Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = soot deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 515
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

12 pages, 1422 KiB  
Article
Sources of the Deposition of Submicron Soot Particles on Plant Leaves
by Qingyang Liu
Biology 2025, 14(6), 583; https://doi.org/10.3390/biology14060583 - 22 May 2025
Viewed by 472
Abstract
Submicron soot particles (with an aerodynamic diameter of less than 1.0 μm) are found to be one of the major factors resulting in global warming and health burdens. However, research on the biomonitoring of submicron soot particles and their associated sources using tree [...] Read more.
Submicron soot particles (with an aerodynamic diameter of less than 1.0 μm) are found to be one of the major factors resulting in global warming and health burdens. However, research on the biomonitoring of submicron soot particles and their associated sources using tree leaves has not been comprehensively conducted. This study investigated the seasonal trends of submicron soot particles on the leaves of seven tree types collected from four individual seasons across two years in Nanjing, in the Yangtze River Delta region of China, and performed source apportionment using stable carbon isotope analysis. Significant seasonal variations in submicron soot particles were observed on tree leaves of seven tree types, with average levels of 0.3 to 0.5 mg m−2 during summer and 0.5 to 1.3 mg m−2 during winter. The levels of submicron soot particles varied significantly across various tree types. In contrast, the levels of δ13C were not found to change significantly across different types. The levels of δ13C ranged from −26.3‰ to −20.9‰ in winter and from −24.0‰ to −18.1‰ in summer, with fossil fuels accounting for 56% and 78% of submicron soot in winter and summer on average, respectively. These results demonstrate that tree leaves can serve as a low-cost and effective biomonitoring tool for assessing the source status of submicron soot. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

17 pages, 1390 KiB  
Article
Laser-Powered Homogeneous Pyrolysis (LPHP) of Lignin Dispersed into Gas Phase
by Mohamad Barekati-Goudarzi, Lavrent Khachatryan, Rubik Asatryan, Dorin Boldor and Bert C. Lynn
Molecules 2025, 30(10), 2215; https://doi.org/10.3390/molecules30102215 - 19 May 2025
Viewed by 353
Abstract
The gas-phase delivery of lignin into the hot zone of cw-CO2 laser-powered homogeneous pyrolysis (LPHP) reactor under “wall-less” conditions led to the breakdown of lignin macromolecules into neutral oligomers and paramagnetic fragments deposited onto the reactor cell walls. The formation of PAHs [...] Read more.
The gas-phase delivery of lignin into the hot zone of cw-CO2 laser-powered homogeneous pyrolysis (LPHP) reactor under “wall-less” conditions led to the breakdown of lignin macromolecules into neutral oligomers and paramagnetic fragments deposited onto the reactor cell walls. The formation of PAHs was observed during the defragmentation of lignin, accelerated with increased laser power. Remarkably, no phenolic compounds were detected among lignin fragments—intermediate radicals and neutral oligomers. It is concluded that the PAH and soot-like conjugated particulates are formed in the hot zone of the LPHP reactor, resembling the high-temperature combustion processes. The key role of the resonantly stabilized radicals in the formation of low-molecular-weight PAHs is outlined. An alternative pathway is proposed for the generation of PAH involving the formation of cyclopentadienyl radical precursors (CPDa) that are adsorbed onto or trapped within lignin macromolecules. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

