Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = sophoridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2882 KiB  
Article
Anti-Bacterial and Anti-Inflammatory Properties of Sophoridine and Its Effect on Diarrhea in Mice
by Jiaxue Wang, Hui Tao, Qiuyu Fan, Zhenlong Wang, Bing Han, Xiumin Wang and Jingquan Wang
Int. J. Mol. Sci. 2025, 26(5), 2122; https://doi.org/10.3390/ijms26052122 - 27 Feb 2025
Cited by 1 | Viewed by 592
Abstract
To investigate the anti-bacterial and anti-inflammatory properties of sophoridine and elucidate its mechanism of action, we carried out both in vitro and in vivo experiments. Multiple bacterial strains were utilized to determine the effective concentration of sophoridine in antibacterial and bactericidal assays. Subsequently, [...] Read more.
To investigate the anti-bacterial and anti-inflammatory properties of sophoridine and elucidate its mechanism of action, we carried out both in vitro and in vivo experiments. Multiple bacterial strains were utilized to determine the effective concentration of sophoridine in antibacterial and bactericidal assays. Subsequently, LPS-stimulated RAW264.7 cells and E. coli-challenged BALB/c mice models were employed to evaluate the production of inflammatory cytokines. Our results showed that sophoridine concentrations exceeding 5.12 mg/mL significantly inhibited cell viability, while 0.32 mg/mL of sophoridine demonstrated the optimal anti-inflammatory activity at 12 h. In E. coli-induced diarrheal mice, doses of 15, 30, and 60 mg/kg BW of sophoridine alleviated fecal occult blood and exhibited anti-inflammatory effects by reducing the level of serum TNF-α, IL-1β, and IL-6 levels, increasing serum IL-10, and inhibiting leucocyte infiltration in the duodenum. Notably, 15 mg/kg BW of sophoridine effectively decreased the mRNA and protein expression of NF-κB p65. These findings suggest that sophoridine has promising potential for the treatment of diarrhea through its anti-inflammatory effects mediated by the inhibition of NF-κB activation. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 3555 KiB  
Article
Simultaneous Degradation of AFB1 and ZEN by CotA Laccase from Bacillus subtilis ZJ-2019-1 in the Mediator-Assisted or Immobilization System
by Boquan Gao, Wei An, Jianwen Wu, Xiumin Wang, Bing Han, Hui Tao, Jie Liu, Zhenlong Wang and Jinquan Wang
Toxins 2024, 16(10), 445; https://doi.org/10.3390/toxins16100445 - 16 Oct 2024
Cited by 3 | Viewed by 2184
Abstract
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, [...] Read more.
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, and free enzymes often exhibit reduced stability and activity, limiting their practicality in real-world applications. In this study, the laccase CotA gene from ZEN/AFB1-degrading Bacillus subtilis ZJ-2019-1 was cloned and successfully expressed in Escherichia coli BL21, achieving a protein yield of 7.0 mg/g. The recombinant CotA (rCotA) completely degraded AFB1 and ZEN, with optimal activity at 70 °C and pH 7.0. After rCotA treatment, neither AFB1 nor ZEN showed significantly cytotoxicity to mouse macrophage cell lines. Additionally, the AFB1/ZEN degradation efficiency of rCotA was significantly enhanced by five natural redox mediators: acetosyringone, syringaldehyde, vanillin, matrine, and sophoridin. Among them, the acetosyringone-rCotA was the most effective mediator system, which could completely degrade 10 μg of AFB1 and ZEN within 1 h. Furthermore, the chitosan-immobilized rCotA system exhibited higher degradation activity than free rCotA. The immobilized rCotA degraded 27.95% of ZEN and 41.37% of AFB1 in contaminated maize meal within 12 h, and it still maintained more than 40% activity after 12 reuse cycles. These results suggest that media-assisted or immobilized enzyme systems not only boost degradation efficiency but also demonstrate remarkable reusability, offering promising strategies to enhance the degradation efficiency of rCotA for mycotoxin detoxification. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

