Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = sodium and potassium balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 288 KiB  
Article
Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers
by Anissa Melo Souza, Ingrid Wilza Leal Bezerra, Karina Gomes Torres, Gabriela Santana Pereira, Raiane Medeiros Costa and Antonio Gouveia Oliveira
Nutrients 2025, 17(15), 2483; https://doi.org/10.3390/nu17152483 - 29 Jul 2025
Viewed by 198
Abstract
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its [...] Read more.
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its associations with micronutrient intake and diet quality. Methods: An observational cross-sectional survey was conducted in a representative sample of manufacturing workers through a combined stratified proportional and two-stage probability sampling plan, with strata defined by company size and industrial sector from the state of Rio Grande do Norte, Brazil. Dietary intake was assessed using 24 h recalls via the Multiple Pass Method, with Na:K ratios calculated from quantified food composition data. Diet quality was assessed with the Diet Quality Index-International (DQI-I). Multiple linear regression was used to analyze associations of Na:K ratio with the study variables. Results: The survey was conducted in the state of Rio Grande do Norte, Brazil, in 921 randomly selected manufacturing workers. The sample mean age was 38.2 ± 10.7 years, 55.9% males, mean BMI 27.2 ± 4.80 kg/m2. The mean Na:K ratio was 1.97 ± 0.86, with only 0.54% of participants meeting the WHO recommended target (<0.57). Fast food (+3.29 mg/mg per serving, p < 0.001), rice, bread, and red meat significantly increased the ratio, while fruits (−0.16 mg/mg), dairy, white meat, and coffee were protective. Higher Na:K ratios were associated with lower intake of calcium, magnesium, phosphorus, and vitamins C, D, and E, as well as poorer diet quality (DQI-I score: −0.026 per 1 mg/mg increase, p < 0.001). Conclusions: These findings highlight the critical role of processed foods in elevating Na:K ratios and the potential for dietary modifications to improve both electrolyte balance and micronutrient adequacy in industrial workers. The study underscores the need for workplace interventions that simultaneously address sodium reduction, potassium enhancement, and overall diet quality improvement tailored to socioeconomic and cultural contexts, a triple approach not previously tested in intervention studies. Future studies should further investigate nutritional consequences of imbalanced Na:K intake. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease)
15 pages, 1843 KiB  
Article
Multidimensional Evaluation of Local Rye Bread Fortified with Whey as a Model for Food Waste Valorization: From Recipe Development to Consumer Acceptance
by Márcio Moura-Alves, João Mota, Diogo Lameirão, Ana Francisca Teixeira, Cristina Saraiva, María Ángeles Romero-Rodríguez, Alice Vilela and Carla Gonçalves
Sustainability 2025, 17(15), 6710; https://doi.org/10.3390/su17156710 - 23 Jul 2025
Viewed by 298
Abstract
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as [...] Read more.
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as a replacement for water. Three bread formulations were tested: a traditional recipe with 37.5% rye flour and water (Control—CTR); the same recipe using whey instead of water (Rye Whey—RW); and a formulation with 100% local rye and whey replacing water (Full Rye Whey—FRW). Nutritional composition was assessed, including moisture, ash, protein, dietary fiber, sodium, potassium, lipids, and carbohydrates. Sensory analysis included both quantitative descriptive analysis and consumer acceptance testing. Microbiological quality was also evaluated. Whey-containing samples showed lower moisture and increased levels of ash, lipids, carbohydrates, and potassium. RW had the highest protein content (6.54 ± 0.28 g/100 g, p < 0.05), while FRW exhibited the highest dietary fiber (6.96 ± 0.15 g/100 g, p < 0.05). RW demonstrated a balanced nutritional and sensory profile, with high consumer acceptance. Overall, the combination of local rye and whey presents a promising strategy for producing nutritious bread while valorizing local agricultural resources and dairy by-products. These findings support sustainable food production practices and contribute to circular economy approaches. Full article
Show Figures

Figure 1

20 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Viewed by 394
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