24 pages, 12648 KiB  
Article
A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean
by Ester Skylaki, Constantine Parinos, Maria Tsagkaraki, Ioannis Hatzianestis, Anastasia Christidi, Elisavet Skampa, Ioanna Nikolopoulou, Georgia Kambouri, Ioanna Stavrakaki, Dimitris Velaoras, Giorgos Kouvarakis, Maria V. Triantaphyllou, Maria Kanakidou, Nikolaos Mihalopoulos and Alexandra Gogou
J. Mar. Sci. Eng. 2025, 13(1), 47; https://doi.org/10.3390/jmse13010047 - 31 Dec 2024
Cited by 1 | Viewed by 2081
Abstract
This study investigates the composition, abundance, and vertical export of polycyclic aromatic hydrocarbons (PAHs) across three deep basins of the northeastern Mediterranean Sea (NEMS) over one year. Sinking particles were collected using sediment traps, and PAH analysis was conducted via gas chromatography-mass spectrometry. [...] Read more.
This study investigates the composition, abundance, and vertical export of polycyclic aromatic hydrocarbons (PAHs) across three deep basins of the northeastern Mediterranean Sea (NEMS) over one year. Sinking particles were collected using sediment traps, and PAH analysis was conducted via gas chromatography-mass spectrometry. PAH fluxes varied significantly, peaking in the north Aegean Sea due to mesotrophic conditions, nutrient-rich riverine and Black Sea water inflows, and maritime anthropogenic inputs. The fluxes were highest in winter and lowest in fall. In the Cretan Sea, petrogenic sources (~70%) dominated, driven by currents, with fluxes highest in spring and lowest in winter. The Ionian Sea exhibited lower fluxes, peaking in summer and decreasing in fall. Atmospheric deposition seems to be the main transport pathway of pyrolytic PAHs in this site, while its high-water column depth (4300 m) compared to the other sites presumably enables extended degradation of organic constituents during particle settling. The positive matrix factorization (PMF) and principal component analysis (PCA) results reveal complementary insights into PAH sources and transport mechanisms. PMF analysis identified combustion (61%) and petrogenic (22%) sources, while PCA highlighted biogenic fluxes (57.7%) and atmospheric deposition. Seasonal productivity, riverine inputs, and water circulation shaped PAH variability, linking combustion-related PAHs to atmospheric soot and petrogenic PAHs to organic-rich particles. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

22 pages, 8456 KiB  
Article
Soot Particle Emissions: Formation and Suppression Mechanisms in Gas Turbines
by Matthieu Vierling, Maher Aboujaib, Richard Denolle, Jean-François Brilhac and Michel Molière
Gases 2024, 4(4), 446-467; https://doi.org/10.3390/gases4040023 - 26 Nov 2024
Viewed by 2185
Abstract
This article reports on field tests devoted to the emissions of particles from gas turbines (GT) and more particularly to the formation of soot and its suppression by fuel additives. These field tests involved four heavy-duty gas turbines used as power generators and [...] Read more.
This article reports on field tests devoted to the emissions of particles from gas turbines (GT) and more particularly to the formation of soot and its suppression by fuel additives. These field tests involved four heavy-duty gas turbines used as power generators and equipped with air atomization systems. These machines were running on natural gas, No. 2 distillate oil, heavy crude oil and heavy fuel oil, respectively. The GT running on natural gas produced no soot or ash and its upstream air filtration system in fact allowed lower concentrations of exhaust particles than those found in ambient air. Soot emitted when burning the three liquid fuels (No. 2 distillate; heavy crude oil; and heavy oil) was effectively reduced using fuel additives based on iron(III), cerium(III) and cerium(IV). Cerium was found to be very effective as a soot suppressant and gave rise to two surprising effects: cerium(III) performed better than cerium(IV) and a “memory effect” was observed in the presence of heat recovery boilers due to the deposition of active cerium species. All of the reported results, both regarding natural gas emissions and soot reduction, are original. A review of the soot formation mechanisms and a detailed interpretation of the test results are provided. Full article
Show Figures

