Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,868)

Search Parameters:
Keywords = sparseness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6891 KiB  
Article
Physics-Based Data Augmentation Enables Accurate Machine Learning Prediction of Melt Pool Geometry
by Siqi Liu, Ruina Li, Jiayi Zhou, Chaoyuan Dai, Jingui Yu and Qiaoxin Zhang
Appl. Sci. 2025, 15(15), 8587; https://doi.org/10.3390/app15158587 (registering DOI) - 2 Aug 2025
Abstract
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that [...] Read more.
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that integrates an explicit thermal model with ML algorithms to improve prediction under sparse data conditions. The explicit model—calibrated for variable penetration depth and absorptivity—generates synthetic melt pool data, augmenting 36 experimental samples across conduction, transition, and keyhole regimes for 316 L stainless steel. Three ML methods—Multilayer Perceptron (MLP), Random Forest, and XGBoost—are trained using fivefold cross-validation. The hybrid approach significantly improves prediction accuracy, especially in unstable transition regions (D/W ≈ 0.5–1.2), where morphological fluctuations hinder experimental sampling. The best-performing model (MLP) achieves R2 > 0.98, with notable reductions in MAE and RMSE. The results highlight the benefit of incorporating physically consistent, nonlinearly distributed synthetic data to enhance generalization and robustness. This physics-augmented learning strategy not only demonstrates scientific novelty by integrating mechanistic modeling into data-driven learning, but also provides a scalable solution for intelligent process optimization, in situ monitoring, and digital twin development in metal additive manufacturing. Full article
Show Figures

Figure 1

22 pages, 5209 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 (registering DOI) - 1 Aug 2025
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

22 pages, 8105 KiB  
Article
Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing
by Jie Han, Jinlei Zhu, Xiaoming Cao, Lei Xi, Zhao Qi, Yongxin Li, Xingyu Wang and Jiaxiu Zou
Remote Sens. 2025, 17(15), 2665; https://doi.org/10.3390/rs17152665 (registering DOI) - 1 Aug 2025
Abstract
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract [...] Read more.
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract weak vegetation signals, and navigate through complex terrain, making it suitable for applications in small-scale FVC extraction. In this study, we selected the floodplain fan with Caragana korshinskii Kom as the constructive species in Hatengtaohai National Nature Reserve, Bayannur, Inner Mongolia, China, as our study area. We investigated the remote sensing extraction method of desert sparse vegetation cover by placing samples across three gradients: the top, middle, and edge of the fan. We then acquired UAV multispectral images; evaluated the applicability of various vegetation indices (VIs) using methods such as supervised classification, linear regression models, and machine learning; and explored the feasibility and stability of multiple machine learning models in this region. Our results indicate the following: (1) We discovered that the multispectral vegetation index is superior to the visible vegetation index and more suitable for FVC extraction in vegetation-sparse desert regions. (2) By comparing five machine learning regression models, it was found that the XGBoost and KNN models exhibited relatively lower estimation performance in the study area. The spatial distribution of plots appeared to influence the stability of the SVM model when estimating fractional vegetation cover (FVC). In contrast, the RF and LASSO models demonstrated robust stability across both training and testing datasets. Notably, the RF model achieved the best inversion performance (R2 = 0.876, RMSE = 0.020, MAE = 0.016), indicating that RF is one of the most suitable models for retrieving FVC in naturally sparse desert vegetation. This study provides a valuable contribution to the limited existing research on remote sensing-based estimation of FVC and characterization of spatial heterogeneity in small-scale desert sparse vegetation ecosystems dominated by a single species. Full article
Show Figures

Figure 1

19 pages, 1408 KiB  
Article
Self-Supervised Learning of End-to-End 3D LiDAR Odometry for Urban Scene Modeling
by Shuting Chen, Zhiyong Wang, Chengxi Hong, Yanwen Sun, Hong Jia and Weiquan Liu
Remote Sens. 2025, 17(15), 2661; https://doi.org/10.3390/rs17152661 (registering DOI) - 1 Aug 2025
Abstract
Accurate and robust spatial perception is fundamental for dynamic 3D city modeling and urban environmental sensing. High-resolution remote sensing data, particularly LiDAR point clouds, are pivotal for these tasks due to their lighting invariance and precise geometric information. However, processing and aligning sequential [...] Read more.
Accurate and robust spatial perception is fundamental for dynamic 3D city modeling and urban environmental sensing. High-resolution remote sensing data, particularly LiDAR point clouds, are pivotal for these tasks due to their lighting invariance and precise geometric information. However, processing and aligning sequential LiDAR point clouds in complex urban environments presents significant challenges: traditional point-based or feature-matching methods are often sensitive to urban dynamics (e.g., moving vehicles and pedestrians) and struggle to establish reliable correspondences. While deep learning offers solutions, current approaches for point cloud alignment exhibit key limitations: self-supervised losses often neglect inherent alignment uncertainties, and supervised methods require costly pixel-level correspondence annotations. To address these challenges, we propose UnMinkLO-Net, an end-to-end self-supervised LiDAR odometry framework. Our method is as follows: (1) we efficiently encode 3D point cloud structures using voxel-based sparse convolution, and (2) we model inherent alignment uncertainty via covariance matrices, enabling novel self-supervised loss based on uncertainty modeling. Extensive evaluations on the KITTI urban dataset demonstrate UnMinkLO-Net’s effectiveness in achieving highly accurate point cloud registration. Our self-supervised approach, eliminating the need for manual annotations, provides a powerful foundation for processing and analyzing LiDAR data within multi-sensor urban sensing frameworks. Full article
Show Figures

Figure 1

21 pages, 670 KiB  
Article
I-fp Convergence in Fuzzy Paranormed Spaces and Its Application to Robust Base-Stock Policies with Triangular Fuzzy Demand
by Muhammed Recai Türkmen and Hasan Öğünmez
Mathematics 2025, 13(15), 2478; https://doi.org/10.3390/math13152478 - 1 Aug 2025
Abstract
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon [...] Read more.
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon inventory system in which weekly demand is expressed as triangular fuzzy numbers while holiday or promotion weeks are treated as ideal-small anomalies. The policy is updated by a simple learning rule that can be implemented in any spreadsheet, requires no optimisation software, and remains insensitive to tuning choices. Extensive simulation confirms that the method simultaneously lowers cost, reduces average inventory and raises service level relative to a crisp benchmark, all while filtering sparse demand spikes in a principled way. These findings position I-fp convergence as a lightweight yet rigorous tool for blending linguistic uncertainty with anomaly-aware decision making in supply-chain analytics. Full article
Show Figures