29 pages, 7438 KiB  
Article
Comparison of High-Efficiency MgO/Na2CO3 and MgO/K2CO3 as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil
by Xiangyang Li, Xunxiang Jia, Weiji Li, Shufan Jia, Siwei Zhang, Jiliang Song and Jiao Wang
Molecules 2025, 30(13), 2876; https://doi.org/10.3390/molecules30132876 - 7 Jul 2025
Viewed by 371
Abstract
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 [...] Read more.
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 catalysts were systematically compared using soybean oil as the raw material. By regulating the calcination temperature (500–700 °C), alcohol-to-oil ratio (3:1–24:1), and metal carbonate loading (10–50%), combined with N2 adsorption–desorption, CO2-TPD, XRD, SEM-EDS, and cycling experiments, the regulatory mechanisms of the ionic radius differences between sodium and potassium on the catalyst structure and performance were revealed. The results showed that MgO/Na2CO3-600 °C achieved a FAME yield of 97.5% under optimal conditions, which was 1.7% higher than MgO/K2CO3-600 °C (95.8%); this was attributed to its higher specific surface area (148.6 m2/g vs. 126.3 m2/g), homogeneous mesoporous structure, and strong basic site density. In addition, the cycle stability of MgO/K2CO3 was significantly lower, retaining only 65.2% of the yield after five cycles, while that of MgO/Na2CO3 was 88.2%. This stability difference stems from the disparity in their solubility in the reaction system. K2CO3 has a higher solubility in methanol (3.25 g/100 g at 60 °C compared to 1.15 g/100 g for Na2CO3), which is also reflected in the ion leaching rate (27.7% for K+ versus 18.9% for Na+). This study confirms that Na+ incorporation into the MgO lattice can optimize the distribution of active sites. Although K+ surface enrichment can enhance structural stability, the higher leaching rate leads to a rapid decline in catalyst activity, providing a theoretical basis for balancing catalyst activity and durability in sustainable biodiesel production. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations, 2nd Edition)
Show Figures

Graphical abstract

34 pages, 1227 KiB  
Review
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
by Mario Alamilla-Sanchez, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, Leticia López González and Julio Manuel Flores Garnica
Pathophysiology 2025, 32(3), 33; https://doi.org/10.3390/pathophysiology32030033 - 3 Jul 2025
Viewed by 1582
Abstract
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms [...] Read more.
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms of secretion and reabsorption of solutes and proteins using specific transporters in the epithelial cells. The assessment of renal function usually focuses on glomerular function, so the tubular function is often underestimated as a fundamental part of daily clinical practice. Therefore, it is essential to properly understand the tubular physiological mechanisms and their clinical association with prevalent human pathologies. This review discusses the primary solutes handled by the kidneys, including glucose, amino acids, sodium, potassium, calcium, phosphate, citrate, magnesium and uric acid. Additionally, it emphasizes the significance of physicochemical characteristics of urine, such as pH and osmolarity. The use of a concise methodology for the comprehensive assessment of urine should be strengthened in the basic training of nephrologists when dealing with problems such as water and electrolyte balance disorders, acid-base disorders, and harmful effects of commonly used drugs such as chemotherapy, antibiotics, or diuretics to avoid isolated replacement of the solute without carrying out comprehensive approaches, which can lead to potentially severe complications. Full article
Show Figures