Figure 1

18 pages, 2627 KiB  
Article
Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing
by Youfu Chen, Yaou Wang, Bo Chen, Hongda Zhu and Lingling Zhao
Energies 2024, 17(18), 4618; https://doi.org/10.3390/en17184618 - 14 Sep 2024
Cited by 1 | Viewed by 1056
Abstract
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas [...] Read more.
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas side of the air preheater, considering the influences of steam soot blowing, is established using the Gambit 2.4.6 software. Based on the SIMPLE algorithm, the velocity field and the temperature field in the air preheater under varied working conditions are simulated using the software of Ansys Fluent 2021R1, and the influences of the boiler load, the operation parameters of the steam soot blower, and the running and outage of the soot blower on the flue gas velocity distribution in the depth direction of the corrugated plates, the soot-blowing coverage area, the inlet flue gas velocity, and the inlet flue gas temperature of the corrugated plates are analyzed. Under the base working condition, the flue gas velocity on the axis of the steam nozzle first decreases rapidly with increasing the corrugated plate depth (Z < 1.0 m), and then it decreases slowly with an almost equal slope. The longitudinal flue gas velocity has a positive correlation with the boiler load. The longitudinal flue gas velocity obviously decreases when the boiler load is decreased, and its reduction increases as the corrugated plate depth increases. It is one reason that the ash deposition is prone to occur on the cold end surface of corrugated plates under the condition of low boiler load. The longitudinal flue gas velocity increases with the soot-blowing steam velocity increasing when the corrugated plate depth is less than 1.5 m, but after that, it is almost not affected by the change in soot-blowing steam velocity. The soot-blowing coverage area has a negative correlation with the boiler load but a slight positive correlation with the steam velocity of the soot blower on the whole. The inlet flue gas velocity of the corrugated plates has a positive correlation with the boiler load and the inlet steam velocity of the soot blower. The average inlet flue gas velocity decreases by 21.7% when the boiler load is reduced by 50%. For every 5 m/s variation in the inlet steam velocity, the inlet flue gas velocity changes by about 10–14% whether the steam soot blower is put into operation or not, which has an obvious effect on the inlet gas velocity of the corrugated plates. The inlet flue gas temperature of the corrugated plates is, respectively, positively correlated with the boiler load and the inlet steam temperature of the soot blower. When the boiler load is reduced from 100% BMCR to 50% BMCR, the average inlet flue gas temperature of the corrugated plates is reduced by 44.2 K; however, when the soot-blowing steam temperature varies by 20 K, the average inlet flue gas temperature of the corrugated plates varies by only about 1.8 K. It means that it is difficult to enhance the cold end flue gas temperature of the corrugated plates only by raising the soot-blowing steam temperature at low boiler load. Adding a soot blower using high-temperature steam or hot air at the outlet of the corrugated plates may be an option to solve the ash deposition of the corrugated plates. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 11554 KiB  
Article
Analysis of Soot Deposition Effects on Exhaust Heat Exchanger for Waste Heat Recovery System
by Tianyu Chen, Hanqing Li, Yuzeng Wu, Jiaqi Che, Mingming Fang and Xupeng Li
Energies 2024, 17(17), 4259; https://doi.org/10.3390/en17174259 - 26 Aug 2024
Cited by 1 | Viewed by 1087
Abstract
This study investigates the thermal–hydraulic behavior and deposition characteristics of a shell and tube exhaust heat exchanger using a CFD-based predictive model of soot deposition. Firstly, considering the influences of thermophoretic, wall shear stress, and other deposition and removal mechanisms, a predictive model [...] Read more.
This study investigates the thermal–hydraulic behavior and deposition characteristics of a shell and tube exhaust heat exchanger using a CFD-based predictive model of soot deposition. Firstly, considering the influences of thermophoretic, wall shear stress, and other deposition and removal mechanisms, a predictive model is developed for long-term performance of heat exchangers under soot deposition. Then, the variations in exhaust heat exchanger performance during a 4 h deposition period are simulated based on the model. Subsequently, the variation of deposition distribution and different deposition velocities are also evaluated. Finally, an analysis of the long-term performance of the exhaust heat exchanger under varying gas velocities and temperature gradients is conducted, revealing the performance variations under all engine-operating conditions. Results show that the deterioration in normalized relative j/f1/2 varies from 5.26% to 24.91% under different work conditions, and the exhaust heat exchanger with high gas velocity and low temperature gradient exhibits optimal long-term performance. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

7 pages, 3720 KiB  
Case Report
Phosgene Inhalation in Fire-Related Deaths: A Case Report of Two Lovers Burnt in a Travelling Carousel
by Enrica Callegari, Enrico Mazzobel, Silvano Zancaner, Paolo Fais, Guido Viel and Giovanni Cecchetto
Forensic Sci. 2024, 4(3), 257-263; https://doi.org/10.3390/forensicsci4030018 - 26 Jun 2024
Viewed by 2024
Abstract
Fire deaths present several diagnostic challenges for the forensic examiner, the most significant of which is the identification of the cause of death and the evaluation of the morphological consequences of heat injuries in the ante-mortem and post-mortem periods. Here, we describe the [...] Read more.
Fire deaths present several diagnostic challenges for the forensic examiner, the most significant of which is the identification of the cause of death and the evaluation of the morphological consequences of heat injuries in the ante-mortem and post-mortem periods. Here, we describe the case of two young lovers found dead inside a travelling carousel destroyed by a fire. Circumstantial evidence of disputes between families running the town fair raised the suspicion of intentional arson. Comparative analysis of crime scene investigation, radiological, autoptic, histological, and toxicological findings revealed signs of vitality (i.e., presence of soot deposits inside the respiratory and digestive tracts, heat damage to the respiratory mucosa) and identified fatal asphyxia from haemorrhagic pulmonary oedema as the cause of death. Since the experimental burning of plastic samples collected from a similar carousel demonstrated the significant production of phosgene, the death of the two lovers was attributed to the probable inhalation of this gas. The case presented here underlines the importance of a multidisciplinary approach of any fire-related death, providing an insight into circumstantial and forensic (autopsy, toxicological, and immunohistopathological) elements useful in raising suspicion of possible toxic gas inhalation. In the presence of high levels of PVC materials at the fire scene and pulmonary oedema at the autopsy, with no alternative causes of death, the forensic pathologist must suspect a fatal exposure to phosgene. Full article
(This article belongs to the Special Issue Innovations and New Aspects in Forensic Practice)
Show Figures

Figure 1

14 pages, 3011 KiB  
Article
Influence of Precursor Mixtures on the Laser Chemical Vapor Deposition of TiC Fibers
by Kendall J. Mitchell and Gregory B. Thompson
Fibers 2024, 12(5), 43; https://doi.org/10.3390/fib12050043 - 13 May 2024
Viewed by 1626
Abstract
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted [...] Read more.
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted as a result of a loss of hydrogen, which served as a reducing agent for the metal halide as hydrogen evolved with the hydrocarbon gas in the reaction zone because of the Le Chatelier principle. For the hydrogen-lean (25%) condition, the intrinsic fiber growth rate was invariant, but gas phase nucleation resulted in the hydrocarbon forming carbon soot in the chamber which subsequently deposited and coated on the fibers. In the hydrogen-balanced composition (50%), the 2:1 precursor ratio resulted in inconsistent intrinsic growth rates which ranged from approximately 30 μm/s to 44 μm/s. However, for the hydrogen-balanced (50%) 1:1 condition, the intrinsic growth rate variation was reduced to approximately 12 μm/s. The differences in fiber uniformity, composition, and structure under these process conditions are discussed in terms of hydrogen’s ability to serve as a reducing agent, a fluid to transport heat from the deposition zone, and alter the structure of the fiber through thermophoresis. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

15 pages, 4430 KiB  
Article
A Strategy of Candle Soot-Based Photothermal Icephobic Superhydrophobic Surface
by Chenlu Qian, Lu Wang, Qiang Li and Xuemei Chen
Coatings 2024, 14(5), 612; https://doi.org/10.3390/coatings14050612 - 12 May 2024
Cited by 3 | Viewed by 1705
Abstract
Anti-icing/de-icing is of fundamental importance in practical applications such as power transmission, wind turbines, and aerofoils. Despite recent efforts in developing engineering surfaces to delay ice accumulation or reduce ice adhesion, it remains challenging to design robust photothermal icephobic surfaces in a durable, [...] Read more.
Anti-icing/de-icing is of fundamental importance in practical applications such as power transmission, wind turbines, and aerofoils. Despite recent efforts in developing engineering surfaces to delay ice accumulation or reduce ice adhesion, it remains challenging to design robust photothermal icephobic surfaces in a durable, low-cost, easy-fabrication manner. Here, we report an intelligent candle soot-based photothermal surface (PDMS/CS60@PDMS/Al) that can utilize sunlight illumination to achieve the multi-abilities of anti-icing, de-icing, and self-cleaning. Our method lies in the construction of hierarchical micro/nanostructures by depositing photothermal candle soot nanoparticles, which endow the surface with superior superhydrophobicity and excellent photothermal performance. The underlying mechanism is exploited by establishing the heat transfer model between the droplets and the cooled surface. We believe that the smart PDMS/CS60@PDMS/Al developed in this work could provide a feasible strategy to design intelligent engineering surfaces for enhanced anti-icing/de-icing. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