15 pages, 3549 KiB  
Article
Transcriptomic Analysis of PDCoV-Infected HIEC-6 Cells and Enrichment Pathways PI3K-Akt and P38 MAPK
by Yuhang Jiang, Guoqing Zhang, Letian Li, Maopeng Wang, Jing Chen, Pengfei Hao, Zihan Gao, Jiayi Hao, Chang Li and Ningyi Jin
Viruses 2024, 16(4), 579; https://doi.org/10.3390/v16040579 - 9 Apr 2024
Cited by 1 | Viewed by 2086
Abstract
Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) [...] Read more.
Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) by analyzing the transcriptome at different time points post-infection (12 h, 24 h, 48 h). Differential gene analysis revealed a total of 3560, 5193, and 4147 differentially expressed genes (DEGs) at 12 h, 24 h, and 48 h, respectively. The common genes among the DEGs at all three time points were enriched in biological processes related to cytokine production, extracellular matrix, and cytokine activity. KEGG pathway analysis showed enrichment of genes involved in the p53 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway. Further analysis of highly expressed genes among the DEGs identified significant changes in the expression levels of BUB1, DDIT4, ATF3, GBP2, and IRF1. Comparison of transcriptome data at 24 h with other time points revealed 298 DEGs out of a total of 6276 genes. KEGG analysis of these DEGs showed significant enrichment of pathways related to viral infection, specifically the PI3K-Akt and P38 MAPK pathways. Furthermore, the genes EFNA1 and KITLG, which are associated with viral infection, were found in both enriched pathways, suggesting their potential as therapeutic or preventive targets for PDCoV infection. The enhancement of PDCoV infection in HIEC-6 was observed upon inhibition of the PI3K-Akt and P38 MAPK signaling pathways using sophoridine. Overall, these findings contribute to our understanding of the molecular mechanisms underlying PDCoV infection in HIEC-6 cells and provide insights for developing preventive and therapeutic strategies against PDCoV infection. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

13 pages, 6825 KiB  
Article
Sophoridine Counteracts Obesity via Src-Mediated Inhibition of VEGFR Expression and PI3K/AKT Phosphorylation
by Jingchun Sun, Xiaoting Wang, Yulin He, Xuekai Tian, Tiantian Yuan, Gongshe Yang and Taiyong Yu
Int. J. Mol. Sci. 2024, 25(2), 1206; https://doi.org/10.3390/ijms25021206 - 19 Jan 2024
Cited by 1 | Viewed by 1742
Abstract
Sophoridine (SRP) is a natural quinolizidine alkaloid found in many traditional Chinese herbs, though its effect on adipose tissue is unclear. We improved serum lipid levels by administering SRP by gavage in high-fat diet (HFD)-fed C57BL/6 mice. After 11 weeks, SRP supplementation significantly [...] Read more.
Sophoridine (SRP) is a natural quinolizidine alkaloid found in many traditional Chinese herbs, though its effect on adipose tissue is unclear. We improved serum lipid levels by administering SRP by gavage in high-fat diet (HFD)-fed C57BL/6 mice. After 11 weeks, SRP supplementation significantly reduced body weight gain and improved glucose homeostasis, while reducing subcutaneous fat and liver weight. SRP also inhibited cell proliferation and differentiation of 3T3-L1 cells. Proteomics analysis revealed that SRP inhibits adipocyte differentiation by interacting with Src, thereby suppressing vascular endothelial growth factor receptor 2 (VEGFR2) expression and PI3K/AKT phosphorylation. This study provides an empirical basis for the treatment of obesity with small molecules. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 13652 KiB  
Article
Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study
by Song Ang, Nana Cao, Wende Zheng, Zhen Zhang, Jinxuan Li, Zhenping Yan, Kaize Su, Wing-Leung Wong, Kun Zhang, Weiqian David Hong and Panpan Wu
Insects 2023, 14(4), 399; https://doi.org/10.3390/insects14040399 - 20 Apr 2023
Cited by 2 | Viewed by 2064
Abstract
Two series of novel sophoridine derivatives were designed, synthesized, and evaluated for their anti-mosquito activity. SOP-2g, SOP-2q, and SOP-2r exhibited potential larvicidal activity against Aedes albopictus larva with LC50 values of 330.98, 430.53, and 411.09 ppm, respectively. Analysis of structure–activity [...] Read more.
Two series of novel sophoridine derivatives were designed, synthesized, and evaluated for their anti-mosquito activity. SOP-2g, SOP-2q, and SOP-2r exhibited potential larvicidal activity against Aedes albopictus larva with LC50 values of 330.98, 430.53, and 411.09 ppm, respectively. Analysis of structure–activity relationships indicated that the oxime ester group was beneficial for improving the larvicidal biological activity, whereas the long-chain aliphatic group and fused-ring group were introduced. Furthermore, the larvicidal mechanism was also investigated based on the inhibition assay of acetylcholinesterase (AChE) and the morphological observation of dead larva treated with derivatives. Results indicated that the AChE inhibitory activity of the preferred three derivatives were 63.16%, 46.67%, and 35.11%, respectively, at 250 ppm concentration. Additionally, morphological evidence demonstrated that SOP-2q and SOP-2r induced changes in the larva’s intestinal cavity, caudal gill, and tail, thereby displaying larvicidal action against Ae. albopictus together with AChE inhibition. Therefore, this study implied that sophoridine and its novel derivatives could be used to control the population of mosquito larva, which may also be effective alkaloids to reduce the mosquito population density. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