Figure 1

14 pages, 937 KiB  
Article
Establishment and Validation of Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Aldosterone Quantification in Feline Serum with Reference Interval Determination
by Tommaso Furlanello, Francesca Maria Bertolini, Andrea Zoia, Jose Sanchez del Pulgar and Riccardo Masti
Animals 2025, 15(12), 1687; https://doi.org/10.3390/ani15121687 - 6 Jun 2025
Viewed by 585
Abstract
Aldosterone, a mineralocorticoid hormone synthesised in the adrenal cortex, is essential for maintaining electrolyte balance and fluid homeostasis. Its role in feline physiology remains underexplored, despite its importance in regulating sodium reabsorption and potassium excretion via mineralocorticoid receptors in renal tubules. This study [...] Read more.
Aldosterone, a mineralocorticoid hormone synthesised in the adrenal cortex, is essential for maintaining electrolyte balance and fluid homeostasis. Its role in feline physiology remains underexplored, despite its importance in regulating sodium reabsorption and potassium excretion via mineralocorticoid receptors in renal tubules. This study is warranted given aldosterone’s importance in cats, particularly in light of their unique physiological traits, including highly concentrated urine and sensitivity to hydration status. Primary hyperaldosteronism, the most common feline adrenocortical disorder, contributes to arterial hypertension and chronic kidney disease, yet often remains underdiagnosed due to overlapping symptoms like hypokalaemia and hypertension. This research aimed to validate a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method to measure serum aldosterone and to establish a reference interval in a population of healthy cats across a broad age range. The method demonstrated high precision and accuracy, with inter-assay coefficients of variation under 15%. Analysis of 49 healthy cats (40 young, 9 old) revealed a reference interval of 5.0–78.4 pg/mL (13.8–217.2 pmol/L). These findings provide a robust framework for diagnosing aldosterone-related disorders in cats and underscore the need for species-specific diagnostic tools. Improved understanding of aldosterone’s role could refine treatment strategies and enhance outcomes for affected feline patients. Full article
(This article belongs to the Special Issue Canine and Feline Endocrinology: Research Progress and Challenges)
Show Figures

Figure 1

20 pages, 5006 KiB  
Article
Enhancing Salt Tolerance in Tomato Plants Through PEG6000 Seed Priming: Inducing Antioxidant Activity and Mitigating Oxidative Stress
by Nasratullah Habibi, Shafiqullah Aryan, Naveedullah Sediqui, Naoki Terada, Atsushi Sanada, Atsushi Kamata and Kaihei Koshio
Plants 2025, 14(9), 1296; https://doi.org/10.3390/plants14091296 - 25 Apr 2025
Cited by 2 | Viewed by 2008
Abstract
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum ‘Micro-Tom’ under salt stress. Seeds primed [...] Read more.
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum ‘Micro-Tom’ under salt stress. Seeds primed with –1.2 MPa PEG6000 were grown in Rockwool and treated with 0, 50, 100, 150, and 200 mM NaCl. Primed plants showed a 32% increase in leaf potassium (K+) and a 28% decrease in sodium (Na+) accumulation compared to non-primed plants under 150 mM NaCl. Glucose, fructose, and sucrose contents increased by 25%, 22%, and 19%, respectively, in primed fruits, while citric acid decreased by 15%. Malondialdehyde (MDA) and electrolyte leakage were reduced by 35% and 29%, respectively, in primed plants under moderate salinity. Antioxidant enzyme activities—SOD, POD, CAT, and APX were enhanced by 30–45% in primed plants under 100 and 150 mM NaCl, compared to non-primed controls. Abscisic acid (ABA) levels increased by 40% in primed roots under salt stress. Activities of polyamine-related enzymes (DAO, PAO, and ADC) also rose significantly. Priming improved protein content by 20% and relative water content by 18%. These results suggest that PEG6000 seed priming enhances salt tolerance by boosting antioxidant defense, regulating osmotic balance, and improving ion homeostasis, offering a viable strategy for sustaining tomato productivity under salinity. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

