Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Sampling
2.2. Analytical Methods
2.2.1. Basic Quality Parameters
2.2.2. Fatty acid Composition
2.2.3. Oxidizability Value (COX)
2.2.4. Iodine Value (IV)
2.2.5. Saponification Value (SV)
2.2.6. Sterols Composition
2.3. Statistical Analysis
3. Results
3.1. Basic Quality Parameters
3.1.1. Free Fatty Acids (FFAs)
3.1.2. Moisture Content (MC)
3.1.3. Peroxide Value (PV)
3.1.4. UV–Light Absorption (K232 and K270)
3.1.5. Oxidizability Value (COX)
3.1.6. Iodine Value (IV)
3.1.7. Saponification Value (SV)
Mean | SD | Sum | Min | Max | IOC Standards | |
---|---|---|---|---|---|---|
Fatty acids (%) | ||||||
C 16:0 | 10.128 | 2.036 | 455.78 | 7.59 | 18.59 | 7.50–20.00 |
C 16:1 | 0.662 | 0.255 | 29.79 | 0.23 | 1.68 | 0.30–3.50 |
C 18:0 | 2.714 | 0.369 | 122.17 | 1.40 | 3.22 | 0.50–5.00 |
C 18:1 | 65.411 | 3.060 | 2943.50 | 55.80 | 73.10 | 55.00–83.00 |
C 18:2 | 18.253 | 2.598 | 821.39 | 12.35 | 23.41 | 2.50–21.00 |
C 18:3 | 0.946 | 0.239 | 42.57 | 0.36 | 1.53 | ≤1.00 |
C 20:0 | 0.324 | 0.074 | 14.60 | 0.10 | 0.60 | ≤0.60 |
C 20:1 | 0.242 | 0.042 | 10.92 | 0.13 | 0.35 | ≤0.50 |
Sterols (%) | ||||||
Cholesterol | 0.108 | 0.055 | 4.90 | 0 | 0.30 | ≤0.5 |
Brassicastérol | 0.1 | 0 | 4.59 | 0.10 | 0.10 | ≤0.1 |
Campesterol | 3.803 | 0.455 | 171.17 | 2.57 | 4.77 | ≤4.0 |
Stigmasterol | 1.260 | 0.289 | 56.79 | 0.70 | 1.90 | <Campesterol |
β-Sitosterol app | 94.984 | 0.686 | 4274.30 | 94.20 | 97.00 | |
Δ-7-Stigmastenol | 0.411 | 0.079 | 18.59 | 0.22 | 0.55 | 0.5 |
Δ-5-Avenasterol | 0.711 | 0.215 | 32.03 | 0.12 | 1.10 | |
Quality index | ||||||
K232 | 2.154 | 0.212 | 96.94 | 1.68 | 2.73 | ≤2.50 |
K270 | 0.198 | 0.054 | 8.92 | 0.09 | 0.34 | ≤0.22 |
DK | 0.0001 | 0.001 | 0.01 | 0.0001 | 0.003 | ≤0.01 |
PV (mEq O2/kg oil) | 2.185 | 0.865 | 98.35 | 0.85 | 4.01 | ≤20.0 |
FFAs (g/100 g) | 1.600 | 1.005 | 72.03 | 0.33 | 3.62 | ≤0.80 |
Moisture % | 0.144 | 0.045 | 6.48 | 0.04 | 0.26 | ≤0.2 |
COX | 2.747 | 0.256 | 123.64 | 3.29 | 2.12 | ND |
IV g (I2)/100 g oil | 95.167 | 3.368 | 4282.54 | 85.74 | 103.67 | 75–94 |
SV mg (KOH)/g oil | 194.717 | 2.836 | 8762.30 | 187.36 | 199.47 | 184–196 |
3.2. Olive Oil Purity Indices
3.2.1. Fatty Acids Compositions
3.2.2. Sterols Composition
3.3. Correlation Analysis
3.4. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Terral, J.-F.; Bonhomme, V.; Pagnoux, C.; Ivorra, S.; Newton, C.; Paradis, L.; Ater, M.; Kassout, J.; Limier, B.; Bouby, L.; et al. The Shape Diversity of Olive Stones Resulting from Domestication and Diversification Unveils Traits of the Oldest Known 6500-Years-Old Table Olives from Hishuley Carmel Site (Israel). Agronomy 2021, 11, 2187. [Google Scholar] [CrossRef]
- Barazani, O.; Dag, A.; Dunseth, Z. The History of Olive Cultivation in the Southern Levant. Front. Plant Sci. 2023, 14, 1131557. [Google Scholar] [CrossRef]
- IOC World Production of Olive Oil. International Olive Council, Madrid. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 28 February 2022).
- Caracciolo, M. Shelf Life of Bakery Products Made with Monocultival Extra Virgin Olive Oil from Calabria (South Italy): Lipid Matrix Oxidation. Ph.D. Thesis, Università degli studi della Tuscia-Viterbo, Viterbo, Italy, 2020. [Google Scholar]
- García Martín, J.F. Potential of Near-Infrared Spectroscopy for the Determination of Olive Oil Quality. Sensors 2022, 22, 2831. [Google Scholar] [CrossRef] [PubMed]
- Plasquy, E.; García Martos, J.M.; Florido, M.C.; Sola-Guirado, R.R.; García Martín, J.F. Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes 2021, 9, 1543. [Google Scholar] [CrossRef]
- Grossi, M.; Palagano, R.; Bendini, A.; Riccò, B.; Servili, M.; García-González, D.L.; Gallina Toschi, T. Design and In-House Validation of a Portable System for the Determination of Free Acidity in Virgin Olive Oil. Food Control. 2019, 104, 208–216. [Google Scholar] [CrossRef]
- Sanmartin, C.; Venturi, F.; Sgherri, C.; Nari, A.; Macaluso, M.; Flamini, G.; Quartacci, M.F.; Taglieri, I.; Andrich, G.; Zinnai, A. The Effects of Packaging and Storage Temperature on the Shelf-Life of Extra Virgin Olive Oil. Heliyon 2018, 4, e00888. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Mousavi, S.; Stanzione, V.; Mariotti, R.; Mastio, V.; Azariadis, A.; Passeri, V.; Valeri, M.C.; Baldoni, L.; Bufacchi, M. Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. Antioxidants 2022, 11, 672. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Sestili, S.; Di Vincenzo, D. Influence of Olive Processing on Virgin Olive Oil Quality. Eur. J. Lipid Sci. Technol. 2002, 104, 587–601. [Google Scholar] [CrossRef]
- Gagour, J.; Oubannin, S.; Bouzid, H.A.; Bijla, L.; Moudden, H.E.; Sakar, E.H.; Koubachi, J.; Laknifli, A.; Gharby, S. Physicochemical Characterization, Kinetic Parameters, Shelf Life and Its Prediction Models of Virgin Olive Oil from Two Cultivars (“Arbequina” and “Moroccan Picholine”) Grown in Morocco. OCL 2022, 29, 39. [Google Scholar] [CrossRef]
- Sánchez-Lozano, D.; Escámez, A.; Aguado, R.; Oulbi, S.; Hadria, R.; Vera, D. Techno-Economic Assessment of an Off-Grid Biomass Gasification CHP Plant for an Olive Oil Mill in the Region of Marrakech-Safi, Morocco. Appl. Sci. 2023, 13, 5965. [Google Scholar] [CrossRef]
- Bouknana, D.; Serghini Caid, H.; Hammouti, B.; Rmili, R.; Hamdani, I. Diagnostic Study of the Olive Oil Industry in the Eastern Region of Morocco. Mater. Today Proc. 2021, 45, 7782–7788. [Google Scholar] [CrossRef]
- Intelligenia, S. OLIVAE 125: Morocco. Available online: https://www.internationaloliveoil.org/1430-olivae-125-morocco/ (accessed on 27 October 2023).
- El Yamani, M.; Sakar, E.H.; Boussakouran, A.; Ghabbour, N.; Rharrabti, Y. Physicochemical and Microbiological Characterization of Olive Mill Wastewater (OMW) from Different Regions of Northern Morocco. Environ. Technol. 2020, 41, 3081–3093. [Google Scholar] [CrossRef]
- Rahimi, A.; Khalil, Z.; Bouasria, A.; Mjiri, I.E.; Bounif, M. Land Surface Temperature Responses to Land Use Land Cover Dynamics (District of Taroudant, Morocco). Biol. Life Sci. Forum 2021, 3, 28. [Google Scholar] [CrossRef]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/55/75594.html (accessed on 7 October 2022).
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/12/71268.html (accessed on 7 October 2022).
- ISO 3656:2011; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/51008.html (accessed on 16 February 2023).
- ISO 662:2016; Animal and Vegetable Fats and Oils—Determination of Moisture and Volatile Matter Content. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/69592.html (accessed on 9 November 2023).
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/21/72142.html (accessed on 7 October 2022).
- Oubannin, S.; Asbbane, A.; Bijla, L.; Ait Bouzid, H.; Gagour, G.; Hallouch, O.; Sakar, E.H.; Gharby, S. Co-Processed [Argania Spinosa L. (Skeels)] Oil with Thyme (Thymus Vulgaris L.) Leaves—New Product Optimization. Food Chem. Adv. 2023, 3, 100474. [Google Scholar] [CrossRef]
- Abril, D.; Mirabal-Gallardo, Y.; González, A.; Marican, A.; Durán-Lara, E.F.; Silva Santos, L.; Valdés, O. Comparison of the Oxidative Stability and Antioxidant Activity of Extra-Virgin Olive Oil and Oils Extracted from Seeds of Colliguaya Integerrima and Cynara Cardunculus under Normal Conditions and After Thermal Treatment. Antioxidants 2019, 8, 470. [Google Scholar] [CrossRef]
- Aissa, R.; Asbbane, A.; Oubannin, S.; Bijla, L.; Bousaid, Z.; Hallouch, O.; El Harkaoui, S.; Matthäus, B.; Sakar, E.H.; Gharby, S. Oxidative Stability of Virgin and Refined Argan [Argania spinosa L. (Skeels)] Oil under Accelerated Aging Conditions and Shelf-Life Prediction at Room Temperature: A Comparative Study. Analytica 2023, 4, 500–512. [Google Scholar] [CrossRef]
- ISO 12228-1:2014; Determination of Individual and Total Sterols Contents—Gas Chromatographic Method—Part 1: Animal and Vegetable Fats and Oils. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/obp/ui/#iso:std:iso:12228:-1:ed-1:v2:en (accessed on 4 March 2022).
- Oubannin, S.; Asbbane, A.; Elhaidag, F.; Bijla, L.; Gagour, J.; Ait bouzid, H.; El Harkaoui, S.; Sakar, E.H.; Matthäus, B.; Gharby, S. Enrichment of Argan [Argania spinosa (L.) Skeels] Oil with Saffron (Crocus sativus L.) Stigma Powder and Induced Changes in Oil Quality Attributes. J. Food Process. Preserv. 2023, 2023, 8895851. [Google Scholar] [CrossRef]
- IOC Trade Standard Applying to Olive Oils and Olive-Pomace Oils. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 9 November 2023).
- Martins, S.; Silva, E.; Brito, C.; Pinto, L.; Martins-Gomes, C.; Gonçalves, A.; Arrobas, M.; Rodrigues, M.Â.; Correia, C.M.; Nunes, F.M. Combining Zeolites with Early-Maturing Annual Legume Cover Crops in Rainfed Orchards: Effects on Yield, Fatty Acid Composition and Polyphenolic Profile of Olives and Olive Oil. Molecules 2023, 28, 2545. [Google Scholar] [CrossRef]
- Giuffre, A.M. The Evolution of Free Acidity and Oxidation Related Parameters in Olive Oil during Olive Ripening from Cultivars Grown in the Region of Calabria, South Italy. Emir. J. Food Agric. 2018, 30, 539–548. [Google Scholar] [CrossRef]
- Mafrica, R.; Piscopo, A.; De Bruno, A.; Poiana, M. Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea. Agriculture 2021, 11, 147. [Google Scholar] [CrossRef]
- Mourhat, Z.; Hirri, A.; Maaouni, M.; Benlamaalam, S.; Chigr, M.; Echajia, M.; Rabi, S.; Mbarki, M. Characterization and Discrimination of Three Moroccan Cultivars of Virgin Olive Oil (“Picholine”,”Menara” and “Hawziya”). J. Mater. Environ. Sci. 2018, 9, 466–473. [Google Scholar] [CrossRef]
- Bustan, A.; Kerem, Z.; Yermiyahu, U.; Ben-Gal, A.; Lichter, A.; Droby, S.; Zchori-Fein, E.; Orbach, D.; Zipori, I.; Dag, A. Preharvest Circumstances Leading to Elevated Oil Acidity in ‘Barnea’ Olives. Sci. Hortic. 2014, 176, 11–21. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.-M.; Giuffrè, A.M. Pre-and Post-Harvest Factors and Their Impact on Oil Composition and Quality of Olive Fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef]
- Sakar, E.H.; Khtira, A.; Aalam, Z.; Zeroual, A.; Gagour, J.; Gharby, S. Variations in Physicochemical Characteristics of Olive Oil (Cv ‘Moroccan Picholine’) According to Extraction Technology as Revealed by Multivariate Analysis. AgriEngineering 2022, 4, 922–938. [Google Scholar] [CrossRef]
- Theodosi, S.; Kosma, I.S.; Badeka, A.V. Quality Characteristics of Koroneiki Olive Oil from Zakynthos Island (Greece) and Differentiation Depending on the Altitude Level. Eur. Food Res. Technol. 2021, 247, 1235–1248. [Google Scholar] [CrossRef]
- Piscopo, A.; Mafrica, R.; De Bruno, A.; Romeo, R.; Santacaterina, S.; Poiana, M. Characterization of Olive Oils Obtained from Minor Accessions in Calabria (Southern Italy). Foods 2021, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Willenberg, I.; Matthäus, B.; Gertz, C. A New Statistical Approach to Describe the Quality of Extra Virgin Olive Oils Using Near Infrared Spectroscopy (NIR) and Traditional Analytical Parameters. Eur. J. Lipid Sci. Technol. 2019, 121, 1800361. [Google Scholar] [CrossRef]
- Ioannou, E.T.; Gliatis, K.S.; Zoidis, E.; Georgiou, C.A. Olive Oil Benefits from Sesame Oil Blending While Extra Virgin Olive Oil Resists Oxidation during Deep Frying. Molecules 2023, 28, 4290. [Google Scholar] [CrossRef] [PubMed]
- Ayyad, Z.; Alsioury, W.; Barghouthi, Z.; Qadah, D.; Qurie, M. Effects of Different Filtration and Clarification Techniques on Palestinian Virgin Olive Oil Chemical and Microbial Quality. J. Med. Chem. Sci. 2023, 6, 2699–2706. [Google Scholar] [CrossRef]
- Harkaoui, S.E.; Gharby, S.; Kartah, B.; Monfalouti, H.E.; El-sayed, M.E.; Abdin, M.; Salama, M.A.; Charrouf, Z.; Matthäus, B. Lipid Profile, Volatile Compounds and Oxidative Stability during the Storage of Moroccan Opuntia Ficus-Indica Seed Oil. Grasas Aceites 2023, 74, e486. [Google Scholar] [CrossRef]
- Zielińska, A.; Wójcicki, K.; Klensporf-Pawlik, D.; Dias-Ferreira, J.; Lucarini, M.; Durazzo, A.; Lucariello, G.; Capasso, R.; Santini, A.; Souto, E.B.; et al. Chemical and Physical Properties of Meadowfoam Seed Oil and Extra Virgin Olive Oil: Focus on Vibrational Spectroscopy. J. Spectrosc. 2020, 2020, e8870170. [Google Scholar] [CrossRef]