14 pages, 7294 KiB  
Article
Investigating the Potential of Ghee Precursor-Derived Carbon Nano Onions for Enhancing Interfacial Bonding in Thermoplastic Composites
by Kailashbalan Periasamy, Maryam Darouie, Raj Das and Akbar A. Khatibi
Molecules 2024, 29(5), 928; https://doi.org/10.3390/molecules29050928 - 20 Feb 2024
Viewed by 1845
Abstract
In this study, we employed a straightforward flame synthesis process to produce carbon soot containing carbon nano onions (CNOs) using easily accessible ghee oil as a precursor. The ghee oil, with a molecular composition rich in more than 50 carbon atoms, served as [...] Read more.
In this study, we employed a straightforward flame synthesis process to produce carbon soot containing carbon nano onions (CNOs) using easily accessible ghee oil as a precursor. The ghee oil, with a molecular composition rich in more than 50 carbon atoms, served as an effective source for generating CNOs. The synthesized CNO particles underwent comprehensive characterization through high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses, providing a detailed account of their physicochemical properties. In addition, we explored the direct deposition of CNOs on carbon fiber (CF) surfaces for 5 and 10 min via a soot deposition process. The resulting freeze–fracture images obtained from scanning electron microscope (SEM) offered insights into the morphology of the CNO-deposited CF. Our study aims to shed light on the potential applications of CNOs, focusing on their characterization and the possible benefits they may offer in diverse fields, including but not limited to enhancing interfacial bonding in thermoplastic composites. Full article
Show Figures

Graphical abstract

31 pages, 10260 KiB  
Article
Particle Number Concentration and SEM-EDX Analyses of an Auxiliary Heating Device in Operation with Different Fossil and Renewable Fuel
by Péter Nagy, Ádám István Szabó, Ibolya Zsoldos and György Szabados
Inventions 2024, 9(1), 13; https://doi.org/10.3390/inventions9010013 - 11 Jan 2024
Cited by 1 | Viewed by 2791
Abstract
Pollution from road vehicles enters the air environment from many sources. One such source could be if the vehicle is equipped with an auxiliary heater. They can be classified according to whether they work with diesel or gasoline and whether they heat water [...] Read more.
Pollution from road vehicles enters the air environment from many sources. One such source could be if the vehicle is equipped with an auxiliary heater. They can be classified according to whether they work with diesel or gasoline and whether they heat water or air. The subject of our research series is an additional heating system that heats the air, the original fuel is gasoline. This device has been built up in a modern engine test bench, where the environmental parameters can be controlled. The length of the test cycle was chosen to be 30 min. The tested fuels were E10, E30, E100 and B7. A 30-min operating period has been chosen in the NORMAL operating mode of the device as a test cycle. The focus of the tests was particle number concentration and soot composition. The results of the particle number concentration showed that renewable fuel content significantly reduces the number concentration of the emitted particles (9.56 × 108 #/cycle for E10 vs. 1.65 × 108 #/cycle for E100), while B7 causes a significantly higher number of emissions than E10 (3.92 × 1010 #/cycle for B7). Based on the elemental analysis, most deposits are elemental carbon, but non-organic compounds are also present. Carbon (92.18 m/m% for E10), oxygen (6.34 m/m% for E10), fluorine (0.64 m/m% for E10), and zinc (0.56 m/m% for E10) have been found in the largest quantity of deposits taken form the combustion chamber. Full article
(This article belongs to the Special Issue Innovative Research and Applications of Biofuels and Bioplastics)
Show Figures

Figure 1

6 pages, 1514 KiB  
Communication
Silver-Matrix Composite with Fullerene Soot Nanoparticles Produced by Electrodeposition
by Tatiana S. Koltsova, Valeriia A. Popovkina, Victoria A. Trusova, Elizaveta V. Bobrynina and Oleg V. Tolochko
Metals 2024, 14(1), 21; https://doi.org/10.3390/met14010021 - 22 Dec 2023
Viewed by 1493
Abstract
The presented work demonstrates the capability of obtaining composite powder, silver-fullerene soot, by the electrolytic deposition of silver from an aqueous solution of silver nitrate. The morphology of particles was studied as a function of fullerene soot concentration and current density. The microstructure [...] Read more.
The presented work demonstrates the capability of obtaining composite powder, silver-fullerene soot, by the electrolytic deposition of silver from an aqueous solution of silver nitrate. The morphology of particles was studied as a function of fullerene soot concentration and current density. The microstructure of compact materials obtained by hot pressing was investigated. The hardness of the compact material increased up to 30% and the same corrosion properties relative to pure silver were obtained using a similar technology. Full article
Show Figures

Figure 1

16 pages, 5940 KiB  
Article
An Effective Strategy for Monitoring Slagging Location and Severity on the Waterwall Surface in Operation Coal-Fired Boilers
by Pei Li, Ke Li, Yonggang Zhou, Qingyi Li, Zifu Shi and Wei Zhong
Energies 2023, 16(24), 7925; https://doi.org/10.3390/en16247925 - 5 Dec 2023
Cited by 3 | Viewed by 1728
Abstract
It is of great importance to obtain the exact location and severity of slagging deposits on the waterwall surface of an operational boiler to avoid aimless soot-blowing and reduce steam consumption. In this paper, an effective waterwall surface temperature monitoring method is proposed [...] Read more.
It is of great importance to obtain the exact location and severity of slagging deposits on the waterwall surface of an operational boiler to avoid aimless soot-blowing and reduce steam consumption. In this paper, an effective waterwall surface temperature monitoring method is proposed to determine the slagging locations. It has been noted that the temperature difference of the waterwall surface before and after soot-blowing varied with the waterwall location, with more than 80 °C covered with slag and less than 20 °C found clean. According to this, a slagging temperature index was developed to describe the severity of slagging deposits on the waterwall surface. Results indicated that the process of slagging deposit growth included four stages, with the slagging temperature fluctuating in the range of about 90–110 °C in stage III, followed by a rapid drop below 60 °C in stage IV. Furthermore, a digital image monitoring system was used to validate the slag growth process and study the relationship between deposit thickness growth and area expansion. This novel approach provides automated and accurate guidance for each soot blower around the furnace, which reduces soot-blowing steam consumption and avoids serious slagging on the waterwall surface. Full article
Show Figures

Figure 1

15 pages, 6917 KiB  
Article
Study of Soot Deposits during Continuous Methane Pyrolysis in a Corundum Tube
by Matvey S. Galtsov-Tsientsiala, Aleksandr O. Dudoladov, Anatoly V. Grigorenko and Mikhail S. Vlaskin
Appl. Sci. 2023, 13(19), 10817; https://doi.org/10.3390/app131910817 - 29 Sep 2023
Cited by 7 | Viewed by 2095
Abstract
Methane pyrolysis is one of the promising methods for producing low-carbon hydrogen, while one of the main problems of methane pyrolysis technology is soot clogging of the reactor space. In this work, soot deposits were studied during continuous methane pyrolysis in a corundum [...] Read more.
Methane pyrolysis is one of the promising methods for producing low-carbon hydrogen, while one of the main problems of methane pyrolysis technology is soot clogging of the reactor space. In this work, soot deposits were studied during continuous methane pyrolysis in a corundum tube with an inner diameter of 50 mm. Experiments were carried out at temperatures of 1000 °C, 1050 °C, 1100 °C, 1200 °C and 1400 °C with methane flow rates of 1 L/min and 5 L/min. Each experiment lasted 1 h. The formed soot accumulated inside the reactor (corundum tube) and the connected filter, where the gaseous product of methane pyrolysis was separated from the soot. The gaseous product was studied by gas chromatography. The soot was studied by SEM, BET and ICP-MS. With an increase in the temperature of the pyrolysis process from 1000 to 1200 °C, the hydrogen yield increased from 28.64 to 92.74% and from 1.10% to 72.09% at a methane flow rate of 1 and 5 L/min, respectively. The yield of soot increased from 1.28 g at 1000 °C to 43.9 g at 1400 °C (at a methane flow rate of 1 L/min). With an increase in the flow rate of methane from 1 to 5 l/min, the yield of soot at 1200 °C increased by almost two times to 75.65 g. It was established that in the region of the reactor where maximum heating occurs, the accumulated soot sinters and forms dense growths. At 1050 °C, the particle size of soot varies from 155 to 650 nm, at 1200 °C—from 157 to 896 nm, and at 1400 °C—from 77 to 532 nm. The specific surface of soot was 3.5 m2/g at 1000 °C and 8.0 m2/g at 1400 °C. The purity of the produced carbon black was about 99.95%. This study is useful in the selection of materials and technical solutions for a pilot plant for methane pyrolysis. Full article
(This article belongs to the Special Issue New Insights into Green Chemistry)
Show Figures

Figure 1

Back to TopTop