11 pages, 959 KiB  
Article
Metabolic Differences in 24-Hour Urine Parameters Between Calcium Oxalate Monohydrate and Dihydrate Kidney Stones: A Clinical Study
by Nariman Gadzhiev, Vitaliy Gelig, Gennadii Rodionov, Vineet Gauhar and Guohua Zeng
Diagnostics 2025, 15(8), 994; https://doi.org/10.3390/diagnostics15080994 - 14 Apr 2025
Cited by 2 | Viewed by 1063
Abstract
Background: Different types of kidney stones are associated with distinct changes in urine chemistry. Methods: We assessed urinary parameters of 98 patients with calcium oxalate (CaOx) stones one month following endoscopic stone removal. The 24 h urine analysis encompassed the assessment of various [...] Read more.
Background: Different types of kidney stones are associated with distinct changes in urine chemistry. Methods: We assessed urinary parameters of 98 patients with calcium oxalate (CaOx) stones one month following endoscopic stone removal. The 24 h urine analysis encompassed the assessment of various parameters, including volume, sodium, chloride, sulfate, nitrate, fluoride, phosphate, calcium, potassium, magnesium, oxalate, uric acid, citrate, creatinine, and pH levels. Results: Hypocitraturia was the most prevalent urinary abnormality (61.2%, n = 63), followed by low urine volume (53%, n = 52) and hypercalciuria (50%, n = 49). We did not find any statistically significant differences between patients with whewellite (COM) (n = 69) and weddellite (COD) stones (n = 29) (p > 0.05). However, oxalate concentration was the only parameter with a statistically significant intergroup difference (p = 0.0297). Additionally, in univariate linear regression analysis, urinary phosphate levels ≥ 48.0 mmol/d showed a trend towards significance (OR 0.17, 95% CI 0.02–1.15, p = 0.0692), indicating that phosphaturia is associated with a significant increase in the odds ratio of COD stones. To further explore metabolic heterogeneity among stone formers, we conducted cluster analysis, which revealed three distinct metabolic subgroups. Cluster 1 was predominantly associated with COM stones (80.5%) and exhibited significantly higher urinary excretion of sodium, calcium, oxalate, phosphate, and uric acid compared to Cluster 2, which had a more balanced distribution of monohydrate and dihydrate stones. Conclusions: These findings suggest that a specific metabolic phenotype may be linked to COM stone formation, providing a framework for risk stratification and personalized prevention strategies in calcium oxalate stone formers. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Urologic Diseases)
Show Figures

Figure 1

15 pages, 2519 KiB  
Article
A Metabolically Stable Apelin-13 Analog Acting as a Potent ITo Potassium Current Blocker with Potential Benefits for Brugada Syndrome
by Juan Antonio Contreras Vite, Alexandria Tiffinger, Léa Théroux, Nathalie Morin, Mannix Auger-Messier, Pierre-Luc Boudreault, Philippe Sarret, Olivier Lesur and Robert Dumaine
Int. J. Mol. Sci. 2025, 26(6), 2735; https://doi.org/10.3390/ijms26062735 - 18 Mar 2025
Viewed by 701
Abstract
Apelin serves as the endogenous ligand for the APJ receptor and enhances cardiac contractility without significantly affecting potassium currents. However, its short in vivo half-life limits clinical application, prompting the development of metabolically stable APJ receptor agonists. This study employed the patch-clamp technique [...] Read more.
Apelin serves as the endogenous ligand for the APJ receptor and enhances cardiac contractility without significantly affecting potassium currents. However, its short in vivo half-life limits clinical application, prompting the development of metabolically stable APJ receptor agonists. This study employed the patch-clamp technique to investigate the effects of the C-terminally modified apelin-13-2Nal derivative (2Nal) on action potential dynamics, rapid sodium (INa), and transient potassium (ITO) currents in rat cardiomyocytes. We discovered that 2Nal prolongs ventricular action potential duration by selectively blocking ITo. Dose-response analysis indicated that 2Nal acts as a partial antagonist of ITO, achieving a maximum blockade of 47%, with an apparent EC50 of 0.3 nM, while not affecting INa. Our lab previously found that an imbalance between ITo and INa currents contributes to the development of cardiac arrhythmias in conditions like Brugada syndrome. Currently, few therapeutic options exist to safely address this imbalance, as sodium channel openers cannot restore it, and most ITo blockers are cardiotoxic. The selective blockade of ITo by 2Nal that we describe here helps restore the balance of electrical currents between ITo and INa. Our study presents a novel, safe partial antagonist of ITo that may help prevent arrhythmias associated with Brugada syndrome. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

27 pages, 4714 KiB  
Review
Advancements in Metal-Ion Capacitors: Bridging Energy and Power Density for Next-Generation Energy Storage
by Ramkumar Vanaraj, Bharathi Arumugam, Gopiraman Mayakrishnan and Seong-Cheol Kim
Energies 2025, 18(5), 1253; https://doi.org/10.3390/en18051253 - 4 Mar 2025
Cited by 2 | Viewed by 1277
Abstract
Metal-ion capacitors (MICs) have emerged as advanced hybrid energy storage devices that combine the high energy density of batteries with the superior power density and long cycle life of supercapacitors. By leveraging a unique configuration of faradaic and non-faradaic energy storage mechanisms, MICs [...] Read more.
Metal-ion capacitors (MICs) have emerged as advanced hybrid energy storage devices that combine the high energy density of batteries with the superior power density and long cycle life of supercapacitors. By leveraging a unique configuration of faradaic and non-faradaic energy storage mechanisms, MICs offer a balanced performance that meets the diverse requirements of modern applications, including renewable energy systems, electric vehicles, and portable electronics. MICs employ diverse ions such as lithium, sodium, and potassium, which provide flexibility in material selection, scalability, and cost-effectiveness. For instance, lithium-ion capacitors (LICs) excel in compact and high-performance applications, while sodium-ion (NICs) and potassium-ion capacitors (KICs) provide sustainable and affordable solutions for large-scale energy storage. This review highlights the advancements in electrode materials, including carbon-based materials, transition metal oxides, and emerging candidates like MXenes and metal–organic frameworks (MOFs), which enhance MIC performance. The role of electrolytes, ranging from organic and aqueous to hybrid and solid-state systems, is also examined, emphasizing their influence on energy density, safety, and operating voltage. Additionally, the article discusses the environmental and economic benefits of MICs, including the use of earth-abundant materials and bio-derived carbons, which align with global sustainability goals. The review concludes with an analysis of practical applications, commercialization challenges, and future research directions, including AI-driven material discovery and integration into decentralized energy systems. As versatile and transformative energy storage devices, MICs are poised to play a critical role in advancing sustainable and efficient energy solutions for the future. Full article
Show Figures

Figure 1

22 pages, 655 KiB  
Review
Electrolyte Imbalances and Metabolic Emergencies in Obesity: Mechanisms and Clinical Implications
by Iulia Najette Crintea, Alexandru Cristian Cindrea, Ovidiu Alexandru Mederle, Cosmin Iosif Trebuian and Romulus Timar
Diseases 2025, 13(3), 69; https://doi.org/10.3390/diseases13030069 - 24 Feb 2025
Cited by 2 | Viewed by 4051
Abstract
Electrolyte imbalances are a frequently overlooked yet critical component of obesity-related metabolic dysfunction, contributing to an increased risk of cardiovascular disease, kidney impairment, and metabolic emergencies such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and acute kidney injury (AKI). These disturbances arise [...] Read more.
Electrolyte imbalances are a frequently overlooked yet critical component of obesity-related metabolic dysfunction, contributing to an increased risk of cardiovascular disease, kidney impairment, and metabolic emergencies such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and acute kidney injury (AKI). These disturbances arise from insulin resistance, chronic inflammation, hormonal dysregulation, and renal dysfunction, leading to sodium retention, potassium depletion, and deficiencies in calcium and magnesium homeostasis. Managing electrolyte imbalances is essential in obesity management, as imbalances exacerbate hypertension, metabolic acidosis, neuromuscular complications, and insulin resistance. This review explores the pathophysiology of electrolyte disturbances in obesity and their impact on fluid balance, acid–base status, and metabolic health. Effective management strategies include individualized electrolyte monitoring, dietary sodium restriction, potassium supplementation, vitamin D and magnesium correction, and pharmacologic interventions targeting renin–angiotensin–aldosterone system (RAAS) activity and insulin resistance. Additionally, lifestyle interventions, including dietary modification, weight loss strategies, and hydration optimization, play a key role in preventing metabolic complications. Future research should investigate the long-term impact of electrolyte imbalances in obesity, the role of emerging therapies, and how lifestyle interventions can optimize electrolyte homeostasis and metabolic outcomes. A personalized, multidisciplinary approach integrating endocrinology, nephrology, and clinical nutrition is essential to improving the prevention and management of electrolyte imbalances in obese individuals. Full article
Show Figures