- El Moudden, H.; El Idrissi, Y.; El Guezzane, C.; Belmaghraoui, W.; El Yadini, A.; Harhar, H.; Tabyaoui, M. Tradition Mills’ Picholine Olive Oil Physicochemical Characterization and Chemical Profiling across Different Cities in Morocco. Sci. World J. 2020, 2020, e1804723. [Google Scholar] [CrossRef] [PubMed]
- Ghreishi Rad, S.A.; Jalili, M.; Ansari, F.; Rashidi Nodeh, H.; Rashidi, L. Maturity Impact on Physicochemical Composition and Polyphenol Properties of Extra Virgin Olive Oils Obtained from Manzanilla, Arbequina, and Koroneiki Varieties in Iran. Food Sci. Nutr. 2023, 11, 5396–5408. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical Properties of Cold Pressed Sunflower, Peanut, Rapeseed, Mustard and Olive Oils Grown in the Eastern Mediterranean Region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective Effects of Oleic Acid and Polyphenols in Extra Virgin Olive Oil on Cardiovascular Diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Mnasri, S.R.; Debbabi, O.S.; Amar, F.B.; Dellino, M.; Montemurro, C.; Miazzi, M.M. Exploring the Quality and Nutritional Profiles of Monovarietal Oils from Millennial Olive Trees in Tunisia. Eur. Food Res. Technol. 2023, 249, 2807–2820. [Google Scholar] [CrossRef]
- El Riachy, M.; Moubarak, P.; Al Hawi, G.; Geha, M.; Mushantaf, W.; Estephan, N.; Skaff, W. Fatty Acid and Phenolic Profiles of Virgin Olive Oils from Local and European Varieties Planted in Lebanon. Plants 2023, 12, 2681. [Google Scholar] [CrossRef]
- El Qarnifa, S.; El Antari, A.; Hafidi, A. Effect of Maturity and Environmental Conditions on Chemical Composition of Olive Oils of Introduced Cultivars in Morocco. J. Food Qual. 2019, 2019, e1854539. [Google Scholar] [CrossRef]
- Xiang, C.; Xu, Z.; Liu, J.; Li, T.; Yang, Z.; Ding, C. Quality, Composition, and Antioxidant Activity of Virgin Olive Oil from Introduced Varieties at Liangshan. LWT 2017, 78, 226–234. [Google Scholar] [CrossRef]
- Korkmaz, A. Characterization and Comparison of Extra Virgin Olive Oils of Turkish Olive Cultivars. Molecules 2023, 28, 1483. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Krichène, D.; Ouni, Y.; Gallardo, L.; Sánchez, J.; Osorio, E.; Daoud, D.; Guido, F.; Zarrouk, M. Chemical Profiles of Five Minor Olive Oil Varieties Grown in Central Tunisia. J. Food Compos. Anal. 2012, 27, 109–119. [Google Scholar] [CrossRef]
- Gharby, S.; Guillaume, D.; Nounah, I.; Harhar, H.; Hajib, A.; Matthäus, B.; Charrouf, Z. Shelf-Life of Moroccan Prickly Pear (Opuntia ficus-Indica) and Argan (Argania spinosa) Oils: A Comparative Study. Grasas Aceites 2021, 72, e397. [Google Scholar] [CrossRef]
- Zago, L.; Squeo, G.; Bertoncini, E.I.; Difonzo, G.; Caponio, F. Chemical and Sensory Characterization of Brazilian Virgin Olive Oils. Food Res. Int. 2019, 126, 108588. [Google Scholar] [CrossRef] [PubMed]
- García-Garví, J.M.; Noguera-Artiaga, L.; Hernández, F.; Pérez-López, A.J.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Quality of Olive Oil Obtained by Regulated Deficit Irrigation. Horticulturae 2023, 9, 557. [Google Scholar] [CrossRef]
- Lukić, M.; Lukić, I.; Moslavac, T. Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae 2021, 7, 493. [Google Scholar] [CrossRef]
- Gunduz, G.; Konuskan, D.B. Fatty Acid and Sterol Compositions of Turkish Monovarietal Olive Oils with Regard to Olive Ripening. J. Oleo Sci. 2023, 72, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kyçyk, O.; Aguilera, M.P.; Gaforio, J.J.; Jiménez, A.; Beltrán, G. Sterol Composition of Virgin Olive Oil of Forty-Three Olive Cultivars from the World Collection Olive Germplasm Bank of Cordoba. J. Sci. Food Agric. 2016, 96, 4143–4150. [Google Scholar] [CrossRef]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef] [PubMed]
