Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (283)

Search Parameters:
Keywords = soft magnetic composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3694 KB  
Article
Influence of Manganese–Zinc Ferrite and Ageing on EMI Absorption Shielding Performance and Properties of Rubber Composites
by Ján Kruželák, Michaela Džuganová, Lucia Balcerčíková and Rastislav Dosoudil
J. Compos. Sci. 2025, 9(12), 700; https://doi.org/10.3390/jcs9120700 - 15 Dec 2025
Viewed by 367
Abstract
Magnetic soft manganese–zinc ferrite in a concentration scale ranging from 100 to 500 phr was incorporated into acrylonitrile-butadiene rubber. The work was focused on the investigation of manganese–zinc ferrite content on electromagnetic interference shielding effectiveness and mechanical properties of composites. The rubber-based products [...] Read more.
Magnetic soft manganese–zinc ferrite in a concentration scale ranging from 100 to 500 phr was incorporated into acrylonitrile-butadiene rubber. The work was focused on the investigation of manganese–zinc ferrite content on electromagnetic interference shielding effectiveness and mechanical properties of composites. The rubber-based products used in industrial practice should not only provide good utility and functional properties but should also exhibit good stability towards degradation factors, like oxygen and ozone. Therefore, the samples were exposed to the thermo-oxidative and ozone ageing conditions, and the influence of both factors on the composites’ properties was evaluated. The results demonstrated that the incorporation of ferrite into the rubber matrix resulted in the fabrication of composites with absorption-shielding performance. It was demonstrated that the higher the ferrite content, the lower the absorption-shielding ability. Electrical and thermal conductivity showed an increasing trend with increasing content of ferrite. On the other hand, the study of mechanical properties implied that ferrite acts as a non-reinforcing filler, leading to a decrease in tensile characteristics. Thermo-oxidative ageing tests revealed that ferrite, mainly in high amounts, could accelerate the degradation processes in composites. Though the absorption-shielding performance of composites after ageing corresponded to that of their equivalents before ageing, it can also be concluded that the higher the amount of ferrite in the rubber matrix, the lower the composites’ stability against ozone ageing. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

30 pages, 6918 KB  
Article
Design, Optimization, and Validation of a Dual Three-Phase YASA Axial Flux Machine with SMC Stator for Aerospace Electromechanical Actuators
by Mehmet C. Kulan, Farshid Mahmouditabar, Abdulrahman A. M. Alharbi, Bortecene Yildirim and Nick J. Baker
Energies 2025, 18(23), 6274; https://doi.org/10.3390/en18236274 - 28 Nov 2025
Viewed by 437
Abstract
This paper presents the design, optimization, and validation of a dual three-phase yokeless and segmented armature (YASA) axial flux permanent magnet (AFPM) machine for aerospace actuators. The proposed 12-slot, 10-pole topology employs segmented soft magnetic composite (SMC) stator teeth integrated into an additively [...] Read more.
This paper presents the design, optimization, and validation of a dual three-phase yokeless and segmented armature (YASA) axial flux permanent magnet (AFPM) machine for aerospace actuators. The proposed 12-slot, 10-pole topology employs segmented soft magnetic composite (SMC) stator teeth integrated into an additively manufactured aluminium holder, combining modularity, weight reduction, and improved thermal conduction. A multi-objective optimization process based on 3D finite element analysis (FEA) was applied to balance torque capability and losses. The manufacturable design achieved a peak torque of 28.3 Nm at 1400 rpm and a peak output power of 3.5 kW with an efficiency of 81.6%, while limiting short-circuit currents to 14 Arms. Transient structural simulations revealed that three-phase short circuits induce unbalanced axial forces, exciting rotor wobbling—a phenomenon not previously reported for YASA machines. A prototype was fabricated and tested, with static torque measurements deviating by 8.6% from FEA predictions. By contrast, line-to-line back-EMF and generator-mode power output exhibited larger discrepancies (up to 20%), attributed to the frequency-dependent permeability and localized eddy currents of the SMC stator material introduced during EDM machining. These results demonstrate both the feasibility and the limitations of YASA AFPM machines for aerospace applications. Full article
(This article belongs to the Special Issue Advanced Technology in Permanent Magnet Motors)
Show Figures

