Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (999)

Search Parameters:
Keywords = soil strength improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation
by Jiagui Xiong, Yangqing Gong, Xianghua Liu, Yan Li, Liangjie Chen, Cheng Liao and Chaochao Zhang
Buildings 2025, 15(15), 2740; https://doi.org/10.3390/buildings15152740 - 4 Aug 2025
Viewed by 256
Abstract
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study [...] Read more.
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study conducted modified laboratory experiments simulating key field formation characteristics. A cement–soil preparation system considering actual immersion conditions was established, based on controlling the initial water content state of the foundation soil before pile formation and applying submerged conditions post-formation. Utilizing data mining on 84 sets of experimental data with various preparation parameter combinations, a prediction model for the as-formed strength of CSM Pile was developed based on the Particle Swarm Optimization-Extreme Gradient Boosting (PSO-XGBoost) algorithm. Engineering validation demonstrated that the model achieved an RMSE of 0.138, an MAE of 0.112, and an R2 of 0.961. It effectively addresses the issue of large prediction deviations caused by insufficient environmental simulation in traditional mix proportion tests. The research findings establish a quantitative relationship between as-formed strength and preparation parameters, providing an effective experimental improvement and strength prediction method for the engineering design of CSM Pile. Full article
Show Figures

Graphical abstract

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 - 2 Aug 2025
Viewed by 285
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

17 pages, 4364 KiB  
Article
An Investigation of the Effectiveness of Super White Cement in Improving the Engineering Properties of Organic Soils by Laboratory Tests
by Eyubhan Avci, Mehmet C. Balci, Muhammed A. Toprak, Melih Uysal, Emre Deveci, Gözde Algun Karataş and Yunus E. Dönertaş
Buildings 2025, 15(15), 2730; https://doi.org/10.3390/buildings15152730 - 2 Aug 2025
Viewed by 243
Abstract
In this study, the efficacy of super white cement (SWC) to improve organic soils was researched. For stabilization, 10%, 15%, and 20% proportions of SWC were added to organic soil. After improvement with SWC, Atterberg limit testing, standard Proctor tests, triaxial compression tests, [...] Read more.
In this study, the efficacy of super white cement (SWC) to improve organic soils was researched. For stabilization, 10%, 15%, and 20% proportions of SWC were added to organic soil. After improvement with SWC, Atterberg limit testing, standard Proctor tests, triaxial compression tests, and swelling and compressibility tests were performed on the organic soil. Proctor tests showed that stabilization of organic soil with SWC increased maximum dry density (MDD) and optimum moisture content (OMC) values. After stabilization, the unconfined compressional strength values of the soil increased. This increase continued until the 28th day and had a reducing trend after improvement with SWC, linked to time. In addition to the reaction between SWC and OS, the time-dependent behavior of OS also contributed to this behavior. With the increase in SWC proportions, the cohesion intercept and internal friction angle values rapidly increased until the 56th day. This increase began to reduce after the 56th day. After stabilization, the swelling percentage and compressibility values for the soil reduced. The addition of SWC within organic soil appeared to improve the engineering properties of the soil. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 - 1 Aug 2025
Viewed by 220
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

24 pages, 4254 KiB  
Article
Strength and Micro-Mechanism of Guar Gum–Palm Fiber Composite for Improvement of Expansive Soil
by Junhua Chen, Yuejian Huang, Aijun Chen, Xinping Ji, Xiao Liao, Shouqian Li and Ying Xiao
Fibers 2025, 13(8), 104; https://doi.org/10.3390/fib13080104 - 31 Jul 2025
Viewed by 175
Abstract
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The [...] Read more.
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The results show that the guar gum–palm fiber composite significantly improves the compressive and shear strength of expansive soil. The optimal ratio is 2% guar gum, 0.4% palm fiber, and 6 mm palm fiber length. Increasing fiber length initially boosts and then reduces unconfined compressive strength. Guar gum increases unconfined compressive strength by 187.18%, further improved by 20.9% with palm fibers. When fiber length is fixed, increasing palm fiber content increases and then stabilizes peak stress and shear strength (cohesion and internal friction angle), improving by 27.30%, 52.1%, and 12.4%, respectively, compared to soil improved with only guar gum. Micro-analysis reveals that guar gum enhances bonding between soil particles via a gel matrix, improving water stability and mechanical properties, while palm fibers reinforce the soil and inhibit crack propagation. The synergistic effect significantly enhances composite-improved soil performance, offering economic and environmental benefits, and provides insights for expansive soil engineering management. Full article
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Experimental Investigation of Mechanical Properties and Microstructure in Cement–Soil Modified with Waste Brick Powder and Polyvinyl Alcohol Fibers
by Xiaosan Yin, Md. Mashiur Rahman, Hongke Pan, Yongchun Ma, Yuzhou Sun and Jian Wang
Materials 2025, 18(15), 3586; https://doi.org/10.3390/ma18153586 - 30 Jul 2025
Viewed by 356
Abstract
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) [...] Read more.
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) and PVA fiber content (0–1%), evaluating mechanical properties based on unconfined compressive strength (UCS) and splitting tensile strength (STS) and microstructure via scanning electron microscopy (SEM) across 3–28 days of curing. The results demonstrate that 0.75% PVA optimizes performance, enhancing UCS by 28.3% (6.87 MPa) and STS by 34.6% (0.93 MPa) at 28 days compared to unmodified cement–soil. SEM analysis revealed that PVA fibers bridged microcracks, suppressing propagation, while WBP triggered pozzolanic reactions to densify the matrix. This dual mechanism concurrently improves mechanical durability and valorizes construction waste, offering a pathway to reduce reliance on virgin materials. This study establishes empirically validated mix ratios for eco-efficient cement–soil composites, advancing scalable solutions for low-carbon geotechnical applications. By aligning material innovation with circular economy principles, this work directly supports global de-carbonization targets in the construction sector. Full article
Show Figures

Graphical abstract

19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 258
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 246
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

13 pages, 1606 KiB  
Article
The Correlation of Microscopic Particle Components and Prediction of the Compressive Strength of Fly-Ash-Based Bubble Lightweight Soil
by Yaqiang Shi, Hao Li, Hongzhao Li, Zhiming Yuan, Wenjun Zhang, Like Niu and Xu Zhang
Buildings 2025, 15(15), 2674; https://doi.org/10.3390/buildings15152674 - 29 Jul 2025
Viewed by 184
Abstract
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly [...] Read more.
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly ash dosages were collected through a literature search and indoor tests. Using the compressive strength index and SEM tests, the correlation between the mix ratio design and the microscopic particle components was investigated. The findings were as follows: carbonation reactions occurred in lightweight soil during the maintenance process, and the particles were spherical; increasing the dosage of blowing agent increased the soil’s porosity and pore diameter, leading to the formation of through-holes and reducing the compressive strength and mobility; increasing the fly ash dosage and water–cement ratio increased the soil’s mobility but reduced its compressive strength; and the strength decreased significantly when the fly ash dosage was more than 16% (e.g., the strength at a 20% dosage was 17.8% lower than that at a 15% dosage). Feature importance analysis showed that the water–cement ratio (57.7%), fly ash dosage (30.9%), and blowing agent dosage (11.1%) had a significant effect on strength. ExtraTrees, LightGBM, and Bayesian-optimized Random Forest models were used for 28d strength prediction with coefficients of determination (R2) of 0.695, 0.731, and 0.794, respectively. The Bayesian-optimized Random Forest model performed optimally in terms of the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE), and the prediction performance was best. The accuracy of the model is expected to be further improved with expansions in the database. A 28 d compressive strength prediction platform for fly-ash-based bubble lightweight soil was ultimately developed, providing a convenient tool for researchers and engineers to predict material properties and mix ratios. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Study of an SSA-BP Neural Network-Based Strength Prediction Model for Slag–Cement-Stabilized Soil
by Bei Zhang, Xingyu Tao, Han Zhang and Jun Yu
Materials 2025, 18(15), 3520; https://doi.org/10.3390/ma18153520 - 27 Jul 2025
Viewed by 408
Abstract
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, [...] Read more.
As an industrial waste, slag powder can be processed and incorporated into cement-based materials as an additive, significantly improving the engineering properties of cement–soil. The strength of slag–cement-stabilized soil is subject to nonlinear interactions among multiple factors, including cement content, slag powder dosage, curing age, and moisture content, forming a complex influence mechanism. To achieve accurate strength prediction and mix proportion optimization for slag–cement-stabilized soil, this study prepared cement-stabilized soil specimens with different slag powder contents using typical sandy soil and clay from the Nantong region, and obtained sample data through unconfined compressive strength tests. A Back Propagation (BP) neural network prediction model was also established. Addressing the limitations of traditional BP neural networks in prediction accuracy caused by random initial weight thresholds and susceptibility to local optima, the sparrow search algorithm (SSA) was introduced to optimize initial network parameters, constructing an SSA-BP model that effectively enhances convergence speed and generalization capability. Research results demonstrated that the SSA-BP model reduced prediction error by 53.4% compared with the traditional BP model, showing superior prediction accuracy and effective characterization of multifactor nonlinear relationships. This study provides theoretical support and an efficient prediction tool for industrial waste recycling and environmentally friendly solidified soil engineering design. Full article
Show Figures

Figure 1

37 pages, 3799 KiB  
Systematic Review
Improvement of Expansive Soils: A Review Focused on Applying Innovative and Sustainable Techniques in the Ecuadorian Coastal Soils
by Mariela Macías-Párraga, Francisco J. Torrijo Echarri, Olegario Alonso-Pandavenes and Julio Garzón-Roca
Appl. Sci. 2025, 15(15), 8184; https://doi.org/10.3390/app15158184 - 23 Jul 2025
Viewed by 244
Abstract
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These [...] Read more.
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These have been shown to improve key geotechnical properties, even under saturated conditions, significantly. In particular, the combination of rice husk ash and recycled ceramics has shown notable results in Ecuadorian coastal soils. The article emphasizes the importance of selecting techniques that balance effectiveness, cost, and sustainability and identifies existing limitations, such as the lack of long-term data (ten years) and predictive models adapted to the Ecuadorian climate. From a bibliographic perspective, this article analyzes the challenges posed by expansive soils in the western coastal region of Ecuador, whose high plasticity and instability to moisture negatively affect civil works such as roads and buildings. The Ecuadorian clay contained 30% kaolinite and only 1.73% CaO, limiting its chemical reactivity compared to soils such as Saudi Arabia, which contained 34.7% montmorillonite and 9.31% CaO. Natural fibers such as jute, with 85% cellulose, improved the soil’s mechanical strength, increasing the UCS by up to 130%. Rice husk ash (97.69% SiO2) and sugarcane bagasse improved the CBR by 90%, highlighting their potential as sustainable stabilizers. All of this is contextualized within Ecuador’s geoenvironmental conditions, which are influenced by climatic phenomena such as El Niño and La Niña, as well as global warming. Finally, it is proposed to promote multidisciplinary research that fosters more efficient and environmentally responsible solutions for stabilizing expansive soils. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 5160 KiB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 281
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 24747 KiB  
Article
A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
by Luming Shen, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou and Hongxia Xie
Appl. Sci. 2025, 15(14), 8060; https://doi.org/10.3390/app15148060 - 20 Jul 2025
Viewed by 355
Abstract
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty [...] Read more.
The accurate prediction of soil organic matter (SOM) content is essential for promoting sustainable soil management and addressing global climate change. Due to multiple factors such as topography and climate, especially in mountainous areas, SOM spatial prediction faces significant challenges. The main novelty of this study lies in proposing a geographic positional encoding mechanism that embeds geographic location information into the feature representation of a Transformer model. The encoder structure is further modified to enhance spatial awareness, resulting in the development of the Geo-Positional Transformer (GPTransformer). Furthermore, this model is integrated with a 1D-CNN to form a dual-branch neural network called the Geo-Positional Transformer-CNN (GPTransCNN). This study collected 1490 topsoil samples (0–20 cm) from cultivated land in Longshan County to develop a predictive model for mapping the spatial distribution of SOM across the entire cultivated area. Different models were comprehensively evaluated through ten-fold cross-validation, ablation experiments, and uncertainty analysis. The results show that GPTransCNN has the best performance, with an R2 improvement of approximately 43% over the Transformer, 19% over the GPTransformer, and 15% over the 1D-CNN. This study demonstrates that by incorporating geographic positional information, GPTransCNN effectively combines the global modeling capabilities of the GPTransformer with the local feature extraction strengths of the 1D-CNN, which can improve the accuracy of SOM mapping in mountainous areas. This approach provides data support for sustainable soil management and decision-making in response to global climate change. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

15 pages, 3562 KiB  
Article
Synergistic Control of Shrinkage and Mechanical Properties in Expansive Soil Slurry via Coupled Cement–Fiber Reinforcement
by Dongxing Zhang, Yuchen Wang, Zhaohong Zhang, Zhenping Sun, Chengzhi Wang and Shuang Zou
Buildings 2025, 15(14), 2550; https://doi.org/10.3390/buildings15142550 - 19 Jul 2025
Viewed by 378
Abstract
This study elucidates the synergistic effects of polypropylene fiber and cement (physical–chemical) on stabilized expansive soil slurry. A comparative analysis was conducted on the fluidity, 28-day mechanical strength, and shrinkage properties (autogenous and drying) of slurries with different modifications. The underlying mechanisms were [...] Read more.
This study elucidates the synergistic effects of polypropylene fiber and cement (physical–chemical) on stabilized expansive soil slurry. A comparative analysis was conducted on the fluidity, 28-day mechanical strength, and shrinkage properties (autogenous and drying) of slurries with different modifications. The underlying mechanisms were further investigated through Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis. Results demonstrate that the cement addition substantially enhanced fluidity, mechanical strength, and early-age volume stability through hydration. However, it was insufficient to mitigate long-term drying shrinkage at low dosages. Conversely, incorporating 0.5% polypropylene fiber reduced slurry fluidity but markedly improved flexural strength. Crucially, a pronounced synergistic effect was observed in the co-modified slurry; the specimen with 20% cement and 0.5% fiber exhibited a 28-day drying shrinkage of only 0.57%, a performance comparable to the specimen with 60% cement and no fibers. Microstructural analysis revealed that cement hydration products created a robust fiber-matrix interfacial transition zone, evidenced by C-S-H gel enrichment. This enhanced interface enabled the fibers to effectively bridge microcracks and restrain both autogenous and drying shrinkage. This research validates that the combined cement–fiber approach is a highly effective strategy for improving expansive soil slurry, yielding critical enhancements in flexural performance and long-term dimensional stability while allowing for a significant reduction in cement content. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

Back to TopTop