- Demirag, O.; Konuskan, D.B. Quality Properties, Fatty Acid and Sterol Compositions of East Mediterranean Region Olive Oils. J. Oleo Sci. 2021, 70, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Revelou, P.-K.; Xagoraris, M.; Alexandropoulou, A.; Kanakis, C.D.; Papadopoulos, G.K.; Pappas, C.S.; Tarantilis, P.A. Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules 2021, 26, 4151. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.M.S.; Abdulazeez, A.M. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar]
- Crizel, R.L.; Hoffmann, J.F.; Zandoná, G.P.; Lobo, P.M.S.; Jorge, R.O.; Chaves, F.C. Characterization of Extra Virgin Olive Oil from Southern Brazil. Eur. J. Lipid Sci. Technol. 2020, 122, 1900347. [Google Scholar] [CrossRef]
- Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. [Google Scholar] [CrossRef]
OO Samples | C 16:0 | C 16:1 | C 18:0 | C 18:1 | C 18:2 | C 18:3 | C 20:0 | C 20:1 |
---|---|---|---|---|---|---|---|---|
S1 | 10.06 ± 0.10 ghijk | 0.65 ± 0.14 de | 2.90 ± 0.14 abcdefghij | 64.50 ± 0.13 opq | 19.8 ± 0.11 fghij | 1.06 ± 0.09 abcdef | 0.40 ± 0.08 a | 0.29 ± 0.08 a |
S2 | 7.84 ± 0.09 tu | 0.64 ± 0.10 de | 2.87 ± 0.11 abcdefghij | 71.60 ± 0.31 b | 12.78 ± 0.10 uv | 1.26 ± 0.10 abcd | 0.40 ± 0.13 a | 0.34 ± 0.10 a |
S3 | 9.53 ± 0.1 l jklmn | 0.73 ± 0.13 bdce | 2.84 ± 0.18 abcdefghij | 63.90 ± 0.15 rs | 19.5 ± 0.12 ijk | 1.53 ± 0.09 a | 0.40 ± 0.12 a | 0.3 ± 0.10 a |
S4 | 9.95 ± 0.11 ijkl | 0.44 ± 0.09 de | 3.09 ± 0.11 abcde | 65.80 ± 0.29 jk | 18.19 ± 0.23 mn | 0.80 ± 0.11 cdefgh | 0.30 ± 0.10 a | 0.23 ± 0.15 a |
S5 | 8.74 ± 0.09 opqr | 0.80 ± 0.11 bdce | 2.76 ± 0.10 abcdefghij i | 67.10 ± 0.14 gh | 17.67 ± 0.11 no | 1.10 ± 0.09 abcde | 0.40 ± 0.11 a | 0.27 ± 0.10 a |
S6 | 11.57 ± 0.13 cd | 0.74 ± 0.11 bcde | 2.96 ± 0.20 abcdefg | 63.30 ± 0.19 t | 20.03 ± 0.09 fghi | 0.88 ± 0.101 bcdefgh | 0.30 ± 0.12 a | 0.23 ± 0.10 a |
S7 | 8.24 ± 0.10 rstu | 0.69 ± 0.11 de | 2.75 ± 0.09 abcdefghij | 64.20 ± 0.12 qr | 19.25 ± 0.10 jk | 0.91 ± 0.151 bcdefgh | 0.30 ± 0.10 a | 0.23 ± 0.09 a |
S8 | 9.36 ± 0.10 lmno | 0.71 ± 0.12 cde | 2.92 ± 0.10 abcdefghij | 63 ± 0.23 tu | 20.33 ± 0.21 ef | 1.13 ± 0.10 abcde | 0.30 ± 0.09 a | 0.25 ± 0.09 a |
S9 | 10.19 ± 0.14 hijk | 0.75 ± 0.12 bcde | 2.36 ± 0.23 hikjklm | 64.90 ± 0.41 mno | 18.36 ± 0.10 lm | 1.27 ± 0.11 abcd | 0.30 ± 0.10 a | 0.25 ± 0.08 a |
S10 | 8.86 ± 0.21 nopqr | 0.76 ± 0.11 bcde | 2.95 ± 0.10 abcdefgh | 62.70 ± 0.32 u | 21.02 ± 0.12 cd | 0.96 ± 0.09 abcdefg | 0.40 ± 0.11 a | 0.26 ± 0.09 a |
S11 | 8.84 ± 0.22 nopqr | 0.58 ± 0.10 de | 2.58 ± 0.22 cdefghikjkl | 64.60 ± 0.40 nopq | 19.95 ± 0.11 fghi | 0.94 ± 0.10 abcdefgh | 0.30 ± 0.10 a | 0.26 ± 0.11 a |
S12 | 10 ± 0.13 ghijk | 0.58 ± 0.13 de | 2.61 ± 0.11 bcdefghikj | 60.20 ± 0.23 w | 22.78 ± 0.14 b | 0.86 ± 0.191 cdefgh | 0.30 ± 0.09 a | 0.22 ± 0.10 a |
S13 | 9.81 ± 0.10 ijklm | 0.55 ± 0.10 de | 3.07 ± 0.10 abcdef | 62.60 ± 0.12 u | 21.04 ± 0.12 cd | 0.95 ± 0.10 abcdefgh | 0.30 ± 0.12 a | 0.26 ± 0.11 a |
S14 | 10.79 ± 0.11 fg | 0.59 ± 0.11 de | 3.06 ± 0.21 abcdef | 70 ± 0.32 c | 15.51 ± 0.09 qr | 0.45 ± 0.09 gh | 0.30 ± 0.10 a | 0.23 ± 0.10 a |
S15 | 7.59 ± 0.09 tu | 0.53 ± 0.13 de | 3.18 ± 0.11 abc | 73.10 ± 0.43 a | 13.09 ± 0.21 u | 1.01 ± 0.10 abcdefg | 0.40 ± 0.11 a | 0.31 ± 0.11 a |
S16 | 9.93 ± 0.09 ijklm | 0.73 ± 0.10 bcde | 2.54 ± 0.09 efghikjkl | 61.50 ± 0.30 v | 21.61 ± 0.30 c | 0.79 ± 0.11 cdefgh | 0.30 ± 0.12 a | 0.25 ± 0.10 a |
S17 | 9.91 ± 0.08 ijklm | 0.43 ± 0.13 de | 2.94 ± 0.10 abcdefghi | 65.80 ± 0.17 jk | 17.66 ± 0.10 no | 0.82 ± 0.16 cdefgh | 0.30 ± 0.10 a | 0.23 ± 0.10 a |
S18 | 9.31 ± 0.14 lmno | 0.66 ± 0.09 de | 2.74 ± 0.10 abcdefghikj | 62.90 ± 0.09 tu | 20.63 ± 0.12 de | 1.11 ± 0.10 abcde | 0.40 ± 0.11 a | 0.25 ± 0.09 a |
S19 | 10.66 ± 0.13 efgh | 0.58 ± 0.10 de | 2.58 ± 0.11 cdefghikjkl | 66.40 ± 0.31 i | 17.47 ± 0.10 op | 0.90 ± 0.11 bcdefgh | 0.30 ± 0.09 a | 0.25 ± 0.10 a |