23 pages, 1592 KiB  
Review
Extraction, Separation, Antitumor Effect, and Mechanism of Alkaloids in Sophora alopecuroides: A Review
by Ruixia Zhang, Ruizhou Wang, Shipeng Zhao, Dan Chen, Fusheng Hao, Bo Wang, Jin Zhang, Yingying Ma, Xingyi Chen, Xiaojuan Gao, Lu Han and Changcai Bai
Separations 2022, 9(11), 380; https://doi.org/10.3390/separations9110380 - 20 Nov 2022
Cited by 5 | Viewed by 2943
Abstract
Malignant tumors pose a serious threat to human health, reducing quality of life. Natural antitumor drugs play a vital role in the treatment of cancer. Sophora alopecuroides, a traditional Chinese medicine not a part of the Chinese Pharmacopoeia, grows in the arid [...] Read more.
Malignant tumors pose a serious threat to human health, reducing quality of life. Natural antitumor drugs play a vital role in the treatment of cancer. Sophora alopecuroides, a traditional Chinese medicine not a part of the Chinese Pharmacopoeia, grows in the arid desert and edge zone of grassland. Previous studies have extensively investigated the antitumor effects of S. alopecuroides and its major alkaloids. Of these, aloperine, matrine, oxymatrine, sophoridine, and sophocarpine have received the most attention. In recent years, a variety of extraction and separation methods have been applied to the study of the alkaloids of Sophora alopecuroides, which has greatly promoted the study of the chemical constituents and pharmacological activities of the plant. S. alopecuroides has been shown to impede cancer cell growth, induce cell cycle arrest, enhance apoptosis and cellular differentiation, and impede cancer metastasis and invasion. Several mechanisms have been proposed for modulating cancer signaling and molecular pathways or targets based on multitudinous studies in various types of cancerous cells. This review provides an in-depth overview of the antitumor effects of S. alopecuroides and the potential targets of 12 alkaloids in S. alopecuroides via a pharmacophore mapping approach and offers a scientific basis for the further exploration of the mechanism related to the antitumor effects of this plant. Full article
Show Figures

Figure 1

12 pages, 13929 KiB  
Article
Determination of Antioxidant, Cytotoxicity, and Acetylcholinesterase Inhibitory Activities of Alkaloids Isolated from Sophora flavescens Ait. Grown in Dak Nong, Vietnam
by Phan Nguyen Truong Thang, Viet-Hung Tran, Tran Anh Vu, Nguyen Ngoc Vinh, Duyen Thi My Huynh and Duy Toan Pham
Pharmaceuticals 2022, 15(11), 1384; https://doi.org/10.3390/ph15111384 - 10 Nov 2022
Cited by 10 | Viewed by 2465
Abstract
Traditional/herbal medicine has gained increasing interests recently, especially in Asian countries such as Vietnam, due to its diverse therapeutic actions. In the treasure of Vietnamese medicinal plants, one of the potential herbs is the roots of Sophora flavescens Ait. (SF, “Kho sam” in [...] Read more.
Traditional/herbal medicine has gained increasing interests recently, especially in Asian countries such as Vietnam, due to its diverse therapeutic actions. In the treasure of Vietnamese medicinal plants, one of the potential herbs is the roots of Sophora flavescens Ait. (SF, “Kho sam” in Vietnamese). However, limited information has been reported on the Vietnamese SF compositions and their respective alkaloids’ anti-acetylcholinesterase action. Thus, this study investigated the extractions, isolations, identifications, and in-vitro antioxidant, cytotoxicity, and acetylcholinesterase inhibitory activities, of the SF root extracts and their purified alkaloid compounds. To this end, four pure compounds were successfully isolated, purity-tested by HPLC, and structurally identified by spectroscopic techniques of FTIR, MS, and NMR. These compounds, confirmed to be oxysophocarpine, oxymatrine, matrine, and sophoridine, were then determined their therapeutic actions. The SF extracts and the compounds did not possess significant antioxidant activity using the DPPH and MDA assays, and cytotoxicity action using the MTT assay on the MDA-MB-231 breast cancer cell line. On the other hand, the SF total extract yielded a moderate acetylcholinesterase inhibition effect, with an IC50 of 0.1077 ± 0.0023 mg/mL. In summary, the SF extract demonstrated potential effects as an anti-acetylcholinesterase agent and could be further researched to become a pharmaceutical product for diseases related to acetylcholine deficiency, such as dementia. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

