Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = sonobuoy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4275 KiB  
Article
Novel Hybrid Aquatic–Aerial Vehicle to Survey in High Sea States: Initial Flow Dynamics on Dive and Breach
by Matthew J. Ericksen, Keith F. Joiner, Nicholas J. Lawson, Andrew Truslove, Georgia Warren, Jisheng Zhao and Ahmed Swidan
J. Mar. Sci. Eng. 2025, 13(7), 1283; https://doi.org/10.3390/jmse13071283 - 30 Jun 2025
Viewed by 367
Abstract
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive [...] Read more.
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive force to re-achieve flight. The novel design research examines the viability of a recoverable sonar-search child aircraft for maritime patrol, one which can overcome the prohibitive sea state limitations of all current HAAV designs in the research literature. This paper reports on the analysis from computational fluid dynamic (CFD) simulations of such an HAAV diving into static seawater at low speeds due to the reverse thrust of two retractable electric-ducted fans (EDFs) and its subsequent breach back into flight initially using a fast buoyancy engine developed for deep-sea research vessels. The HAAV model entered the water column at speeds around 10 ms−1 and exited at 5 ms−1 under various buoyancy cases, normal to the surface. Results revealed that impact force magnitudes varied with entry speed and were more acute according to vehicle mass, while a sufficient portion of the fuselage was able to clear typical wave heights during its breach for its EDF propulsors and wings to protract unhindered. Examining the medium transition dynamics of such a novel HAAV has provided insight into the structural, propulsive, buoyancy, and control requirements for future conceptual design iterations. Research is now focused on validating these unperturbed CFD dive and breach cases with pool experiments before then parametrically and numerically examining the effects of realistic ocean sea states. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Autoencoder-Based DIFAR Sonobuoy Signal Transmission and Reception Method Incorporating Residual Vector Quantization and Compensation Module: Validation Through Air Channel Modeling
by Yeonjin Park and Jungpyo Hong
Appl. Sci. 2025, 15(1), 92; https://doi.org/10.3390/app15010092 - 26 Dec 2024
Viewed by 1262
Abstract
This paper proposes a novel autoencoder-based neural network for compressing and reconstructing underwater acoustic signals collected by Directional Frequency Analysis and Recording sonobuoys. To improve both signal compression rates and reconstruction performance, we integrate Residual Vector Quantization and a Compensation Module into the [...] Read more.
This paper proposes a novel autoencoder-based neural network for compressing and reconstructing underwater acoustic signals collected by Directional Frequency Analysis and Recording sonobuoys. To improve both signal compression rates and reconstruction performance, we integrate Residual Vector Quantization and a Compensation Module into the decoding process to effectively compensate for quantization errors. Additionally, an unstructured pruning technique is applied to the encoder to minimize computational load and parameters, addressing the battery limitations of sonobuoys. Experimental results demonstrate that the proposed method reduces the data transmission size by approximately 31.25% compared to the conventional autoencoder-based method. Moreover, the spectral mean square errors are reduced by 60.58% for continuous wave signals and 55.25% for linear frequency modulation signals under realistic air channel simulations. Full article
Show Figures

Figure 1

24 pages, 12589 KiB  
Article
Two-Dimensional Direction-of-Arrival Estimation Using Direct Data Processing Approach in Directional Frequency Analysis and Recording (DIFAR) Sonobuoy
by Amirhossein Nemati, Bijan Zakeri and Amir Masoud Molaei
Electronics 2024, 13(15), 2931; https://doi.org/10.3390/electronics13152931 - 25 Jul 2024
Viewed by 1697
Abstract
Today, the common solutions for underwater source angle detection require manned vessels and towed arrays, which are associated with high costs, risks, and deployment difficulties. An alternative solution for such applications is represented by acoustic vector sensors (AVSs), which are compact, lightweight and [...] Read more.
Today, the common solutions for underwater source angle detection require manned vessels and towed arrays, which are associated with high costs, risks, and deployment difficulties. An alternative solution for such applications is represented by acoustic vector sensors (AVSs), which are compact, lightweight and moderate in cost, and which have promising performance in terms of the bearing discrimination in two or three dimensions. One of the most popular devices for passive monitoring in underwater surveillance systems that employ AVSs is the directional frequency analysis and recording (DIFAR) sonobuoy. In this paper, direct data-processing (DDP) algorithms are implemented to calculate the azimuth angle of underwater acoustic sources by using short-time Fourier transform (STFT) via the arctan method instead of using fast Fourier transform (FFT). These algorithms for bearing estimation use the ‘Azigram’ to plot the estimated bearing of a source. It is demonstrated that by knowing the active sound intensity of the sound field and applying the inverse tangent to its real part, this matrix can be obtained. Announcing the time and frequency of the source simultaneously is one of the main advantages of this method, enabling the detection of multiple sources concurrently. DDP can also provide more details about sources’ characteristics, such as the frequency of the source and the time of the source’s presence. Full article
(This article belongs to the Special Issue Recent Advances in Audio, Speech and Music Processing and Analysis)
Show Figures

Figure 1

26 pages, 7044 KiB  
Project Report
Design and Flight Test of a Tube-Launched Unmanned Aerial Vehicle
by Michael Finigian, Peter Apostolos Kavounas, Ian Ho, Conor Cian Smith, Adam Witusik, Andrew Hopwood, Camron Avent, Brandon Ragasa and Brian Roth
Aerospace 2024, 11(2), 133; https://doi.org/10.3390/aerospace11020133 - 3 Feb 2024
Cited by 4 | Viewed by 5629
Abstract
Unmanned aerial vehicles (UAVs) have already proven valuable for intelligence, search, and reconnaissance missions; however, their integration into manned aircraft to augment existing capabilities is still an emerging field. This paper describes the design of an aircraft that fits inside a G-sized sonobuoy [...] Read more.
Unmanned aerial vehicles (UAVs) have already proven valuable for intelligence, search, and reconnaissance missions; however, their integration into manned aircraft to augment existing capabilities is still an emerging field. This paper describes the design of an aircraft that fits inside a G-sized sonobuoy canister, deploys from a manned aircraft in-flight, and flies for up to 111 km and 83 min while providing telemetry to a remote operator. While UAVs with similar performance requirements exist, most were designed to fit in larger canisters. Multiple UAVs can be deployed in the air to expand the search capabilities of manned aircraft, ultimately allowing a larger search area per cost compared to manned aircraft alone. Individual performance characteristics of the aircraft such as aerodynamics, weight, propulsion, and stability were developed in the preliminary design phase based on given performance requirements. The performance of the aircraft was assessed using analytical and empirical methods. Wing folding mechanisms were prototyped for use on the production aircraft for flight testing. Propulsion, aerodynamic, and structural capabilities were validated separately using experimental methods. The folding mechanisms used in this UAV allow it to achieve the benefits of a longer wingspan while remaining compact and easy to deploy. Full article
(This article belongs to the Special Issue Aircraft Design (SI-5/2023))
Show Figures

Graphical abstract

15 pages, 8821 KiB  
Article
Autoencoder-Based Signal Modulation and Demodulation Methods for Sonobuoy Signal Transmission and Reception
by Jinuk Park, Jongwon Seok and Jungpyo Hong
Sensors 2022, 22(17), 6510; https://doi.org/10.3390/s22176510 - 29 Aug 2022
Cited by 9 | Viewed by 4760
Abstract
Sonobuoy is a disposable device that collects underwater acoustic information and is designed to transmit signals collected in a particular area to nearby aircraft or ships and sink to the seabed upon completion of its mission. In a conventional sonobuoy signal transmission and [...] Read more.
Sonobuoy is a disposable device that collects underwater acoustic information and is designed to transmit signals collected in a particular area to nearby aircraft or ships and sink to the seabed upon completion of its mission. In a conventional sonobuoy signal transmission and reception system, collected signals are modulated and transmitted using techniques such as frequency division modulation or Gaussian frequency shift keying. They are received and demodulated by an aircraft or a ship. However, this method has the disadvantage of a large amount of information being transmitted and low security due to relatively simple modulation and demodulation methods. Therefore, in this paper, we propose a method that uses an autoencoder to encode a transmission signal into a low-dimensional latent vector to transmit the latent vector to an aircraft or vessel. The method also uses an autoencoder to decode the received latent vector to improve signal security and to reduce the amount of transmission information by approximately a factor of a hundred compared to the conventional method. In addition, a denoising autoencoder, which reduces ambient noises in the reconstructed outputs while maintaining the merit of the proposed autoencoder, is also proposed. To evaluate the performance of the proposed autoencoders, we simulated a bistatic active and a passive sonobuoy environments. As a result of analyzing the sample spectrograms of the reconstructed outputs and mean square errors between original and reconstructed signals, we confirmed that the original signal could be restored from a low-dimensional latent vector by using the proposed autoencoder within approximately 4% errors. Furthermore, we verified that the proposed denoising autoencoder reduces ambient noise successfully by comparing spectrograms and by measuring the overall signal-to-noise ratio and the log-spectral distance of noisy input and reconstructed output signals. Full article
(This article belongs to the Special Issue Recent Advances in Underwater Signal Processing)
Show Figures

Figure 1

16 pages, 350 KiB  
Article
Locating an Underwater Target Using Angle-Only Measurements of Heterogeneous Sonobuoys Sensors with Low Accuracy
by Jonghoek Kim
Sensors 2022, 22(10), 3914; https://doi.org/10.3390/s22103914 - 22 May 2022
Cited by 9 | Viewed by 2021
Abstract
This paper considers locating an underwater target, where many sonobuoys are positioned to measure the bearing of the target’s sound. A sonobuoy has very low bearing accuracy, such as 10 degrees. In practice, we can use multiple heterogeneous sonobuoys, such that the variance [...] Read more.
This paper considers locating an underwater target, where many sonobuoys are positioned to measure the bearing of the target’s sound. A sonobuoy has very low bearing accuracy, such as 10 degrees. In practice, we can use multiple heterogeneous sonobuoys, such that the variance of a sensor noise may be different from that of another sensor. In addition, the maximum sensing range of a sensor may be different from that of another sensor. The true target must exist within the sensing range of a sensor if the sensor detects the bearing of the target. In order to estimate the target position based on bearings-only measurements with low accuracy, this paper introduces a novel target localization approach based on multiple Virtual Measurement Sets (VMS). Here, each VMS is derived considering the bearing measurement noise of each sonar sensor. As far as we know, this paper is novel in locating a target’s 2D position based on heterogeneous sonobuoy sensors with low accuracy, considering the maximum sensing range of a sensor. The superiority (considering both time efficiency and location accuracy) of the proposed localization is verified by comparing it with other state-of-the-art localization methods using computer simulations. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

30 pages, 5076 KiB  
Article
ROBINA: Rotational Orbit-Based Inter-Node Adjustment for Acoustic Routing Path in the Internet of Underwater Things (IoUTs)
by Umar Draz, Sana Yasin, Tariq Ali, Amjad Ali, Zaid Bin Faheem, Ning Zhang, Muhammad Hasan Jamal and Dong-Young Suh
Sensors 2021, 21(17), 5968; https://doi.org/10.3390/s21175968 - 6 Sep 2021
Cited by 7 | Viewed by 3137
Abstract
The Internet of Underwater Things (IoUTs) enables various underwater objects be connected to accommodate a wide range of applications, such as oil and mineral exportations, disaster detection, and tracing tracking systems. As about 71% of our earth is covered by water and one-fourth [...] Read more.
The Internet of Underwater Things (IoUTs) enables various underwater objects be connected to accommodate a wide range of applications, such as oil and mineral exportations, disaster detection, and tracing tracking systems. As about 71% of our earth is covered by water and one-fourth of the population lives around this, the IoUT expects to play a vital role. It is imperative to pursue reliable communication in this vast domain, as human beings’ future depends on water activities and resources. Therefore, there is a urgent need for underwater communication to be reliable, end-to-end secure, and collision/void node-free, especially when the routing path is established between sender and sonobuoys. The foremost issue discussed in this area is its routing path, which has high security and bandwidth without simultaneous multiple reflections. Short communication range is also a problem (because of an absence of inter-node adjustment); the acoustic signals have short ranges and maximum-scaling factors that cause a delay in communication. Therefore, we proposed Rotational Orbit-Based Inter Node Adjustment (ROBINA) with variant Path-Adjustment (PA-ROBINA) and Path Loss (PL-ROBINA) for IoUTs to achive reliable communication between the sender and sonobuoys. Additionally, the mathematical-based path loss model was discussed to cover the PL-ROBINA strategy. Extensive simulations were conducted with various realistic parameters and the results were compared with state-of-the-art routing protocols. Extensive simulations proved that the proposed routing scheme outperformed different realistic parameters; for example, packet transmission 45% increased with an average end-to-end delay of only 0.3% respectively. Furthermore, the transmission loss and path loss (measured in dB) were 25 and 46 dB, respectively, compared with other algorithms, for example, EBER2 54%, WDFAD-BDR 54%, AEDG 49%, ASEGD 55%, AVH-AHH-VBF 54.5%, and TANVEER 39%, respectively. In addition, the individual parameters with ROBINA and TANVEER were also compared, in which ROBINA achieved a 98% packet transmission ratio compared with TANVEER, which was only 82%. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Water and Environmental Monitoring)
Show Figures

Figure 1

34 pages, 1906 KiB  
Article
TANVEER: Tri-Angular Nearest Vector-Based Energy Efficient Routing for IoT-Enabled Acoustic Sensor and Actor Networks (I-ASANs)
by Umar Draz, Sana Yasin, Muhammad Irfan, Tariq Ali, Amjad Ali, Adam Glowacz, Frantisek Brumercik and Witold Glowacz
Sensors 2021, 21(11), 3578; https://doi.org/10.3390/s21113578 - 21 May 2021
Cited by 7 | Viewed by 2688
Abstract
The Internet of Things (IoT) is an emerging technology in underwater communication because of its potential to monitor underwater activities. IoT devices enable a variety of applications such as submarine and navy defense systems, pre-disaster prevention, and gas/oil exploration in deep and shallow [...] Read more.
The Internet of Things (IoT) is an emerging technology in underwater communication because of its potential to monitor underwater activities. IoT devices enable a variety of applications such as submarine and navy defense systems, pre-disaster prevention, and gas/oil exploration in deep and shallow water. The IoT devices have limited power due to their size. Many routing protocols have been proposed in applications, as mentioned above, in different aspects, but timely action and energy make these a challenging task for marine research. Therefore, this research presents a routing technique with three sub-sections, Tri-Angular Nearest Vector-Based Energy Efficient Routing (TANVEER): Layer-Based Adjustment (LBA-TANVEER), Data Packet Delivery (DPD-TANVEER), and Binary Inter Nodes (BIN-TANVEER). In TANVEER, the path is selected between the source node and sonobuoys by computing the angle three times with horizontal, vertical, and diagonal directions by using the nearest vector-based approach to avoid the empty nodes/region. In order to deploy the nodes, the LBA-TANVEER is used. Furthermore, for successful data delivery, the DPD-TANVEER is responsible for bypassing any empty nodes/region occurrence. BIN-TANVEER works with new watchman nodes that play an essential role in the path/data shifting mechanism. Moreover, achievable empty regions are also calculated by linear programming to minimize energy consumption and throughput maximization. Different evaluation parameters perform extensive simulation, and the coverage area of the proposed scheme is also presented. The simulated results show that the proposed technique outperforms the compared baseline scheme layer-by-layer angle-based flooding (L2-ABF) in terms of energy, throughput, Packet Delivery Ratio (PDR) and a fraction of empty regions. Full article
(This article belongs to the Special Issue Internet of Underwater Things)
Show Figures

Figure 1

8 pages, 410 KiB  
Communication
A Comparison of Optimal SONAR Array Amplitude Shading Coefficients
by Benjamin A. Cray and Ivars Kirsteins
Acoustics 2019, 1(4), 808-815; https://doi.org/10.3390/acoustics1040047 - 2 Oct 2019
Cited by 5 | Viewed by 4369
Abstract
This paper compares two different approaches to deriving shading coefficients (weights) for optimal first order and second order directional sensors (that is; sonobuoys, vectors and dyadic sensors). The first approach is an analytical or a physics-based derivation, involving computations with gradients and linearized [...] Read more.
This paper compares two different approaches to deriving shading coefficients (weights) for optimal first order and second order directional sensors (that is; sonobuoys, vectors and dyadic sensors). The first approach is an analytical or a physics-based derivation, involving computations with gradients and linearized momentum; the second is an adaptive minimum variance distortionless response (MVDR) derivation, which finds weights that minimize the cross spectral density (CSD) matrix. The two approaches are shown to be equivalent. In other words, the adaptive MVDR processing procedure does indeed converge to a physics-based solution, without any pre-existing physical knowledge of the behavior of the acoustic field. This suggests that adaptive algorithms innately seek physics-based solutions when these solutions are optimum. The intent of this short communication is not to advocate for one type of adaptive processing method over another. The observation that is presented here is important though, it confirms that at least in an idealized noise field, adaptive processing converges on an optimal set of shading coefficients, similarly derived based on well-established physical acoustics. Full article
(This article belongs to the Special Issue Underwater Acoustics)
Show Figures

Graphical abstract

13 pages, 3446 KiB  
Article
Design of an Acoustic Bender Transducer for Active Sonobuoys
by Seonghun Pyo, Hayeong Shim and Yongrae Roh
Sensors 2019, 19(7), 1691; https://doi.org/10.3390/s19071691 - 9 Apr 2019
Cited by 4 | Viewed by 4439
Abstract
Recent underwater vehicles can operate with a much lower level of noise, which increases the need for an active sonobuoy with a high detection performance. These active sonobuoys mainly use bender transducers as a projector that emits sound waves. In this study, we [...] Read more.
Recent underwater vehicles can operate with a much lower level of noise, which increases the need for an active sonobuoy with a high detection performance. These active sonobuoys mainly use bender transducers as a projector that emits sound waves. In this study, we designed a high-performance bender transducer and verified the validity of the design through experiments. For this purpose, first we analyzed the variation of the peak transmitting voltage response (TVR) level and peak TVR frequency of the bender transducer, in relation to its structural parameters. The performance of the bender transducer was analyzed using the finite element method. Then we derived the optimal structure of the bender transducer to achieve the highest TVR. Based on the design, a prototype of the bender transducer was fabricated and its acoustic properties were measured to confirm the validity of the design. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 2803 KiB  
Article
Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information
by Hyunhak Shin, Bonhwa Ku, Jill K. Nelson and Hanseok Ko
Sensors 2018, 18(5), 1481; https://doi.org/10.3390/s18051481 - 8 May 2018
Cited by 11 | Viewed by 5676
Abstract
This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since [...] Read more.
This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations. Full article
Show Figures

Figure 1

Back to TopTop