S20 | 8.39 ± 0.09 qrst | 0.23 ± 0.09 e | 3.03 ± 0.10 abcdef | 65.60 ± 0.20 kl | 17.72 ± 0.21 no | 1.08 ± 0.10 abcde | 0.40 ± 0.10 a | 0.25 ± 0.10 a |
S21 | 8.88 ± 0.10 nopqr | 0.61 ± 0.10 de | 2.79 ± 0.10 abcdefghikj | 63.30 ± 0.32 t | 19.68 ± 0.12 ghij | 1.04 ± 0.12 abcdefg | 0.30 ± 0.14 a | 0.23 ± 0.11 a |
S22 | 18.59 ± 0.13 a | 1.68 ± 0.10 a | 1.4 ± 0.19 n | 55.80 ± 0.40 x | 18.36 ± 0.1 lm | 0.75 ± 0.11 defgh | 0.30 ± 0.10 a | 0.13 ± 0.10 a |
S23 | 10.48 ± 0.10 fghi | 0.46 ± 0.10 de | 3.15 ± 0.51 abcd | 63.90 ± 0.10 rs | 19.58 ± 0.13 ghij | 0.90 ± 0.11 bcdefgh | 0.30 ± 0.09 a | 0.19 ± 0.10 a |
S24 | 10.15 ± 0.10 fghijk | 0.72 ± 0.10 cde | 2.7 ± 0.09 abcdefghikj | 65.20 ± 0.90 lm | 18.38 ± 0.11 lm | 1.08 ± 0.09 abcde | 0.40 ± 0.10 a | 0.3 ± 0.09 a |
S25 | 8.6 ± 0.09 pqrse | 0.60 ± 0.09 de | 3.1 ± 0.10 abcde | 67.70 ± 0.90 ef | 15.67 ± 0.20 q | 1.08 ± 0.13 abcde | 0.30 ± 0.20 a | 0.25 ± 0.09 a |
S26 | 12.2 ± 0.10 c | 0.88 ± 0.10 bcd | 2.54 ± 0.16 efghikjkl | 65.20 ± 0.13 lm | 17.69 ± 0.10 no | 0.47 ± 0.101 fgh | 0.30 ± 0.09 a | 0.21 ± 0.09 a |
S27 | 7.94 ± 0.10 stu | 0.32 ± 0.09 de | 3.19 ± 0.10 ab | 64.60 ± 0.32 nopq | 19.23 ± 0.21 k | 0.79 ± 0.11 cdefgh | 0.30 ± 0.10 a | 0.2 ± 0.12 a |
S28 | 7.76 ± 0.13 tu | 0.36 ± 0.11 de | 3.07 ± 0.20 abcdef | 64.40 ± 0.21 opqr | 19.49 ± 0.09 ijk | 0.68 ± 0.20 defgh | 0.30 ± 0.10 a | 0.2 ± 0.10 a |
S29 | 7.91 ± 0.14 rstu | 0.58 ± 0.13 de | 3.08 ± 0.53 abcdef | 68.10 ± 0.22 e | 15.64 ± 0.10 qr | 0.87 ± 0.11 bcdefgh | 0.30 ± 0.10 a | 0.22 ± 0.10 a |
S30 | 9.97 ± 0.10 hijkl | 0.45 ± 0.09 de | 2.63 ± 0.13 abcdefghikj | 71.10 ± 0.21 b | 14.31 ± 0.22 t | 0.61 ± 0.101 defgh | 0.30 ± 0.13 a | 0.25 ± 0.09 a |
S31 | 10.45 ± 0.09 fghi | 0.56 ± 0.14 de | 2.82 ± 0.10 abcdefghi | 69.40 ± 0.13 d | 15.07 ± 0.09 rs | 0.78 ± 0.11 cdefgh | 0.30 ± 0.11 a | 0.22 ± 0.09 a |
S32 | 15.22 ± 0.10 b | 1.30 ± 0.21 abc | 1.92 ± 0.32 mn | 66 ± 0.15 ijk | 13.3 ± 0.09 u | 0.36 ± 0.12 h | 0.20 ± 0.10 a | 0.15 ± 0.10 a |
S33 | 15.08 ± 0.10 b | 1.32 ± 0.14 ab | 2.00 ± 0.30 lm | 66.04 ± 0.14 i | 12.35 ± 0.20 v | 0.86 ± 0.11 cdefgh | 0.30 ± 0.14 a | 0.21 ± 0.08 a |
S34 | 10.67 ± 0.11 efg | 0.61 ± 0.10 de | 2.64 ± 0.11 abcdefghikj | 64.30 ± 0.23 pqr | 19.34 ± 0.22 jk | 1.06 ± 0.10 abcdef | 0.30 ± 0.13 a | 0.25 ± 0.10 a |
S35 | 10.24 ± 0.20 fghi | 0.76 ± 0.10 bcde | 2.15 ± 0.12 klm | 64.50 ± 0.32 opq | 16.93 ± 0.24 p | 1.46 ± 0.13 ab | 0.30 ± 0.10 a | 0.26 ± 0.09 a |
S36 | 11.25 ± 0.11 de | 0.80 ± 0.11 bcde | 2.33 ± 0.12 jklm | 63.40 ± 0.31 st | 18.4 ± 0.09 lm | 1.37 ± 0.10 abc | 0.30 ± 0.11 a | 0.26 ± 0.10 a |
S37 | 9.91 ± 0.09 ijklm | 0.62 ± 0.14 de | 2.64 ± 0.22 abcdefghikj | 70.30 ± 0.24 c | 14.87 ± 0.12 st | 1.02 ± 0.10 abcdefg | 0.40 ± 0.10 a | 0.28 ± 0.10 a |
S38 | 8.95 ± 0.10 nopq | 0.27 ± 0.10 e | 3.22 ± 0.30 a | 64.80 ± 0.30 mnop | 18.93 ± 0.15 kl | 0.64 ± 0.11 efgh | 0.30 ± 0.13 a | 0.22 ± 0.09 a |
S39 | 9.47 ± 0.1 l klmn | 0.66 ± 0.09 de | 2.84 ± 0.15 abcdefghi | 63.90 ± 0.11 rs | 20.22 ± 0.14 efg | 0.97 ± 0.10 abcdefg | 0.40 ± 0.10 a | 0.28 ± 0.10 a |
S40 | 10.16 ± 0.10 fghijk | 0.58 ± 0.10 de | 2.59 ± 0.14 cdefghikjkl | 67.60 ± 0.24 efg | 17.71 ± 0.09 no | 1.04 ± 0.12 abcdefg | 0.30 ± 0.09 a | 0.27 ± 0.10 a |
S41 | 12.10 ± 0.12 c | 0,80 ± 0.14 bcde | 2.35 ± 0.09 ikjklm | 65.10 ± 0.43 lmn | 19.29 ± 0.20 jk | 1.04 ± 0.10 abcdefg | 0.30 ± 0.10 a | 0.22 ± 0.08 a |
S42 | 9.91 ± 0.10 ijklm | 0.63 ± 0.10 de | 2.67 ± 0.30 abcdefghikj | 64.10 ± 0.21 qr | 23.41 ± 0.15 a | 1.08 ± 0.09 abcde | 0.10 ± 0.13 a | 0.23 ± 0.10 a |
S43 | 9.24 ± 0.11 mnop | 0.63 ± 0.10 de | 2.74 ± 0.14 abcdefghijk | 67.00 ± 0.09 h | 17.99 ± 0.10 mno | 1.08 ± 0.17 abcde | 0.60 ± 0.23 a | 0.35 ± 0.09 a |
S44 | 10.76 ± 0.09 ef | 0.55 ± 0.10 de | 2.49 ± 0.09 fghikjklm | 67.50 ± 0.21 fgh | 20.15 ± 0.14 efgh | 0.84 ± 0.11 cdefgh | 0.20 ± 0.08 a | 0.19 ± 0.09 a |
S45 | 10.32 ± 0.08 fghi | 0.67 ± 0.09 de | 2.39 ± 0.10 ghikjklm | 66.20 ± 0.19 ij | 21.01 ± 0.22 d | 0.89 ± 0.12 bcdefgh | 0.40 ± 0.10 a | 0.19 ± 0.08 a |
OO Samples | Cholesterol | Brassicasterol | Campesterol | Stigmasterol | β-Sitosterol App | Δ-7-Stigmastenol | Δ-5-Avenasterol |
---|---|---|---|---|---|---|---|
S1 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 4.36 ± 0.02 e | 1.30 ± 0.04 g | 94.60 ± 0.12 n | 0.45 ± 0.01 defgh | 0.79 ± 0.01 jkl |
S2 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 4.03 ± 0.01 h | 1.00 ± 0.01 j | 94.50 ± 0.09 o | 0.31 ± 0.02 opq | 0.2 ± 0.02 u |
S3 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 4.48 ± 0.01 c | 1.20 ± 0.02 h | 94.60 ± 0.05 n | 0.47 ± 0.01 cdef | 0.72 ± 0.01 mn |
S4 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.78 ± 0.01 lm | 1.50 ± 0.01 e | 95.10 ± 0.04 i | 0.36 ± 0.01 klmno | 0.72 ± 0.02 mn |
S5 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.7 ± 0.01 n | 1.10 ± 0.04 i | 94.50 ± 0.13 o | 0.4 ± 0.01 hijkl | 0.65 ± 0.09 op |
S6 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.8 ± 0.01 lm | 1.30 ± 0.02 g | 94.80 ± 0.08 l | 0.49 ± 0.01 bcd | 0.83 ± 0.01 ij |
S7 | 0.1 ± 0.02 a | 0.10 ± 0.02 a | 3.71 ± 0.02 n | 1.30 ± 0.01 g | 95 ± 0.09 j | 0.44 ± 0.02 defghi | 0.86 ± 0.02 ghi |
S8 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 4.22 ± 0.03 g | 1.50 ± 0.01 e | 94.90 ± 0.02 k | 0.45 ± 0.01 defgh | 0.94 ± 0.06 cde |
S9 | 0.2 ± 0.03 a | 0.10 ± 0.03 a | 4.08 ± 0.01 h | 1 ± 0.09 j | 94.70 ± 0.13 m | 0.45 ± 0.05 defgh | 0.72 ± 0.01 mn |
S10 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 4.43 ± 0.02 cd | 1.40 ± 0.03 f | 94.90 ± 0.01 k | 0.46 ± 0.01 defg | 0.87 ± 0.01 fghi |
S11 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 3.82 ± 0.08 lm | 1.20 ± 0.01 h | 94.80 ± 0.05 l | 0.48 ± 0.01 cde | 0.98 ± 0.09 bc |
S12 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.7 ± 0.013 n | 1.50 ± 0.02 e | 95 ± 0.09 j | 0.55 ± 0.01 a | 1.02 ± 0.02 b |
S13 | 0.1 ± 0.02 a | 0.10 ± 0.03 a | 4.33 ± 0.09 ef | 1.50 ± 0.01 e | 95.10 ± 0.03 i | 0.49 ± 0.02 bcd | 0.85 ± 0.01 ghi |
S14 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.21 ± 0.02 v | 1.30 ± 0.01 g | 94.40 ± 0.12 p | 0.30 ± 0.01 pq | 0.61 ± 0.06 pqr |
S15 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.1 ± 0.01 w | 1.10 ± 0.02 i | 94.20 ± 0.19 r | 0.31 ± 0.01 opq | 0.37 ± 0.01 t |
S16 | 0.2 ± 0.02 a | 0.10 ± 0.01 a | 3.85 ± 0.02 kl | 1.30 ± 0.01 g | 94.90 ± 0.04 k | 0.54 ± 0.05 ab | 0.89 ± 0.01 efgh |
S17 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.47 ± 0.01 s | 1.60 ± 0.02 d | 95 ± 0.021 j | 0.36 ± 0.01 klmno | 0.65 ± 0.02 op |
S18 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 4.05 ± 0.01 h | 1.30 ± 0.01 g | 94.70 ± 0.26 m | 0.52 ± 0.02 abc | 0.82 ± 0.01 ijk |
S19 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.64 ± 0.09 opq | 1.30 ± 0.01 g | 94.50 ± 0.25 o | 0.40 ± 0.01 hijkl | 0.63 ± 0.01 pq |
S20 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 3.69 ± 0.03 no | 1.70 ± 0.03 c | 95.40 ± 0.18 g | 0.36 ± 0.01 klmno | 0.7 ± 0.02 no |
S21 | 0.1 ± 0.02 a | 0.10 ± 0.02 a | 3.85 ± 0.01 kl | 1.50 ± 0.09 e | 95 ± 0.20 j | 0.41 ± 0.01 ghijk | 0.89 ± 0.01 efgh |
S22 | 0.3 ± 0.01 a | 0.10 ± 0.02 a | 3.91 ± 0.02 j | 0.80 ± 0.01 l | 94.30 ± 0.20 q | 0.43 ± 0.02 efghi | 0.46 ± 0.02 s |
S23 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.85 ± 0.01 kl | 1.70 ± 0.02 c | 95.20 ± 0.12 h | 0.43 ± 0.01 efghi | 0.9 ± 0.01 efg |
S24 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.88 ± 0.03 jk | 1.20 ± 0.01 h | 94.20 ± 0.19 r | 0.47 ± 0.01 cdef | 0.75 ± 0.01 lmn |
S25 | 0.1 ± 0.03 a | 0.10 ± 0.02 a | 3.64 ± 0.02 opq | 1.40 ± 0.04 f | 94.60 ± 0.12 n | 0.35 ± 0.02 lmnop | 0.59 ± 0.02 qr |
S26 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.29 ± 0.01 tu | 1.10 ± 0.03 i | 94.20 ± 0.23 r | 0.42 ± 0.01 fghij | 0.77 ± 0.01 klm |
S27 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 3.56 ± 0.02 r | 1.90 ± 0.01 a | 95.50 ± 0.19 f | 0.37 ± 0.01 jklmn | 0.86 ± 0.01 ghi |
S28 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.68 ± 0.05 nop | 1.80 ± 0.12 b | 95.70 ± 0.21 e | 0.4 ± 0.04 hijkl | 0.92 ± 0.02 def |
S29 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.33 ± 0.02 t | 1.60 ± 0.01 d | 95.20 ± 0.21 h | 0.29 ± 0.01 q | 0.63 ± 0.01 pq |
S30 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 3.09 ± 0.01 w | 1.20 ± 0.01 h | 94.30 ± 0.15 qr | 0.32 ± 0.02 nopq | 0.50 ± 0.02 s |
S31 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.45 ± 0.03 s | 1.40 ± 0.01 f | 95.20 ± 0.13 h | 0.29 ± 0.01 q | 0.56 ± 0.02 r |
S32 | 0.1 ± 0.02 a | 0.10 ± 0.02 a | 3.03 ± 0.05 x | 0.90 ± 0.12 k | 94.20 ± 0.08 r | 0.22 ± 0.02 r | 0.35 ± 0.09 t |
S33 | 0.2 ± 0.01 a | 0.10 ± 0.01 a | 3.62 ± 0.03 q | 0.80 ± 0.04 l | 94.30 ± 0.12 q | 0.23 ± 0.01 r | 0.12 ± 0.02 v |
S34 | 0.1 ± 0.02 a | 0.10 ± 0.02 a | 4.3 ± 0.02 f | 1.30 ± 0.01 g | 95 ± 0.07 j | 0.46 ± 0.01 defg | 0.75 ± 0.01 lmn |
S35 | 0.2 ± 0.07 a | 0.10 ± 0.01 a | 3.97 ± 0.02 i | 1.10 ± 0.04 i | 95.20 ± 0.22 h | 0.39 ± 0.01 ijklm | 0.56 ± 0.01 r |
S36 | 0.2 ± 0.05 a | 0.10 ± 0.01 a | 4.34 ± 0.01 ef | 1 ± 0.02 j | 95.10 ± 0.18 i | 0.52 ± 0.01 abc | 0.56 ± 0.01 r |
S37 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 3.63 ± 0.02 pq | 1.10 ± 0.09 i | 94.30 ± 0.09 q | 0.34 ± 0.01 mnopq | 0.46 ± 0.01 s |
S38 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.85 ± 0.03 kl | 1.80 ± 0.03 b | 95.40 ± 0.04 g | 0.36 ± 0.01 klmno | 0.84 ± 0.02 hij |
S39 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 4.42 ± 0.02 d | 1.20 ± 0.01 h | 94.50 ± 0.18 o | 0.48 ± 0.01 cde | 0.87 ± 0.01 fghi |
S40 | 0.1 ± 0.02 a | 0.10 ± 0.01 a | 4.08 ± 0.01 h | 1.10 ± 0.01 i | 94.50 ± 0.24 o | 0.43 ± 0.01 efghi | 0.77 ± 0.09 klm |
S41 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.80 ± 0.03 lm | 0.80 ± 0.09 l | 96.30 ± 0.11 d | 0.45 ± 0.01 defgh | 0.58 ± 0.09 qr |
S42 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 4.77 ± 0.01 a | 1.00 ± 0.04 j | 96.80 ± 0.09 b | 0.52 ± 0.02 abc | 1.10 ± 0.03 a |
S43 | 0.1 ± 0.03 a | 0.10 ± 0.02 a | 4.57 ± 0.02 b | 1.00 ± 0.09 j | 96.30 ± 0.14 d | 0.46 ± 0.01 defg | 0.47 ± 0.01 s |
S44 | 0.1 ± 0.01 a | 0.10 ± 0.01 a | 2.57 ± 0.07 y | 0.90 ± 0.01 k | 97 ± 0.01 a | 0.42 ± 0.01 fghij | 0.96 ± 0.01 cd |
S45 | 0.1 ± 0.01 a | 0.10 ± 0.02 a | 3.24 ± 0.03 uv | 0.7 ± 0.09 m | 96.40 ± 0.09 c | 0.45 ± 0.01 defgh | 0.99 ± 0.01 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagour, J.; Hallouch, O.; Asbbane, A.; Laknifli, A.; Sakar, E.H.; Majourhat, K.; Gharby, S. Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis. Analytica 2024, 5, 119-138. https://doi.org/10.3390/analytica5010008
Gagour J, Hallouch O, Asbbane A, Laknifli A, Sakar EH, Majourhat K, Gharby S. Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis. Analytica. 2024; 5(1):119-138. https://doi.org/10.3390/analytica5010008
Chicago/Turabian StyleGagour, Jamila, Otmane Hallouch, Abderrahim Asbbane, Abdellatif Laknifli, El Hassan Sakar, Khalid Majourhat, and Said Gharby. 2024. "Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis" Analytica 5, no. 1: 119-138. https://doi.org/10.3390/analytica5010008
APA StyleGagour, J., Hallouch, O., Asbbane, A., Laknifli, A., Sakar, E. H., Majourhat, K., & Gharby, S. (2024). Physicochemical Characterization of ‘Moroccan Picholine’ Olive (Olea europaea L.) Oil Produced in Southern Morocco Using Multivariate Statistical Analysis. Analytica, 5(1), 119-138. https://doi.org/10.3390/analytica5010008