Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = sour and bitter substances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2777 KB  
Article
Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population
by Caixia Lei, Hanru Song, Peng Wang, Hongmei Song, Jingxin Du, Tao Zhu, Jing Tian and Shengjie Li
Foods 2025, 14(18), 3180; https://doi.org/10.3390/foods14183180 - 12 Sep 2025
Viewed by 892
Abstract
Meat quality critically influences product value and consumer preferences. Here, the effect of long-term saline adaptation on flesh nutritional quality, sensory value, texture, and flavor was evaluated in a new Micropterus salmoides salt-tolerant population. The results showed that the salt-tolerant population exhibited decreased [...] Read more.
Meat quality critically influences product value and consumer preferences. Here, the effect of long-term saline adaptation on flesh nutritional quality, sensory value, texture, and flavor was evaluated in a new Micropterus salmoides salt-tolerant population. The results showed that the salt-tolerant population exhibited decreased lipid, saturated fatty acid, and long-chain polyunsaturated fatty acid contents but increased monounsaturated fatty acid content, accompanied by upregulated elongase 5 and fatty acid desaturase 6 mRNA levels. The meat color of the new population was brighter and fresher, with a slightly less red tint, and the increased 2,3-butanedione content resulted in a desirable creamy aroma. 3-Pentanone was the most abundant volatile substance in both populations. Regarding taste parameters, the salt-tolerant population had improved hardness, stickiness, chewiness, resilience, cooking loss, myocyte space, and collagen content. Alanine, proline, and histidine were the main amino acids responsible for flavor presentation. The salt-tolerant population was found to have lower bitter and higher sweet amino acid contents. Higher umami nucleotides and lower pH intensified umami and sourness in salt-tolerant meat. The saltiness of the new-population meat was enhanced. This study comprehensively evaluated the flesh quality of a salt-tolerant M. salmoides population with the potential for cultivation, thereby providing a reference for its potential development as an alternative aquaculture strain. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

17 pages, 6945 KB  
Article
Separation and Identification of Non-Volatile Sour and Bitter Substances in Amomum villosum L. by Ultra-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry and Electronic Tongue Analysis, as Well as Their In Vitro Anti-Tumor Activity
by Yang Chen, Ziwei Liao, Weiqin Li, Zhe Wang, Wan Tang, Qiang Yang and Jian Xu
Separations 2025, 12(4), 77; https://doi.org/10.3390/separations12040077 - 28 Mar 2025
Cited by 1 | Viewed by 1103
Abstract
Amomum villosum L. is a perennial herbaceous belonging to the ginger family. Due to its unique aroma, it is widely used in alcoholic beverages and food processing. Unfortunately, issues with bitterness and sourness occur, which affect the taste and quality of processed products. [...] Read more.
Amomum villosum L. is a perennial herbaceous belonging to the ginger family. Due to its unique aroma, it is widely used in alcoholic beverages and food processing. Unfortunately, issues with bitterness and sourness occur, which affect the taste and quality of processed products. In this study, the non-volatile sour and bitter substances in Amomum villosum L. were systematically isolated, purified, and characterized through a combination of chromatographic separation techniques and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The results indicate that three sour compounds (DL-malic acid, protocatechuic acid, and p-hydroxybenzoic acid) and one bitter compound (catechin) were identified for the first time in Amomum villosum L. The in vitro anti-tumor activity was screened and determined using Cell Counting Kit-8 (CCK-8) assays, a 5-Ethynyl-2′-deoxyuridine (EdU) staining experiment, and scratch assays. The results reveal that the bitter substance of catechin (25–100 μg/mL) exhibited significant inhibitory effects, which inhibited the proliferation and migration of human non-small cell lung cancer A549 cells through dose-dependent mechanisms. This investigation also reveals the influence of different traditional extraction solvents on the degree of bitterness and sourness in Amomum villosum extracts, providing a theoretical basis for improving the quality and pharmacological utilization of Amomum villosum extracts. Full article
Show Figures