Figure 1

32 pages, 8768 KiB  
Article
Soil Salinization and Ancient Hulled Wheat: A Study on Antioxidant Defense Mechanisms
by Ridvan Temizgul
Plants 2025, 14(5), 678; https://doi.org/10.3390/plants14050678 - 22 Feb 2025
Cited by 1 | Viewed by 630
Abstract
Soil salinization, which is second only to soil erosion in terms of soil degradation, significantly hinders crop growth and development, leading to reduced yields. This study investigated the enzymatic and non-enzymatic antioxidant defense mechanisms of four ancient hulled wheat species under salt stress, [...] Read more.
Soil salinization, which is second only to soil erosion in terms of soil degradation, significantly hinders crop growth and development, leading to reduced yields. This study investigated the enzymatic and non-enzymatic antioxidant defense mechanisms of four ancient hulled wheat species under salt stress, with and without exogenous glycine betaine (0.5 mM). We aimed to assess the salt tolerance of these species and their potential for cultivation in saline/sodic soils. Our findings indicate that sodium and potassium chloride concentrations exceeding 100 mM induce significant stress in hulled wheat. However, combined salt stress (sodium and potassium chloride) reduced this stress by approximately 20–30%. Furthermore, exogenous glycine betaine supplementation almost completely alleviated the negative effects of salt stress, particularly in Triticum boeoticum. This species exhibited a remarkable ability to restore normal growth functions under these conditions. Our results suggest that ancient hulled wheat, especially T. boeoticum, may be a promising candidate for cultivation in sodium-saline soils. By supplementing with potassium fertilizers in addition to nitrogen, plants can effectively control salt influx into their cells and maintain intracellular K+/Na+ balance, thereby mitigating the adverse effects of salinity stress. This approach has the potential to increase crop yields and enhance food security in saline environments. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

18 pages, 2210 KiB  
Article
Enhanced Salt Tolerance of Pea (Pisum sativum L.) Seedlings Illuminated by LED Red Light
by Kexin Xu, Xiaoan Sun, Chitao Sun, Yuqing Wang, Haiyan Zhu, Wanli Xu and Di Feng
Horticulturae 2025, 11(2), 150; https://doi.org/10.3390/horticulturae11020150 - 1 Feb 2025
Viewed by 1038
Abstract
Light quality is an important variable affecting plant growth, so we aimed to explore the impact of light quality on plants under salt stress. The salt tolerance of pea (Pisum sativum L.) seedlings illuminated by LED red light and 4:1 of red/blue [...] Read more.
Light quality is an important variable affecting plant growth, so we aimed to explore the impact of light quality on plants under salt stress. The salt tolerance of pea (Pisum sativum L.) seedlings illuminated by LED red light and 4:1 of red/blue light in a hydroponic system was evaluated at three salinity levels (0, 50, and 100 mmol/L of NaCl) for their morphological and physiological parameters and their root growth characteristics in response to salt stress. Results demonstrated that, as salt stress intensified, the plant height, aboveground fresh/dry mass, root growth indices, and chlorophyll content of pea seedlings exhibited a decreasing trend, while the malondialdehyde (MDA) content and the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves increased. Also, more sodium (Na⁺) but less potassium (K⁺) ions were detected due to the change in electrolyte balance. Compared with pea seedlings under no salt stress, the growth rate, plant height, and K⁺ ion content significantly increased with the red light treatments, but both lights did not affect the aboveground fresh/dry mass, chlorophyll content, or root growth index. Under medium salt stress (50 mmol/L), red light helped generate more chlorophylls by 17.06%, accelerate leaf electrolyte exudation by 23.84%, accumulate more K⁺ ions by 46.32%, and increase the K⁺/Na⁺ ratio by 45.45%. When pea seedlings were stressed by 100 mmol/L salinity stress, red light was able to maintain the leaf chlorophyll level by 114.66%, POD enzyme activity by 157.78%, MDA amount by 14.16%, leaf and stem electrolyte leakage rate by 38.76% and 21.80%, respectively, K⁺ ion content by 45.47%, and K⁺/Na⁺ ratio by 69.70%. In conclusion, the use of red light has proven to enhance the salt tolerance of pea seedlings in a hydroponic system, which can and should be a promising approach to prime pea seedlings for more salt tolerance. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