Figure 1

16 pages, 1359 KB  
Article
An In Situ Forming Bleomycin-Polidocanol Composite Foam for Optimizing Sclerotherapy of High-Risk Airway Venous Malformations
by Artur Medzhidov, Lev Voznitsyn, Emil Askerov, Alexandre A. Vetcher, Raja Venkatesan and Dmitry Telyshev
J. Compos. Sci. 2025, 9(11), 635; https://doi.org/10.3390/jcs9110635 - 15 Nov 2025
Viewed by 682
Abstract
Background: The treatment of soft tissue vascular anomalies is a challenge in materials science, requiring injectable biomaterials that can conform to complex lesion architectures while providing controlled drug delivery. Conventional liquid sclerosants fail due to poor localization. This study reports on the formulation [...] Read more.
Background: The treatment of soft tissue vascular anomalies is a challenge in materials science, requiring injectable biomaterials that can conform to complex lesion architectures while providing controlled drug delivery. Conventional liquid sclerosants fail due to poor localization. This study reports on the formulation and clinical performance of an in situ-forming, drug-eluting composite foam designed to overcome these limitations. Methods: A multicomponent composite foam was formulated from a liquid phase containing bleomycin and polidocanol and a gaseous phase of room air using a standardized Tessari emulsification technique. The therapeutic performance of this composite was evaluated retrospectively in 14 patients with high-risk airway venous malformations (AVMs) by quantifying lesion volume reduction on magnetic resonance imaging (MRI) and assessing clinical outcomes. Biocompatibility was determined by monitoring adverse tissue reactions. Results: The injectable composite foam demonstrated superior clinical performance with a 100% therapeutic response rate. Full target lesion ablation, defined as a complete response, was achieved in 10 of 14 cases (71.4%), demonstrating the composite’s high efficacy. The material exhibited excellent biocompatibility, with adverse events limited to minor, localized mucosal necrosis (21.4%) that resolved without intervention, indicating predictable material-tissue interaction. Conclusions: The bleomycin-polidocanol composite foam is an effective, therapeutic biomaterial whose performance is directly linked to its unique physicochemical structure. This work validates a material-based strategy for treating complex vascular lesions and highlights the potential for further optimization of such injectable composites by enhancing their long-term stability. Full article
Show Figures

Figure 1

18 pages, 6604 KB  
Article
Effect of H3PO4 Coating, Polyimide Binder, and MoS2/Graphite Lubricants on the Formability and Electromagnetic Properties of Fe-5.0 wt.%Si SMC Toroidal Cores
by Seongsu Kang and Seonbong Lee
Metals 2025, 15(11), 1247; https://doi.org/10.3390/met15111247 - 14 Nov 2025
Viewed by 498
Abstract
This study examined the effects of phosphoric acid (H3PO4), polyimide (PI), and lubricants (MoS2, graphite) on the phase stability, microstructure, and magnetic performance of Fe-5.0 wt.%Si soft magnetic composites (SMCs). Warm compaction (≤550 °C) and annealing at [...] Read more.
This study examined the effects of phosphoric acid (H3PO4), polyimide (PI), and lubricants (MoS2, graphite) on the phase stability, microstructure, and magnetic performance of Fe-5.0 wt.%Si soft magnetic composites (SMCs). Warm compaction (≤550 °C) and annealing at 700 °C were applied to samples prepared under a full factorial design. X-ray diffraction confirmed stable α-Fe(Si) phases without secondary phases. SEM and TEM–EDS revealed interfacial insulating layers mainly composed of Si-O, with localized phosphorus and carbon. Additive composition strongly influenced magnetic and physical properties. Increasing H3PO4 and PI reduced the density from 7.50 to 7.27 g/cm3 and lowered the permeability (from 189 at 1 kHz to 156), due to thicker interparticle layers that restricted metallic contact and domain wall motion. In contrast, Q-values rose significantly with frequency: for H3PO4 0.25 wt.% + PI 0.25 wt.% + graphite 0.3 wt.%, Q increased from 0.39 (1 kHz) to 2.91 (10 kHz), reflecting effective eddy current suppression. Lubricant type further influenced performance: graphite consistently outperformed MoS2, with 0.3 wt.% graphite providing the best balance of high density, permeability, and a frequency-stable Q-value. Overall, Fe-5.0 wt.%Si performance is governed not by bulk phase changes but by the trade-off between densification and insulation at particle interfaces. The optimal combination of low H3PO4 and PI with 0.3 wt.% graphite offers practical guidelines for designing high-frequency, high-efficiency motor materials. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Graphical abstract

17 pages, 4459 KB  
Article
Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
by Chang-Ting Yang, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang and Hsing-I Hsiang
Materials 2025, 18(21), 5016; https://doi.org/10.3390/ma18215016 - 4 Nov 2025
Viewed by 560
Abstract
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors [...] Read more.
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors (100 kHz–1 MHz). We prepared toroidal compacts at 200 MPa and characterized them by initial permeability (μi), core-loss (Pcv(f)), partitioning (Pcv(f) = Khf + Kef2, Kh, Ke: hysteresis and eddy-current loss coefficients), and EBSD (electron backscatter diffraction)-derived microstrain metrics (Kernel Average Misorientation, KAM; low-/high-angle grain-boundary fractions). Corrosion robustness was assessed using a 5 wt% NaCl, 35 °C, 24 h salt-spray protocol. Our findings reveal that FeSiCr achieves the highest μi across the frequency band, despite its lowest compaction density. This is attributed to its coarse particle size (D50 ≈ 18 µm) and the resulting lower intragranular pinning. The loss spectra are dominated by hysteresis over this frequency range, with FeSiCr exhibiting the largest Kh, while the fine, silica-insulated Fe powders (RIP/CIP) most effectively suppress Ke. EBSD analysis shows that the high coercivity and hysteresis loss in CIP (and, to a lesser extent, RIP) are correlated with dense, deformation-induced subgrain networks, as evidenced by higher mean KAM and a lower low-angle grain boundary fraction. In contrast, FeSiCr exhibits the lowest KAM, with strain confined primarily to particle contact regions. Corrosion testing ranked durability as FeSiCr ≳ CIP ≈ RIP ≫ CIP-P, which is consistent with the Cr-rich passivation of FeSiCr and the superior barrier properties of the SiO2 shells compared to low-dose phosphate. At 15 A, inductance retention ranks CIP (67.9%) > RIP (55.7%) > CIP-P (48.8%) > FeSiCr (33.2%), tracking a rise in effective anisotropy and—for FeSiCr—lower Ms that precipitate earlier roll-off. Collectively, these results provide a microstructure-informed selection map for single-powder formulations. We demonstrate that particle size and shell chemistry are the primary factors governing eddy currents (Ke), while the KAM-indexed substructure dictates hysteresis loss (Kh) and DC-bias superposition characteristics. This framework enables rational trade-offs between magnetic permeability, core loss, and environmental durability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 1821 KB  
Article
Enhancing the High-Frequency Performance of FeSiAl/2.25 wt.% WS2 Composites Through the Application of a Transverse Magnetic Field
by Shoujin Zhu, Shuangjiu Feng, Xiansong Liu and Xucai Kan
Magnetochemistry 2025, 11(11), 95; https://doi.org/10.3390/magnetochemistry11110095 - 29 Oct 2025
Viewed by 410
Abstract
Herein, we address the challenge of high core losses in soft magnetic composites (SMCs) at high frequencies by developing a FeSiAl/WS2 composite system processed under a transverse magnetic field (TMF). In this study, 200- and 600-mesh FeSiAl powders were used as base [...] Read more.
Herein, we address the challenge of high core losses in soft magnetic composites (SMCs) at high frequencies by developing a FeSiAl/WS2 composite system processed under a transverse magnetic field (TMF). In this study, 200- and 600-mesh FeSiAl powders were used as base materials and combined with 2.25 wt.% two-dimensional tungsten disulfide (WS2; an insulating agent) to prepare FeSiAl/2.25 wt.%WS2 soft magnetic composites via ultrasonic mixing. The evolution of soft magnetic properties under a transverse magnetic field (TMF) was systematically investigated. The novelty of this work lies in the synergistic combination of fine FeSiAl particles and WS2 nanosheets as an interparticle insulator and the application of a TMF to simultaneously suppress eddy current and hysteresis losses—a challenge that is difficult to address using conventional approaches. Morphological analysis confirmed a uniform and continuous organic coating of WS2 nanosheets on FeSiAl particle surfaces. Permeability measurements revealed a slight decrease in effective permeability after the TMF treatment; however, the high-frequency performance was markedly enhanced. Magnetic loss analysis revealed a substantial reduction in the hysteresis loss and an increase in the quality factor under the TMF. Notably, the FeSiAl (600 mesh)/2.25 wt.% WS2 composite achieved a total magnetic loss of 234 kW/m3 under a TMF of 140 kA/m, magnetic induction of 20 mT, and frequency of 1 MHz, representing a 69% reduction compared with conventional SMCs. These results not only validate the effectiveness of the proposed synergistic approach but also highlight the potential of FeSiAl (600 mesh)/2.25 wt.% WS2 for use in high-power, high-frequency magnetic devices, with improved energy efficiency and thermal performance. Full article
Show Figures

Figure 1

18 pages, 6792 KB  
Article
Microstructure, Mechanical and Tribological Properties of Cold Sprayed Fe-Based Metallic Glass Coatings
by Anna Góral, Anna Trelka-Druzic, Wojciech Żórawski, Łukasz Maj, Martin Vicen, Otakar Bokůvka, Paweł Petrzak and Grzegorz Garzeł
Materials 2025, 18(21), 4875; https://doi.org/10.3390/ma18214875 - 24 Oct 2025
Viewed by 600
Abstract
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without [...] Read more.
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without any crystallization due to its high cooling rate and short processing time, minimizing thermal influences. Thick and dense amorphous coatings were obtained. The effect of a substrate on the microstructure, phase composition, microhardness, flexural strength, and wear behaviour of the coatings was investigated. The cold sprayed coatings revealed an almost complete amorphous structure and negligible porosity. The coating deposited on the steel substrate showed higher microhardness, better resistance to loose abrasive wear, and a slightly lower wear index tested in the coating and Si3N4 ball tribological association than that cold sprayed on an Al alloy. The force required to destroy the durability of the coating–steel substrate system estimated during three-point bending tests was also much higher. Both coatings were characterized by a comparable friction coefficient. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Figure 1

9 pages, 3202 KB  
Communication
Structure and Magnetic Properties of CNT-Reinforced Iron Composites
by Chunxia Zhou, Liang Yan, Biao Yan, Zhiya Han, Yixiao Cao and Xinyi Xu
Materials 2025, 18(19), 4600; https://doi.org/10.3390/ma18194600 - 3 Oct 2025
Viewed by 622
Abstract
Fe-CNT composites were synthesized via mechanical ball milling, incorporating varying amounts of carbon nanotubes (CNTs) into iron powder at concentrations of 1 wt%, 2 wt%, and 3 wt%. The impact of different CNT contents on the phase structure, microstructure, and magnetic properties of [...] Read more.
Fe-CNT composites were synthesized via mechanical ball milling, incorporating varying amounts of carbon nanotubes (CNTs) into iron powder at concentrations of 1 wt%, 2 wt%, and 3 wt%. The impact of different CNT contents on the phase structure, microstructure, and magnetic properties of the composites was examined. Raman spectroscopy and X-ray diffraction (XRD) analyses revealed that despite some damage, CNTs retained a predominantly one-dimensional nanostructure post-ball milling. Moreover, an increase in CNT content led to a gradual rise in grain size and lattice strain of the iron powder, attributed to the formation of solid solutions and iron–carbon compounds. Scanning electron microscopy (SEM) observations demonstrated that the majority of CNTs were integrated within the iron matrix particles, with a minority either partially embedded or entirely unembedded on the iron powder surface. With higher CNT concentrations, local CNT agglomeration emerged and intensified. Vibrating sample magnetometer (VSM) measurements indicated that Fe-CNT composites exhibited enhanced saturation magnetization (2.25%) and reduced coercivity (91.74%) compared to pure iron, underscoring the potential of CNTs in enhancing the magnetic properties of iron powder. Full article
Show Figures

Figure 1

17 pages, 5203 KB  
Article
Influence of Selected Transition Metals on Hard Magnetic Properties of Dy-Fe-Nb-B Vacuum Suction Rods
by Grzegorz Ziółkowski, Artur Chrobak, Ondrej Zivotsky and Joanna Klimontko
Materials 2025, 18(19), 4508; https://doi.org/10.3390/ma18194508 - 28 Sep 2025
Viewed by 415
Abstract
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural [...] Read more.
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural and magnetic measurements. Alloys containing dopant concentrations up to 2 at.% exhibited similar phase compositions, with the Dy2Fe14B compound being dominant. Magnetic hysteresis loops revealed a superposition of two components: magnetically soft and hard phases. A significant change in magnetic properties was observed within the 0.5 to 1 at.% dopant concentration range. Notably, the addition of 0.5 at.% Ni increased the apparent anisotropy field from 5.2 T to 7.5 T. Furthermore, 0.5 at.% Pt led to an increase in the coercive field from 4.6 T to 5.5 T. These additions influenced crystallization, resulting in the formation of a more regular microstructure without submicrometric dendrite branches, when compared to the base alloy. Full article
Show Figures

Figure 1

34 pages, 9541 KB  
Article
Formability and Electromagnetic Performance Comparison of Fe-P-Based SMC and Fe-5.0 wt.%Si Powders
by Seongsu Kang and Seonbong Lee
Materials 2025, 18(18), 4405; https://doi.org/10.3390/ma18184405 - 21 Sep 2025
Cited by 1 | Viewed by 539
Abstract
This study investigates the comparative applicability of Somaloy 700HR 5P and Fe-5.0 wt.%Si powders for axial flux permanent magnet (AFPM) motor cores in low-speed electric vehicles. Optimal forming conditions were derived through Taguchi-based simulations, considering corner radius, forming temperature, and forming speed, followed [...] Read more.
This study investigates the comparative applicability of Somaloy 700HR 5P and Fe-5.0 wt.%Si powders for axial flux permanent magnet (AFPM) motor cores in low-speed electric vehicles. Optimal forming conditions were derived through Taguchi-based simulations, considering corner radius, forming temperature, and forming speed, followed by prototype fabrication and validation. Simulation and SEM-EDS analyses confirmed consistent density distribution trends, and XRD verified phase stability during forming. While Fe-5.0 wt.%Si exhibited ~10% ± 2 superior electromagnetic performance in the powder state, its motor dynamo performance decreased by 19–25% (n = 1) compared to Somaloy 700HR 5P. This discrepancy was attributed to its ~4% lower target density (7.19 ± 0.02 g/cm3 vs. 7.51 ± 0.01 g/cm3, n = 3), assembly-induced mechanical losses, and non-uniform insulation layer caused by residual H3PO4 and Mo segregation. Somaloy 700HR 5P, despite a higher relative density variation (0.084 ± 0.002 g/cm3 vs. 0.063 ± 0.003 g/cm3 for Fe-5.0 wt.%Si), achieved an average density close to 7.5 g/cm3 and delivered more stable motor performance. Overall, Somaloy 700HR 5P was identified as a more suitable candidate for AFPM motor cores in low-speed EV applications, balancing formability and electromagnetic performance. Full article
(This article belongs to the Special Issue Soft Magnetic Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

18 pages, 20480 KB  
Article
Design of a PEBA–Silicone Composite Magneto-Sensitive Airbag Sensor for Simultaneous Contact Force and Motion Detection
by Zhirui Zhao, Chun Xia, Xinyu Zeng, Xinyu Hou, Lina Hao, Dexing Shan and Jiqian Xu
Sensors 2025, 25(18), 5823; https://doi.org/10.3390/s25185823 - 18 Sep 2025
Viewed by 758
Abstract
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the [...] Read more.
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the PEBA–silicone composite airbag is manufactured using fused deposition modeling, 3D printing, and silicone casting, achieving a balance between high airtightness and adjustable stiffness. Beneath the airbag, a magneto-sensitive substrate with several NdFeB magnets is embedded, while a fixed Hall sensor detects spatially varying magnetic fields to determine horizontal displacements without contact. The results of contact-force and motion experiments show that the proposed sensor achieves a force resolution of 20 g, a force range of 0 to 1100 g, a fitting sensitivity of 7.54 N/Pa, an average static stiffness of 4.82 N/mm, and a horizontal motion detection range of 0.125 to 1 cm/s. In addition, the prototype of the sensor is lightweight (with the complete assembly weighing 81.25 g and the sensing part weighing 56.13 g) and low-cost, giving it potential application value in exoskeletons and industrial grippers. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

30 pages, 26752 KB  
Review
Advances and Applications of Bionic Design and Functional Integration in Underwater Soft Grippers
by Chaoqun Xiang, Hongsen Sun, Teng Wu, Ye Chen, Yanjie Wang and Tao Zou
Polymers 2025, 17(17), 2408; https://doi.org/10.3390/polym17172408 - 4 Sep 2025
Viewed by 1953
Abstract
This paper systematically reviews the research progress of underwater soft grasping devices in the field of bionic structure, function integration, and tactile sensing technology by drawing on the structural characteristics of marine organisms such as octopuses, jellyfish, and sea anemones (such as suction [...] Read more.
This paper systematically reviews the research progress of underwater soft grasping devices in the field of bionic structure, function integration, and tactile sensing technology by drawing on the structural characteristics of marine organisms such as octopuses, jellyfish, and sea anemones (such as suction cups, umbrella-like muscles, and stinging cells). This paper analyzes the inspiration for the design, the application of innovative materials, and the integration of sensing and driving from marine organisms, including a review of soft robotics technologies, such as shape memory alloys (SMA), ionic polymer metal composite materials (IPMCs), magnetic nanocomposite cilia, etc. The research results emphasize that bionic soft robots have the potential for transformation in completely changing underwater operations by providing enhanced flexibility, efficiency, and environmental adaptability. This work provides a bionic design paradigm and perception-driven integration method for underwater soft operation systems, thereby promoting equipment innovation in the fields of deep-sea exploration and ecological protection. Full article
(This article belongs to the Special Issue Advancing Soft Robotics with Polymers)
Show Figures

Figure 1

25 pages, 10072 KB  
Article
A Study on the Influence of the Properties of Commercial Soft Magnetic Composite Somaloy Materials on the Compaction Process
by Minseop Sim and Seonbong Lee
Appl. Mech. 2025, 6(3), 65; https://doi.org/10.3390/applmech6030065 - 27 Aug 2025
Cited by 1 | Viewed by 1785
Abstract
This study aimed to determine optimal forming conditions by comparing the compaction behavior and microstructural characteristics of two Fe-based Soft Magnetic Composite (SMC) powders, Somaloy 700HR 5P and Somaloy 130i 5P. A full factorial design was employed with powder type, compaction temperature, and [...] Read more.
This study aimed to determine optimal forming conditions by comparing the compaction behavior and microstructural characteristics of two Fe-based Soft Magnetic Composite (SMC) powders, Somaloy 700HR 5P and Somaloy 130i 5P. A full factorial design was employed with powder type, compaction temperature, and punch speed as variables. Finite element modeling (FEM) using experimentally derived properties predicted density and stress distributions in toroidal geometries. 700HR 5P exhibited higher stress under most conditions, while both powders showed similar axial density gradients. Experimental results validated the simulations. SEM analysis revealed that 130i 5P had fewer microvoids and clearer particle boundaries. As revealed by TEM-EDS analyses, after heat treatment, both powders exhibited a tendency for the insulation layers to become more uniform and continuous. The insulation layer of 700HR 5P was relatively thicker but retained some pores, whereas that of 130i 5P was thinner yet exhibited smoother and more continuous coverage. XRD analysis indicated that both powders retained an α-Fe solid solution. These results demonstrate that powder properties, composition, and insulation stability significantly influence compaction and microstructural evolution. This work systematically compares the formability and insulation stability of two commercial Somaloy powders and elucidates process–structure–property relationships through an application-oriented evaluation integrating experimental design, FEM, and microstructural characterization, providing practical insights for optimal process design. Full article
Show Figures

Figure 1

12 pages, 3915 KB  
Article
Simultaneous Improvement of Glass-Forming Ability and Ductility in Co-Based BMGs Through Si/Fe Microalloying
by Xinlong Quan, Liming Xu, Yong Zhao, Xuecheng Tang, Qing Liu, Bo Zhang and Wei-Hua Wang
Metals 2025, 15(9), 943; https://doi.org/10.3390/met15090943 - 25 Aug 2025
Viewed by 767
Abstract
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61 [...] Read more.
Cobalt-based bulk metallic glasses (Co-based BMGs) offer a combination of high strength, corrosion resistance, and soft magnetic properties, yet their limited glass-forming ability (GFA) and poor room-temperature ductility restrict broader application. In this study, a microalloying strategy was applied to the Co61Nb8B31 base composition to develop Co-Nb-B-Si and Co-Fe-Nb-B-Si systems. The effects of Si addition and Fe substitution on GFA, thermal stability, and mechanical properties were systematically investigated. Si doping combined with Co/B ratio tuning broadened the supercooled liquid region and increased the critical glass-forming diameter from 1 mm to 3 mm. Further addition of 5 at.% Fe expanded the supercooled liquid region and enabled the fabrication of a fully amorphous plate with 1 mm thickness. The optimized Co63Nb8B27Si2 alloy exhibited a compressive strength of 5.18 GPa and a plastic strain of 3.81%. Fracture surface analysis revealed ductile fracture features in the Si-containing alloy and brittle characteristics in Fe-rich compositions. These results demonstrate that microalloying is effective in optimizing the balance between GFA and mechanical performance of Co-based BMGs, offering guidance for composition and processing design. Full article
Show Figures

Figure 1

12 pages, 3414 KB  
Article
Frequency Dependence of FINEMET/Ni/G Composite Ribbons Coated with As-Grown Graphene Layer via Chemical Vapor Deposition
by Yupo Wu, Yijun Chen, Zhenjie Zhao and Yenan Song
Nanomaterials 2025, 15(17), 1310; https://doi.org/10.3390/nano15171310 - 25 Aug 2025
Viewed by 913
Abstract
Enhanced Giant Magneto-Impedance (GMI) effects of composite materials play a crucial role in producing devices with a good soft magnetic property. To improve this soft magnetic property, graphene is introduced to increase the conductivity of composite materials. However, the quality of graphene layers [...] Read more.
Enhanced Giant Magneto-Impedance (GMI) effects of composite materials play a crucial role in producing devices with a good soft magnetic property. To improve this soft magnetic property, graphene is introduced to increase the conductivity of composite materials. However, the quality of graphene layers restricts the enhancement of GMI effects. There are few reports on the direct growth of graphene on Fe73.5Si13.5B9Cu1Nb3 (FINEMET). In this paper, the composite ribbons of FINEMET coated with as-grown graphene are prepared by chemical vapor deposition (CVD), which is much better than previous results obtained by methods such as the transfer method or electroless plating in quality. The Ni layer, with good magnetic conductivity, is induced to the FINEMET as an auxiliary layer by the magnetron sputtering method for high-quality graphene-layer growth due to its high carbon dissolution rate. The results show that the growth temperature of the as-grown graphene layer on the FINEMET with the best GMI ratio could reach as high as 560 °C. Moreover, it was found that an Ni layer thickness of 300 nm has a crucial impact on GMI, with the maximum ratio reaching 76.8%, which is 1.9 times that of an initial bare FINEMET ribbon (39.7%). As a result, the direct growth of graphene layers on FINEMET ribbons by the CVD method is a promising way to light GMI-based devices. Full article
Show Figures

Figure 1

Back to TopTop