Figure 1

15 pages, 4496 KB  
Article
Identification of Oligopeptides in the Distillates from Various Rounds of Soy Sauce-Flavored Baijiu and Their Effect on the Ester–Acid–Alcohol Profile in Baijiu
by Qiang Wu, Shanlin Tian, Xu Zhang, Yunhao Zhao and Yougui Yu
Foods 2025, 14(2), 287; https://doi.org/10.3390/foods14020287 - 16 Jan 2025
Cited by 4 | Viewed by 1565
Abstract
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography–tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh [...] Read more.
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography–tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh rounds of soy sauce-flavored Baijiu. Two hundred and five oligopeptides were identified from these distillates, all of which had molecular weights below 1000 Da and were composed of amino acid residues associated with flavor (sweet, sour, and bitter) and biological activity. Furthermore, full-wavelength scanning, content determination of the main compounds, and molecular docking were performed to analyze these oligopeptides’ effect on the ester–acid–alcohol profile in Baijiu. This determination revealed a negative correlation between the peptide content and total ester content (r = −0.691), as well as the total acid content (r = −0.323), and a highly significant negative correlation with ethanol content (r = −0.916). Notably, the screened peptides (TRH, YHY, RQTQ, PLDLTSFVLHEAI, KHVS, LPQRHRMVYSLL, and NEWH) had specific interactions with the major flavor substances via hydrogen bonds, including esters (ethyl acetate, ethyl butanoate, ethyl hexanoate, and ethyl lactate), acids (acetate acid, butanoate acid, hexanoate acid, lactate acid), and alcohols (ethanol, 1-propanol, 1-butanol, and 1-hexanol). These findings elucidate the distribution and dynamic changes of endogenous peptides in the distillates from various rounds of soy sauce-flavored Baijiu, providing a theoretical foundation for further investigation into their interaction mechanisms associated with flavor compounds. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 1657 KB  
Article
Improved Sensitivity of a Taste Sensor Composed of Trimellitic Acids for Sweetness
by Tatsukichi Watanabe, Sojiro Kumura, Shunsuke Kimura and Kiyoshi Toko
Molecules 2024, 29(23), 5573; https://doi.org/10.3390/molecules29235573 - 25 Nov 2024
Viewed by 1233
Abstract
Currently, lipid/polymer membranes are used in taste sensors to quantify food taste. This research aims to improve sweetness sensors by more selectively detecting uncharged sweetening substances, which have difficulty obtaining a potentiometric response. Lipid/polymer membranes with varying amounts of tetradodecylammonium bromide (TDAB) and [...] Read more.
Currently, lipid/polymer membranes are used in taste sensors to quantify food taste. This research aims to improve sweetness sensors by more selectively detecting uncharged sweetening substances, which have difficulty obtaining a potentiometric response. Lipid/polymer membranes with varying amounts of tetradodecylammonium bromide (TDAB) and 1,2,4-benzene tricarboxylic acid (trimellitic acid) were prepared. The carboxyl groups of trimellitic acid bind metal cations, and the sweetness intensity is estimated by measuring the potential change, as a sensor response, when these cations are complexed with sugars. This research showed that the potential of a sensor using the membrane with enough trimellitic acid in a sucrose solution remained constant, regardless of TDAB amounts, but the potential in the tasteless, so-called reference solution, depended on TDAB. By optimizing the content of TDAB and trimellitic acid, a sensor response of −100 mV was achieved, which is over 20% more sensitive than a previous sensor. This sensor also demonstrated increased selectivity to sweetness, with similar interference from other tastes (saltiness, sourness, umami, and bitterness) compared to previous sensors. As a result, the sensitivity to sweetness was successfully improved. This result contributes to the development of novel sensors, further reducing the burden on humans in quality control and product development. Full article
Show Figures

Figure 1

17 pages, 3575 KB  
Article
An Electronic “Tongue” Based on Multimode Multidirectional Acoustic Plate Wave Propagation
by Nikita Ageykin, Vladimir Anisimkin, Andrey Smirnov, Alexander Fionov, Peng Li, Zhenghua Qian, Tingfeng Ma, Kamlendra Awasthi and Iren Kuznetsova
Sensors 2024, 24(19), 6301; https://doi.org/10.3390/s24196301 - 29 Sep 2024
Cited by 3 | Viewed by 1827
Abstract
This paper theoretically and experimentally demonstrates the possibility of detecting the five basic tastes (salt, sweet, sour, umami, and bitter) using a variety of higher-order acoustic waves propagating in piezoelectric plates. Aqueous solutions of sodium chloride (NaCl), glucose (C6 [...] Read more.
This paper theoretically and experimentally demonstrates the possibility of detecting the five basic tastes (salt, sweet, sour, umami, and bitter) using a variety of higher-order acoustic waves propagating in piezoelectric plates. Aqueous solutions of sodium chloride (NaCl), glucose (C6H12O6), citric acid (C6H8O7), monosodium glutamate (C5H8NO4Na), and sagebrush were used as chemicals for the simulation of each taste. These liquids differed from each other in terms of their physical properties such as density, viscosity, electrical conductivity, and permittivity. As a total acoustic response to the simultaneous action of all liquid parameters on all acoustic modes in a given frequency range, a change in the propagation losses (ΔS12) of the specified wave compared with distilled water was used. Based on experimental measurements, the corresponding orientation histograms of the ΔS12 were plotted for different types of acoustic waves. It was found that these histograms for different substances are individual and differ in shape, area, and position of their extremes. Theoretically, it has been shown that the influence of different liquids on different acoustic modes is due to both the electrical and mechanical properties of the liquids themselves and the mechanical polarization of the corresponding modes. Despite the fact that the mechanical properties of the used liquids are close to each other, the attenuation of different modes in their presence is not only due to the difference in their electrical parameters. The proposed approach to creating a multi-parametric multimode acoustic electronic tongue and obtaining a set of histograms for typical liquids will allow for the development of devices for the operational analysis of food, medicines, gasoline, aircraft fuel, and other liquid substances without the need for detailed chemical analysis. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

18 pages, 4715 KB  
Article
Comparison of Different Deodorizing Treatments on the Flavor of Paddy Field Carp, Analyzed by the E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectrometry
by Chenying Fu, Yiming Zou, Yixiang Zhang, Mengxiang Liao, Duhuang Chen and Zebin Guo
Foods 2024, 13(16), 2623; https://doi.org/10.3390/foods13162623 - 21 Aug 2024
Cited by 11 | Viewed by 2670
Abstract
Changes in the flavor and taste profiles of Paddy Field Carp after deodorization with perilla juice (PJ), cooking wine (CW) and a mixture of the two (PJ-CW) were analyzed using the E-nose, E-tongue, gas chromatography–ion mobility spectrometry (GC-IMS), free amino acid analysis and [...] Read more.
Changes in the flavor and taste profiles of Paddy Field Carp after deodorization with perilla juice (PJ), cooking wine (CW) and a mixture of the two (PJ-CW) were analyzed using the E-nose, E-tongue, gas chromatography–ion mobility spectrometry (GC-IMS), free amino acid analysis and taste nucleotide analysis. The E-nose and E-tongue revealed that deodorization reduced the content of sulfur-containing compounds, enhanced umami, bitterness, sourness and astringency, and decreased saltiness. PCA and OPLS-DA analysis successfully distinguished between the effects of the treatments. Free amino acids increased from 8777.67 to 11,125.98 mg/100 g and umami amino acids increased from 128.24 to 150.37 mg/100 g after PJ-CW deodorization (p < 0.05). Equivalent umami concentration (EUC) comparisons showed that PJ-CW treatment produced the greatest synergistic umami enhancement (to 3.15 g MSG equiv./100 g). GC-IMS detected 52 aroma compounds; PJ treatment produced the greatest diversity of aldehydes, including heptanal, nonanal, hexanal, 3-methylbutanal, (E)-2-heptenal and (E,E)-2,4-heptadienal. The total content of volatile flavor compounds was the highest after PJ-CW treatment, and the content of many characteristic flavor substances (3-hydroxy-2-butanone, benzaldehyde, 5-methyl-2(3H)-furanone) increased. These findings provided a theoretical basis for the further development of deodorization methods for Paddy Field Carp. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 3044 KB  
Article
Effects of Eurotium cristatum Fermentation on Tartary Buckwheat Leaf Tea: Sensory Analysis, Volatile Compounds, Non-Volatile Profile and Antioxidant Activity
by Liangzhen Jiang, Xiao Han, Luo Wang, Haonan Zheng, Gen Ma, Xiao Wang, Yuanmou Tang, Xiaoqin Zheng, Changying Liu, Yan Wan and Dabing Xiang
Fermentation 2024, 10(7), 369; https://doi.org/10.3390/fermentation10070369 - 19 Jul 2024
Cited by 3 | Viewed by 3612
Abstract
Background: Eurotium cristatum (E. cristatum) is the probiotic fungus in Fu-brick tea, with which fermentation brings a unique flavor and taste and health-promoting effects. Tartary buckwheat leaves are rich in functional active substances such as flavonoids and phenolic compounds, yet are [...] Read more.
Background: Eurotium cristatum (E. cristatum) is the probiotic fungus in Fu-brick tea, with which fermentation brings a unique flavor and taste and health-promoting effects. Tartary buckwheat leaves are rich in functional active substances such as flavonoids and phenolic compounds, yet are not effectively utilized. Methods: Tartary buckwheat leaves were processed into raw green tea first and subsequently fermented with E. cristatum to develop a novel fermented leaf tea. The tea quality was evaluated by the aspects of the sensory scores by E-tongue, the volatile compounds by HS-SPME-GC-MS, the non-volatile profile by biochemical and UPLC-MS/MS methods and the antioxidant activity by the colorimetric assay. Results: Fermented leaf tea displayed a golden yellow color, a unique “flower” aroma and a dark-tea taste, with an improved sensory acceptability. Fermentation raised the content of volatile heterocyclic and aromatic compounds, alkenes and other aromatic components, which produced a unique floral flavor. The proportion of sour, bitter and astringency accounting non-volatile compounds such as phenolic acids and amino acids decreased, while the proportion of umami and sweet accounting substances such as responsible amino acids increased. Fermented leaf tea displayed a relative stronger total antioxidant activity against ABTS. Conclusion: E. cristatum fermentation exerted positive effects on Tartary buckwheat leaf tea quality. Full article
Show Figures

Figure 1

22 pages, 7596 KB  
Article
Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products
by Roxana Elena Gheorghita, Ancuta Veronica Lupaescu, Anca Mihaela Gâtlan, Dadiana Dabija, Andrei Lobiuc, Oana Camelia Iatcu, Amelia Buculei, Alexandru Andriesi and Adriana Dabija
Gels 2024, 10(1), 71; https://doi.org/10.3390/gels10010071 - 18 Jan 2024
Cited by 5 | Viewed by 2788
Abstract
The present study focused on the development of gel-based capsules from sodium alginate and the fresh juice from different berries: chokeberry, sea buckthorn, and blueberry. Obtained through the extrusion method, the macrocapsules were added into yogurt, a well-known and consumed dairy product. In [...] Read more.
The present study focused on the development of gel-based capsules from sodium alginate and the fresh juice from different berries: chokeberry, sea buckthorn, and blueberry. Obtained through the extrusion method, the macrocapsules were added into yogurt, a well-known and consumed dairy product. In order to establish the changes that can occur for the food product, the samples were tested over 7 and 15 days of storage in refrigeration conditions. According to the results, the antioxidant activity increased during storage and gels can represent a good option for bioactive substances’ encapsulation. Sensorial analysis performed indicated that consumers are open to consuming yogurt berry capsules and, according to the results observed in the scientific literature, they no longer rejected the product due to the bitterness and sourness of sea buckthorn or aronia. Sea buckthorn capsules were brighter (L*) than chokeberry and blueberry capsules due to carotene content and dark colors. Minimal diameter variations and small standard deviations (SD = 0.25/0.33) suggest that extrusion methods and the Caviar box are good for gel capsule development. Yogurt luminosity varied with capsules; control had the highest, followed by sea buckthorn yogurt. Samples with chokeberry and blueberry (dark) capsules had lower luminosity. Over 8 and 15 days, luminosity slightly decreased, while a* and b* (hue and saturation) increased. Post-storage, the sample with chokeberry capsules showed a light purple color, indicating color transfer from capsules, with increased antioxidant activity. Differences between the samples and control were less pronounced in the sample with sea buckthorn capsules. Values for color differences between yogurt samples during the storage period revealed the most significant difference during the first storage period (day 1–8), with blueberries showing the lowest difference, indicating the stability of the blueberry capsules’ wall during storage. Full article
Show Figures

Figure 1

12 pages, 665 KB  
Article
Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.)
by Stanisław Kalisz, Natalia Polak, Grażyna Cacak-Pietrzak, Andrzej Cendrowski and Bartosz Kruszewski
Appl. Sci. 2023, 13(24), 12999; https://doi.org/10.3390/app132412999 - 5 Dec 2023
Cited by 4 | Viewed by 1973
Abstract
The blue honeysuckle berry is a fruit known as a rich source of many bioactive substances with proven health-promoting effects. Due to its sour taste with a noticeable hint of bitterness, fruits of this plant are rarely consumed and the consumer prefers the [...] Read more.
The blue honeysuckle berry is a fruit known as a rich source of many bioactive substances with proven health-promoting effects. Due to its sour taste with a noticeable hint of bitterness, fruits of this plant are rarely consumed and the consumer prefers the processed form. The purpose of this study was to evaluate the effect of the cooking method on the biological quality of honeysuckle berry confiture. The selected recipe was used to make confiture in a vacuum evaporator using lowered pressure and in a thermomix vessel under atmospheric pressure. Then, the content of the chosen compounds and antioxidant activity of the two types of confitures were compared. The confitures were analyzed right after production and through 180 days of refrigerated storage. The pH, TA and TSS parameters remained unchanged regardless of the production process and storage time. Ascorbic acid, polyphenol and anthocyanin concentrations were greater in the confiture from vacuum cooking. Also, the same confiture showed a lower rate of degradation of bioactive substances during storage. The antioxidant activity of the two types of confiture was significantly different shortly after production, but equal at the end of 180-day storage. HMF content was four times higher in confitures cooked under atmospheric pressure than under vacuum. The confiture made from the honeysuckle berry was very rich in bioactive compounds, especially polyphenols. Vacuum cooking proved to be the best method for confiture production as a result of lower temperatures used and less aeration of the mass. Full article
Show Figures

Figure 1

12 pages, 2966 KB  
Article
Flavor Characteristics of Ten Peanut Varieties from China
by Bin Ding, Fei Wang, Bei Zhang, Mengshi Feng, Lei Chang, Yuyang Shao, Yan Sun, Ying Jiang, Rui Wang, Libin Wang, Jixian Xie and Chunlu Qian
Foods 2023, 12(24), 4380; https://doi.org/10.3390/foods12244380 - 5 Dec 2023
Cited by 7 | Viewed by 3069
Abstract
To investigate the flavor characteristics of peanuts grown in Jiangsu, China, ten local varieties were selected. The amino acids, 5′-nucleotides and volatile substances were detected, and the flavor and odor characteristics of these varieties were estimated using an electronic tongue and nose. The [...] Read more.
To investigate the flavor characteristics of peanuts grown in Jiangsu, China, ten local varieties were selected. The amino acids, 5′-nucleotides and volatile substances were detected, and the flavor and odor characteristics of these varieties were estimated using an electronic tongue and nose. The results showed that the fat and protein contents of ten peanut varieties changed significantly (p < 0.05), and may have been negatively correlated with those of the Taihua 6 variety—in particular, having the highest protein content and the lowest fat content. The amino acid contents of the peanuts were 20.08 g/100 g (Taihua 4)–27.18 g/100 g (Taihua 6). Taihua 6 also contained the highest bitter (10.41 g/100 g) and sweet (6.06 g/100 g) amino acids, and Taihua 10 had the highest monosodium glutamate-like amino acids (7.61 g/100 g). The content of 5′-nucleotides ranged from 0.08 mg/g (Taihua 9725) to 0.14 mg/g (Taihua 0122–601). Additionally, 5′-cytidylate monophosphate (5′-CMP) and 5′-adenosine monophosphate (5′-AMP) were the major 5′-nucleotides detected in the peanuts. A total of 42 kinds of volatile flavor compounds were detected, with both Taihua 4 and 6 showing the most (18 kinds) and the highest content being in Taihua 4 (7.46%). Both Taihua 9725 and 9922 exhibited the fewest kinds (nine kinds) of volatile components, and the lowest content was in Taihua 9725 (3.15%). Formic acid hexyl ester was the most abundant volatile substance in peanuts, and the highest level (3.63%) was detected in Taihua 7506. The electronic tongue and nose indicated that the greatest taste difference among the ten varieties of peanuts was mainly related to sourness, and Taihua 4 and Taihua 9922 had special taste characteristics. On the other hand, the greatest smell difference among the ten varieties of peanuts was mostly for methane and sulfur organic substances, and Taihua 0605-2 had a special and strong smell characteristic. In conclusion, the content and composition differences of the flavor substances of ten peanut varieties were responsible for their divergences in taste and smell. These results will provide guidelines for the further use (freshly consumed or processed) of these ten peanut varieties. Full article
Show Figures

Figure 1

20 pages, 2656 KB  
Review
Pungency Perception and the Interaction with Basic Taste Sensations: An Overview
by Wei He, Li Liang and Yuyu Zhang
Foods 2023, 12(12), 2317; https://doi.org/10.3390/foods12122317 - 8 Jun 2023
Cited by 29 | Viewed by 11972
Abstract
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the [...] Read more.
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the interaction between basic tastes and pungency perception based on structure-activity relationship, taste perception mechanism and neurotransmission lacks review and summary, considering its brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency evaluation methods, and the mechanism of pungency perception is presented, and the interaction between basic tastes and pungency perception and the possible factors of their interaction are reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated by stimulants. Using modern detection techniques combined with sensory standards, different substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g. Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell sensitivity by producing neurotransmission products. The products of neurotransmission and taste receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste perception, pungency stimulation may enhance the perception of salty at a certain concentration, with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami taste is not obvious. However, due to the complexity of perception and the uncertainty of many perceptual receptors or channels, the current studies of interactions are still controversial. Based on the understanding of the mechanism and influencing factors, the availability of pungency substances is proposed in the perspective of food industry in order to achieve new development. Full article
Show Figures

Figure 1

13 pages, 739 KB  
Article
Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes
by Veronika Šimora, Hana Ďúranová, Ján Brindza, Marvin Moncada, Eva Ivanišová, Patrícia Joanidis, Dušan Straka, Lucia Gabríny and Miroslava Kačániová
Foods 2023, 12(3), 593; https://doi.org/10.3390/foods12030593 - 31 Jan 2023
Cited by 11 | Viewed by 3556
Abstract
In the current study, Cornelian cherry powder (CCP, Cornus mas) was investigated as a functional ingredient for bread production. Experimental bread loaves were prepared using five levels of CCP (0, 1, 2, 5, and 10% w/w) to replace wheat [...] Read more.
In the current study, Cornelian cherry powder (CCP, Cornus mas) was investigated as a functional ingredient for bread production. Experimental bread loaves were prepared using five levels of CCP (0, 1, 2, 5, and 10% w/w) to replace wheat flour in bread formulation. The final products were analyzed regarding their proximate composition, content of selected biologically active substances, antioxidant activity (AA), volume, and sensory attributes. Increasing the incorporation of CCP led to significantly (p < 0.05) higher concentrations of carbohydrate, ash, energetic value, total polyphenols, phenolic acids and AA, and reduced fat and protein contents (p < 0.05). Moreover, up to 5% addition of CCP positively affected the volume (642.63 ± 7.24 mL) and specific volume (2.83 ± 0.02 cm3/g) of bread loaves, which were significantly (p < 0.05) higher compared to the control (no addition of CCP; 576.99 ± 2.97 mL; 2.55 ± 0.002 cm3/g). The sensory attributes chewiness, crumb springiness, bitterness, and sourness had lower scores (p < 0.05) in bread formulated with 10% CCP compared to the control. Overall, results show that the bread loaves produced with up to 5% CCP addition were considered the preferred formulation among the experimental samples tested, taking into consideration their composition, bioactive content, sensory, and physical properties. Full article
Show Figures

Figure 1

12 pages, 1428 KB  
Article
Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish
by Aoxue Liu, Xu Yan, Hao Shang, Chaofan Ji, Sufang Zhang, Huipeng Liang, Yingxi Chen and Xinping Lin
Foods 2022, 11(13), 1932; https://doi.org/10.3390/foods11131932 - 29 Jun 2022
Cited by 15 | Viewed by 3044
Abstract
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 10 [...] Read more.
In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future. Full article
Show Figures

Figure 1

20 pages, 5755 KB  
Article
Nutritional Function and Flavor Evaluation of a New Soybean Beverage Based on Naematelia aurantialba Fermentation
by Tao Sun, Hao Jiang, Kai Yang, Xingkai Li, Shiyu Wang, Haoyu Yao, Rui Wang, Sha Li, Yian Gu, Peng Lei, Hong Xu and Dafeng Sun
Foods 2022, 11(3), 272; https://doi.org/10.3390/foods11030272 - 20 Jan 2022
Cited by 32 | Viewed by 4822
Abstract
The soy beverage is a healthy product rich in plant protein; however, its unpleasant flavor affects consumer acceptance. The aim of this study was to determine the feasibility of using Naematelia aurantialba as a strain for the preparation of fermented soybean beverages (FSB). [...] Read more.
The soy beverage is a healthy product rich in plant protein; however, its unpleasant flavor affects consumer acceptance. The aim of this study was to determine the feasibility of using Naematelia aurantialba as a strain for the preparation of fermented soybean beverages (FSB). Increases in Zeta potential, particle size, and viscosity make soy beverages more stable. We found that nutrient composition was increased by fermenting N. aurantialba, and the antioxidant activity of soybean beverages significantly increased after 5 days of fermentation. By reducing the content of beany substances such as hexanal and increasing the content of 1-octen-3-ol, the aroma of soybean beverages fermented by N. aurantialba changed from “beany, green, and fatty” to “mushroom and aromatic”. The resulting FSB had reduced bitterness but considerably increased sourness while maintaining the fresh and sweet taste of unfermented soybean beverages (UFSB). This study not only provides a theoretical basis for the market promotion of FSB but also provides a reference for basidiomycetes-fermented beverages. Full article
Show Figures

Graphical abstract

17 pages, 4170 KB  
Article
Additive Effects of L-Ornithine on Preferences to Basic Taste Solutions in Mice
by Haruno Mizuta, Natsuko Kumamoto, Shinya Ugawa and Takashi Yamamoto
Nutrients 2021, 13(11), 3749; https://doi.org/10.3390/nu13113749 - 23 Oct 2021
Cited by 12 | Viewed by 5391
Abstract
In addition to the taste receptors corresponding to the six basic taste qualities—sweet, salty, sour, bitter, umami, and fatty—another type of taste receptor, calcium-sensing receptor (CaSR), is found in taste-bud cells. CaSR is called the ‘kokumi’ receptor because its agonists increase [...] Read more.
In addition to the taste receptors corresponding to the six basic taste qualities—sweet, salty, sour, bitter, umami, and fatty—another type of taste receptor, calcium-sensing receptor (CaSR), is found in taste-bud cells. CaSR is called the ‘kokumi’ receptor because its agonists increase sweet, salty and umami tastes to induce ‘koku’, a Japanese word meaning the enhancement of flavor characters such as thickness, mouthfulness, and continuity. Koku is an important factor for enhancing food palatability. However, it is not well known whether other kokumi-receptors and substances exist. Here, we show that ornithine (L-ornithine but not D-ornithine) at low concentrations that do not elicit a taste of its own, enhances preferences to sweet, salty, umami, and fat taste solutions in mice. Increased preference to monosodium glutamate (MSG) was the most dominant effect. Antagonists of G-protein-coupled receptor family C group 6 subtype A (GPRC6A) abolished the additive effect of ornithine on MSG solutions. The additive effects of ornithine on taste stimuli are thought to occur in the oral cavity, and are not considered post-oral events because ornithine’s effects were confirmed in a brief-exposure test. Moreover, the additive effects of ornithine and the action of the antagonist were verified in electrophysiological taste nerve responses. Immunohistochemical analysis implied that GPRC6A was expressed in subsets of type II and type III taste cells of mouse circumvallate papillae. These results are in good agreement with those reported for taste modulation involving CaSR and its agonists. The present study suggests that ornithine is a kokumi substance and GPRC6A is a newly identified kokumi receptor. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop