retardance of the acrylic network at 50 wt.% loading, which achieved self-extinction in vertical flame spread tests (and was V-0 rated). This formulation, as assessed by forced-combustion tests, also displayed a remarkable decrease of peak of Heat Release Rate and Total Heat Release (by 44 and 33%, respectively) and of Total Smoke Release and Specific Extinction Area (by 53 and 56%, respectively). Further, the filler promoted an increase of the stiffness and surface hardness of the films, at the expense of a decrease in ductility. All these findings may justify the potential use of these composite films as flame retardant coatings for different flammable substrates. Full article
(This article belongs to the Special Issue Polymer Composite Analysis and Characterization)
Show Figures

Graphical abstract

18 pages, 1316 KiB  
Article
Immunogold Nanoparticles for Rapid Plasmonic Detection of C. sakazakii
by Mohamed A. Aly, Konrad J. Domig, Wolfgang Kneifel and Erik Reimhult
Sensors 2018, 18(7), 2028; https://doi.org/10.3390/s18072028 - 25 Jun 2018
Cited by 19 | Viewed by 7301
Abstract
Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment [...] Read more.
Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii. The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti-C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization. Full article
Show Figures

Graphical abstract

Back to TopTop