16 pages, 252 KiB  
Article
Dietary Micronutrient Intake During Pregnancy Is Suboptimal in a Group of Healthy Scottish Women, Irrespective of Maternal Body Mass Index
by Eleanor M. Jarvie, Julie A. Lovegrove, Michelle Weech, Dilys J. Freeman and Barbara J. Meyer
Nutrients 2025, 17(3), 550; https://doi.org/10.3390/nu17030550 - 31 Jan 2025
Viewed by 1374
Abstract
Background/Objectives: A balanced nutritious diet is vital during pregnancy for both the mother and the baby. The aims of this longitudinal study were to (1) determine any differences in macro- and micronutrient intakes in a group of UK women during pregnancy (and [...] Read more.
Background/Objectives: A balanced nutritious diet is vital during pregnancy for both the mother and the baby. The aims of this longitudinal study were to (1) determine any differences in macro- and micronutrient intakes in a group of UK women during pregnancy (and in the post-partum period) who were overweight or obese (BMI mean (SD) 31.1 (2.9)) at antenatal booking appointment compared with women who were within the ideal BMI range (BMI mean (SD) 22.1 (1.9)) and (2) determine the proportion of women who met the Harmonized Average Requirements (H-AR) during pregnancy. Methods: Forty-two participants attended four clinic visits: three during pregnancy, one in each trimester (V1, V2, and V3), and one 12 weeks post-partum (V4). Dietary intake was assessed by 24 h diet recall and analysed using DietPlan6. Results: There were no differences in energy and macronutrient intakes between overweight/obese and lean women. During pregnancy, the overweight/obese women consumed a mean (SD) of 3238 (941) sodium (mg per day), which was approximately 10% higher compared to 2934 (732) sodium (mg per day) in the lean group (p = 0.015). Dietary and supplemental intakes of the sodium to potassium ratio was 21% higher in overweight/obese women compared to the lean women, p = 0.0031 (mean (SD) of 1.17 (0.35) versus 0.93 (0.28), respectively). Virtually all women did not meet the H-AR for niacin, folate, and vitamin D through dietary intake alone. Conclusions: The ‘eat better and not more’ message during pregnancy is supported. Full article
(This article belongs to the Section Nutrition in Women)
38 pages, 1875 KiB  
Article
Reduced-Order Model for Cell Volume Homeostasis: Application to Aqueous Humor Production
by Riccardo Sacco, Greta Chiaravalli, Giovanna Guidoboni, Anita Layton, Gal Antman, Keren Wood Shalem, Alice Verticchio, Brent Siesky and Alon Harris
Math. Comput. Appl. 2025, 30(1), 13; https://doi.org/10.3390/mca30010013 - 24 Jan 2025
Cited by 1 | Viewed by 1010
Abstract
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to [...] Read more.
The ability of a cell to keep its volume constant irrespective of intra- and extracellular conditions is essential for cellular homeostasis and survival. The purpose of this study is to elaborate a theoretical model of cell volume homeostasis and to apply it to a simulation of human aqueous humor (AH) production. The model assumes a cell with a spherical shape and only radial deformation satisfying the property that the cell volume in rest conditions equals that of the cell couplets constituting the ciliary epithelium of the human eye. The cytoplasm is described as a homogeneous mixture containing fluid, ions, and neutral solutes whose evolution is determined by net production mechanisms occurring in the intracellular volume and by water and solute exchange across the membrane. Averaging the balance equations over the cell volume leads to a coupled system of nonlinear ordinary differential equations (ODEs) which are solved using the θ-method and the Matlab function ode15s. Simulation tests are conducted to characterize the set of parameters corresponding to baseline conditions in AH production. The model is subsequently used to investigate the relative importance of (a) impermeant charged proteins; (b) sodium–potassium (Na+/K+) pumps; (c) carbonic anhydrase (CA) in the AH production process; and (d) intraocular pressure. Results suggest that (a) and (b) play a role; (c) lacks significant weight, at least for low carbon dioxide values; and (d) plays a role for the elevated values of intraocular pressure. Model results describe a higher impact from charged proteins and Na+/K+ ATPase than CA on AH production and cellular volume. The computational virtual laboratory provides a method to further test in vivo experiments and machine learning-based data analysis toward the prevention and cure of ocular diseases such as glaucoma. Full article
Show Figures

Graphical abstract

Back to TopTop