Figure 1

37 pages, 642 KiB  
Article
The Goddess of the Flaming Mouth Between India and Tibet
by Arik Moran and Alexander Zorin
Religions 2025, 16(8), 1002; https://doi.org/10.3390/rel16081002 - 1 Aug 2025
Abstract
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible [...] Read more.
This article examines the evolution and potential cross-cultural adaptations of the “Goddess of the Flaming Mouth”, Jvālāmukhī (Skt.) or Kha ‘bar ma (Tib.), in Indic and Tibetan traditions. A minor figure in medieval Hindu Tantras, Jvālāmukhī is today best known through her tangible manifestation as natural flames in a West Himalayan temple complex in the valley of Kangra, Himachal Pradesh, India. The gap between her sparse portrayal in Tantric texts and her enduring presence at this local “seat of power” (śakti pīṭha) raises questions regarding her historical development and sectarian affiliations. To address these questions, we examine mentions of Jvālāmukhī’s Tibetan counterpart, Kha ‘bar ma, across a wide range of textual sources: canonical Buddhist texts, original Tibetan works of the Bön and Buddhist traditions, and texts on sacred geography. Regarded as a queen of ghost spirits (pretas) and field protector (kṣetrapāla) in Buddhist sources, her portrayal in Bön texts contain archaic motifs that hint at autochthonous and/or non-Buddhist origins. The assessment of Indic material in conjunction with Tibetan texts point to possible transformations of the goddess across these culturally proximate Himalayan settings. In presenting and contextualizing these transitions, this article contributes critical data to ongoing efforts to map the development, adaptation, and localization of Tantric deities along the Indo-Tibetan interface. Full article
18 pages, 1518 KiB  
Systematic Review
Effectiveness of Psychological Therapy for Treatment-Resistant Depression in Adults: A Systematic Review and Meta-Analysis
by Sabrina Giguère, Alexandra Fortier, Julie Azrak, Charles-Édouard Giguère, Stéphane Potvin and Alexandre Dumais
J. Pers. Med. 2025, 15(8), 338; https://doi.org/10.3390/jpm15080338 (registering DOI) - 1 Aug 2025
Abstract
Background: Depression that is resistant to two or more adequate treatment trials—treatment-resistant depression (TRD)—is a prevalent clinical challenge. Although psychotherapies have been recommended by clinical guidelines as an alternative or adjunctive treatment strategy, the effectiveness of psychotherapy in individuals with TRD has not [...] Read more.
Background: Depression that is resistant to two or more adequate treatment trials—treatment-resistant depression (TRD)—is a prevalent clinical challenge. Although psychotherapies have been recommended by clinical guidelines as an alternative or adjunctive treatment strategy, the effectiveness of psychotherapy in individuals with TRD has not yet been evaluated through meta-analytic methods, primarily due to a limited number of trials. This highlights the necessity of personalized research targeting this specific population. This systematic review and meta-analysis aimed to summarize the evidence on psychotherapy in treating TRD. Methods: A systematic search was conducted following the Guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles were included if they quantitatively examined the efficacy of psychotherapy on depression symptoms in individuals diagnosed with depression who had not responded to at least two prior treatments (i.e., pharmacotherapy and/or psychotherapy). Results: A total of 12 studies were included. The quality of evidence was evaluated as being globally moderate. When pooling all psychotherapies, a small-to-moderate, but significant, effect on depressive symptoms was observed compared to the control group (SMD = −0.49, CI = −0.63; −0.34). The observed effect remained unchanged after removing the outlier (SMD = −0.47, CI = −0.62; −0.32). When examining depressive symptoms by type of psychotherapy, Mindfulness-Based Cognitive Therapy (SMD = −0.51, CI = −0.76; −0.25), Cognitive Behavioral Therapy (SMD = −0.53, CI = −0.92; −0.14), and Cognitive Therapy (SMD = −0.51, CI = −1.01; −0.01) showed a moderately significant effect on depressive symptoms compared to the control group. Conclusions: Although this potentially represents the first meta-analysis in this area, the number of studies specifically addressing this complex population remains limited, and the existing literature is still in its early stages. Research focusing on TRD is notably sparse compared to the broader body of work on depression without treatment resistance. Consequently, it was not possible to conduct meta-analyses by type of psychotherapy across all treatment modalities and by type of control group. Due to several study limitations, there is currently limited evidence available about the effectiveness of psychotherapy for TRD, and further trials are needed. Beyond the treatments usually offered for depression, it is possible that TRD requires a personalized medicine approach. Full article
(This article belongs to the Special Issue Personalized Medicine in Psychiatry: Challenges and Opportunities)
Show Figures

Figure 1

30 pages, 4409 KiB  
Article
Accident Impact Prediction Based on a Deep Convolutional and Recurrent Neural Network Model
by Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi and Erfan Hassannayebi
Urban Sci. 2025, 9(8), 299; https://doi.org/10.3390/urbansci9080299 (registering DOI) - 1 Aug 2025
Abstract
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role [...] Read more.
Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of the real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, a reliance on either costly or non-real-time data, and second, the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the “accident impact” factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents). Full article
Show Figures

Figure 1

20 pages, 815 KiB  
Study Protocol
Can Dietary Supplements Be Linked to a Vegan Diet and Health Risk Modulation During Vegan Pregnancy, Infancy, and Early Childhood? The VedieS Study Protocol for an Explorative, Quantitative, Cross-Sectional Study
by Wolfgang Huber-Schneider, Karl-Heinz Wagner and Ingrid Kiefer
Int. J. Environ. Res. Public Health 2025, 22(8), 1210; https://doi.org/10.3390/ijerph22081210 - 31 Jul 2025
Abstract
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, [...] Read more.
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, and social environments, that affect the diet of vegan pregnant women, parents, and their children, as well as their approach towards dietary supplementation, have not yet been investigated. Various sources of information, combined with a lack of expertise, sparse food and nutritional health literacy, and qualitatively heterogeneous information provision by medical experts, unsettle vegan pregnant women and parents and affect their dietary choices and potentially the health of their children. The VedieS study aims to investigate potential connections between external influences and associated impacts on a vegan diet and the intake of dietary supplements (DS) of pregnant women and children. Two surveys are being conducted within the study: one targeting 1000 vegan pregnant women and parents, and another targeting 60 experts in each of five healthcare groups: gynecologists, pediatricians, general practitioners, pharmacists, and dietitians. This study is the first to examine how socio-economic, social, and further informational factors influence dietary practices during vegan pregnancy and childhood. It highlights the need for reliable, expert-led guidance, as current information sources are often inconsistent and may put these vulnerable groups at risk. Full article
(This article belongs to the Special Issue Holistic Approach to Pregnancy, Childbirth and Postpartum Period)
26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 (registering DOI) - 31 Jul 2025
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 (registering DOI) - 31 Jul 2025
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

23 pages, 4379 KiB  
Article
Large Vision Language Model: Enhanced-RSCLIP with Exemplar-Image Prompting for Uncommon Object Detection in Satellite Imagery
by Taiwo Efunogbon, Abimbola Efunogbon, Enjie Liu, Dayou Li and Renxi Qiu
Electronics 2025, 14(15), 3071; https://doi.org/10.3390/electronics14153071 (registering DOI) - 31 Jul 2025
Viewed by 16
Abstract
Large Vision Language Models (LVLMs) have shown promise in remote sensing applications, yet struggle with “uncommon” objects that lack sufficient public labeled data. This paper presents Enhanced-RSCLIP, a novel dual-prompt architecture that combines text prompting with exemplar-image processing for cattle herd detection in [...] Read more.
Large Vision Language Models (LVLMs) have shown promise in remote sensing applications, yet struggle with “uncommon” objects that lack sufficient public labeled data. This paper presents Enhanced-RSCLIP, a novel dual-prompt architecture that combines text prompting with exemplar-image processing for cattle herd detection in satellite imagery. Our approach introduces a key innovation where an exemplar-image preprocessing module using crop-based or attention-based algorithms extracts focused object features which are fed as a dual stream to a contrastive learning framework that fuses textual descriptions with visual exemplar embeddings. We evaluated our method on a custom dataset of 260 satellite images across UK and Nigerian regions. Enhanced-RSCLIP with crop-based exemplar processing achieved 72% accuracy in cattle detection and 56.2% overall accuracy on cross-domain transfer tasks, significantly outperforming text-only CLIP (31% overall accuracy). The dual-prompt architecture enables effective few-shot learning and cross-regional transfer from data-rich (UK) to data-sparse (Nigeria) environments, demonstrating a 41% improvement over baseline approaches for uncommon object detection in satellite imagery. Full article
Show Figures

Figure 1

18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 (registering DOI) - 31 Jul 2025
Viewed by 112
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Viewed by 129
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

Back to TopTop