13 pages, 2163 KiB  
Article
Sustained Release of Co-Amorphous Matrine-Type Alkaloids and Resveratrol with Anti-COVID-19 Potential
by Dandan Hu, Xin Chen, Duanxiu Li, Hailu Zhang, Yanwen Duan and Yong Huang
Pharmaceutics 2022, 14(3), 603; https://doi.org/10.3390/pharmaceutics14030603 - 10 Mar 2022
Cited by 23 | Viewed by 3756
Abstract
Matrine (MAR), oxymatrine (OMAR), and sophoridine (SPD) are natural alkaloids with varying biological activities; matrine was recently used for the treatment of coronavirus disease 2019 (COVID-19). However, the short half-lives and rapid elimination of these matrine-type alkaloids would lead to low oral bioavailability [...] Read more.
Matrine (MAR), oxymatrine (OMAR), and sophoridine (SPD) are natural alkaloids with varying biological activities; matrine was recently used for the treatment of coronavirus disease 2019 (COVID-19). However, the short half-lives and rapid elimination of these matrine-type alkaloids would lead to low oral bioavailability and serious side effects. Herein, resveratrol (RES) was selected as a co-former to prepare their co-amorphous systems to improve the therapeutic index. The formation of co-amorphous MAR-RES, OMAR-RES, and SPD-RES was established through powder X-ray diffraction and modulated temperature differential scanning calorimetry. Furthermore, Fourier transform infrared spectroscopy and NMR studies revealed the strong molecular interactions between resveratrol and these alkaloids, especially OMAR-RES. Matrine, oxymatrine, and sophoridine in the co-amorphous systems showed sustained release behaviors in the dissolution experiments, due to the recrystallization of resveratrol on the surface of co-amorphous drugs. The three co-amorphous systems exhibited excellent physicochemical stability under high relative humidity conditions. Our study not only showed that minor structural changes of active pharmaceutical ingredients may have distinct molecular interactions with the co-former, but also discovered a new type of sustained release mechanism for co-amorphous drugs. This promising co-amorphous drug approach may present a unique opportunity for repurposing these very promising drugs against COVID-19. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 1278 KiB  
Article
Phytotoxic Activity of Alkaloids in the Desert Plant Sophora alopecuroides
by Lijing Lei, Yu Zhao, Kai Shi, Ying Liu, Yunxia Hu and Hua Shao
Toxins 2021, 13(10), 706; https://doi.org/10.3390/toxins13100706 - 6 Oct 2021
Cited by 18 | Viewed by 3436
Abstract
Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in [...] Read more.
Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed. Full article
Show Figures

Figure 1

18 pages, 3702 KiB  
Article
Design and Synthesis of Molecular Hybrids of Sophora Alkaloids and Cinnamic Acids as Potential Antitumor Agents
by Hai Shang, Lingyu Li, Liyan Ma, Yu Tian, Hongmei Jia, Tao Zhang, Meng Yu and Zhongmei Zou
Molecules 2020, 25(5), 1168; https://doi.org/10.3390/molecules25051168 - 5 Mar 2020
Cited by 16 | Viewed by 3524
Abstract
Twenty-five sophora alkaloids-cinnamic acid hybrids (including matrine-cinnamic acid hybrids, sophoridine-cinnamic acid hybrids, and sophocarpine-cinnamic acid hybrids) were designed, synthesized, and evaluated in vitro against three human tumor cell lines (HeLa, HepG2 and A549) with cisplatin as a positive control. Some matrine-cinnamic acid and [...] Read more.
Twenty-five sophora alkaloids-cinnamic acid hybrids (including matrine-cinnamic acid hybrids, sophoridine-cinnamic acid hybrids, and sophocarpine-cinnamic acid hybrids) were designed, synthesized, and evaluated in vitro against three human tumor cell lines (HeLa, HepG2 and A549) with cisplatin as a positive control. Some matrine-cinnamic acid and sophoridine-cinnamic acid compounds exhibited potent effect against all three cancer cell lines, such as compounds 5b, 5e, 5g, and 6d. The structure-activity relationship study of the synthesized compounds was also performed. Preliminary mechanistic studies indicated that compounds 5e and 6d could induce apoptosis in HepG2 cell line. Further, compounds 5e and 6d altered mitochondrial membrane potential and produced ROS leading to cell apoptosis of HepG2 cells. Overall, our findings suggested that these compounds may provide promising lead compounds for further development as antitumor agents by structural modification. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 9633 KiB  
Article
Construction of Multiple Switchable Sensors and Logic Gates Based on Carboxylated Multi-Walled Carbon Nanotubes/Poly(N,N-Diethylacrylamide)
by Xuemei Wu, Xiaoqing Bai, Yang Ma, Jie Wei, Juan Peng, Keren Shi and Huiqin Yao
Sensors 2018, 18(10), 3358; https://doi.org/10.3390/s18103358 - 8 Oct 2018
Cited by 10 | Viewed by 3599
Abstract
In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(N,N-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- [...] Read more.
In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(N,N-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- and pH-responsive switchable cyclic voltammetric (CV) behaviors at the film electrodes. The control experiments showed that the pH-responsive property of the system could be ascribed to the drug components of the solutions, whereas the thermal-, salt- and methanol-sensitive behaviors were attributed to the PDEA constituent of the films. The CV signals particularly, of matrine and sophoridine were significantly amplified by the electrocatalysis of c-MWCNTs in the films at 1.02 V and 0.91 V, respectively. Moreover, the addition of esterase, urease, ethyl butyrate, and urea to the solution also changed the pH of the system, and produced similar CV peaks as with dilution by HCl or NaOH. Based on these experiments, a 6-input/5-output logic gate system and 2-to-1 encoder were successfully constructed. The present system may lead to the development of novel types of molecular computing systems. Full article
(This article belongs to the Special Issue Membrane-Based Biosensing)
Show Figures

Figure 1

12 pages, 2943 KiB  
Article
Novel Sophoridine Derivatives Bearing Phosphoramide Mustard Moiety Exhibit Potent Antitumor Activities In Vitro and In Vivo
by Dongdong Li, Linlin Dai, Xiumei Zhao, Shuang Zhi, Hongsheng Shen and Zibo Yang
Molecules 2018, 23(8), 1960; https://doi.org/10.3390/molecules23081960 - 6 Aug 2018
Cited by 8 | Viewed by 4280
Abstract
Novel mustard functionalized sophoridine derivatives were synthesized and evaluated for their cytotoxicity against of a panel of various cancer cell lines. They were shown to be more sensitive to S180 and H22 tumor cells with IC50 values ranging from 1.01–3.65 μM, and [...] Read more.
Novel mustard functionalized sophoridine derivatives were synthesized and evaluated for their cytotoxicity against of a panel of various cancer cell lines. They were shown to be more sensitive to S180 and H22 tumor cells with IC50 values ranging from 1.01–3.65 μM, and distinctly were more cytotoxic to cancer cells than normal cell L929. In addition, compounds 7a, 7c, and 7e displayed moderate tumor suppression without apparent organ toxicity in vivo against mice bearing H22 liver tumors. Furthermore, they arrested tumor cells in the G1 phase and induced cellular apoptosis. Their potential binding modes with DNA-Top I complex have also been investigated. Full article
Show Figures

Graphical abstract

13 pages, 4141 KiB  
Article
Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities
by Yiming Xu, Lichuan Wu, Hang Dai, Mingyan Gao, Haroon Ur Rashid, Haodong Wang, Peng Xie, Xu Liu, Jun Jiang and Lisheng Wang
Molecules 2017, 22(11), 1967; https://doi.org/10.3390/molecules22111967 - 14 Nov 2017
Cited by 14 | Viewed by 4627
Abstract
Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR) analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group [...] Read more.
Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR) analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop