Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (992)

Search Parameters:
Keywords = socio-ecological systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3139 KiB  
Review
Social, Economic and Ecological Drivers of Tuberculosis Disparities in Bangladesh: Implications for Health Equity and Sustainable Development Policy
by Ishaan Rahman and Chris Willott
Challenges 2025, 16(3), 37; https://doi.org/10.3390/challe16030037 - 4 Aug 2025
Viewed by 100
Abstract
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to [...] Read more.
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to TB burden. The first literature search identified 28 articles focused on SES-TB relationships in Bangladesh. A second search through snowballing and conceptual mapping yielded 55 more papers of diverse source types and disciplines. Low-SES groups face elevated TB risk due to smoking, biomass fuel use, malnutrition, limited education, stigma, financial barriers, and hazardous housing or workplaces. These factors delay care-seeking, worsen outcomes, and fuel transmission, especially among women. High-SES groups more often face comorbidities like diabetes, which increase TB risk. Broader contextual drivers include urbanisation, weak labour protections, cultural norms, and poor governance. Recommendations include housing and labour reform, gender parity in education, and integrating private providers into TB programmes. These align with the WHO End TB Strategy, UN SDGs and Planetary Health Quadruple Aims, which expand the traditional Triple Aim for health system design by integrating environmental sustainability alongside improved patient outcomes, population health, and cost efficiency. Future research should explore trust in frontline workers, reasons for consulting informal carers, links between makeshift housing and TB, and integrating ecological determinants into existing frameworks. Full article
(This article belongs to the Section Human Health and Well-Being)
Show Figures

Graphical abstract

23 pages, 22378 KiB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 - 1 Aug 2025
Viewed by 165
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
Show Figures

Figure 1

25 pages, 2465 KiB  
Article
Co-Designing Sustainable and Resilient Rubber Cultivation Systems Through Participatory Research with Stakeholders in Indonesia
by Pascal Montoro, Sophia Alami, Uhendi Haris, Charloq Rosa Nababan, Fetrina Oktavia, Eric Penot, Yekti Purwestri, Suroso Rahutomo, Sabaruddin Kadir, Siti Subandiyah, Lina Fatayati Syarifa and Taryono
Sustainability 2025, 17(15), 6884; https://doi.org/10.3390/su17156884 - 29 Jul 2025
Viewed by 324
Abstract
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions [...] Read more.
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions with stakeholders and to promote a positive impact on smallholders. This study therefore implemented a participatory research process with stakeholders in the natural rubber sector for the purpose of improving inclusion, relevance and impact. Facilitation training sessions were first organised with academic actors to prepare participatory workshops. A working group of stakeholder representatives was set up and participated in these workshops to share a common representation of the value chain and to identify problems and solutions for the sector in Indonesia. By fostering collective intelligence and systems thinking, the process is aimed at enabling the development of adaptive technical solutions and building capacity across the sector for future government replanting programmes. The resulting adaptive technical packages were then detailed and objectified by the academic consortium and are part of a participatory plant breeding approach adapted to the natural rubber industry. On-station and on-farm experimental plans have been set up to facilitate the drafting of projects for setting up field trials based on these outcomes. Research played a dual role as both knowledge provider and facilitator, guiding a co-learning process rooted in social inclusion, equity and ecological resilience. The initiative highlighted the potential of rubber cultivation to contribute to climate change mitigation and food sovereignty, provided that it can adapt through sustainable practices like agroforestry. Continued political and financial support is essential to sustain and scale these innovations. Full article
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 250
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

22 pages, 1111 KiB  
Article
Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
by Harika Meesala and Gianluca Brunori
Agriculture 2025, 15(15), 1636; https://doi.org/10.3390/agriculture15151636 - 29 Jul 2025
Viewed by 253
Abstract
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with [...] Read more.
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with agroecological principles, this case study unveils how digital tools can actively reinforce agroecological practices when embedded within supportive socio-technical networks. Novel findings of this study highlight how the use of digital technologies supported agroecological practices and led to the reconfiguration of social relations, knowledge systems, and governance structures within the farm. Employing a technographic approach revealed that the farm’s transformation was driven not just by technology but through collaborative arrangements involving different stakeholders. These interactions created new routines, roles, and information flows, supporting a more distributed and participatory model of innovation. By demonstrating how digital tools can catalyse agroecological transitions in a context-sensitive and socially embedded manner, this study challenges the binary framings of technology versus ecology and calls for a more nuanced understanding of digitalisation as a socio-technical process. Full article
Show Figures

Figure 1

24 pages, 2698 KiB  
Article
Modelling Nature Connectedness Within Environmental Systems: Human-Nature Relationships from 1800 to 2020 and Beyond
by Miles Richardson
Earth 2025, 6(3), 82; https://doi.org/10.3390/earth6030082 - 23 Jul 2025
Viewed by 254
Abstract
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how [...] Read more.
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how urbanisation, opportunity and orientation to engage with nature, and intergenerational transmission have shaped nature connectedness over time. The model simulates historical trends (1800–2020) against target data, with projections extending to 2125. The ABM revealed a significant nature connectedness decline with excellent fit to the target data, derived from nature word use in cultural products. Although a lifetime ‘extinction of experience’ mechanism refined the fit, intergenerational transmission emerged as the dominant driver—supporting a socio-ecological tipping point in human–nature disconnection. Even with transformative interventions like dramatic urban greening and enhanced nature engagement, projections suggest a persistent disconnection from nature through to 2050, highlighting locked-in risks to environmental stewardship. After 2050, the most transformative interventions trigger a self-sustaining recovery, highlighting the need for sustained, systemic policies that embed nature connectedness into urban planning and education. Full article
Show Figures

Figure 1

25 pages, 1122 KiB  
Communication
From Resource Abundance to Responsible Scarcity: Rethinking Natural Resource Utilization in the Age of Hyper-Consumption
by César Ramírez-Márquez, Thelma Posadas-Paredes and José María Ponce-Ortega
Resources 2025, 14(8), 118; https://doi.org/10.3390/resources14080118 - 22 Jul 2025
Viewed by 551
Abstract
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This [...] Read more.
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This communication article calls for a fundamental paradigm shift from the long-standing assumption of resource abundance to a framework of responsible scarcity. Drawing from recent data on material throughput, on the transgression of planetary boundaries, and on the structural and geopolitical disparities underlying global resource use, this article highlights the urgent need to realign natural resource governance with ecological limits and social justice. A conceptual framework is proposed to support this transition, grounded in principles of ecological constraint, functional sufficiency, equity, and long-term resilience. The article concludes by outlining a forward-thinking research and policy agenda aimed at fostering sustainable and just modes of resource utilization in the face of growing environmental and socio-economic challenges. Full article
Show Figures

Figure 1

18 pages, 2680 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 - 19 Jul 2025
Viewed by 318
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
Show Figures

Figure 1

23 pages, 5058 KiB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 318
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

14 pages, 662 KiB  
Article
Changes in Body Mass Index Among Korean Adolescents Before and After COVID-19: A Comparative Study of Annual and Regional Trends
by Seong Jun Ha
Int. J. Environ. Res. Public Health 2025, 22(7), 1136; https://doi.org/10.3390/ijerph22071136 - 18 Jul 2025
Viewed by 264
Abstract
This study aimed to longitudinally analyze changes in body mass index (BMI) among Korean middle and high school students before and after the COVID-19 pandemic. Data were obtained from the national-level Physical Activity Promotion System (PAPS), collected between 2018 and 2024. A total [...] Read more.
This study aimed to longitudinally analyze changes in body mass index (BMI) among Korean middle and high school students before and after the COVID-19 pandemic. Data were obtained from the national-level Physical Activity Promotion System (PAPS), collected between 2018 and 2024. A total of 171,705 adolescents aged 13 to 18 were included in the analysis (86,542 males and 85,163 females), with a mean age of 15.2 years (SD = 1.68). Time-series analysis and two-way analysis of variance (ANOVA) were conducted to examine differences in BMI by year, sex, region (capital vs. non-capital), and urban–rural classification. The results indicated a significant increase in BMI during the pandemic period (2020–2022), peaking in 2022, followed by a gradual decline thereafter. Notably, male students and those living in rural or non-capital areas consistently exhibited higher BMI levels, suggesting structural disparities in access to physical activity opportunities and health resources. This study employed the Socio-Ecological Model and the Health Equity Framework as theoretical lenses to interpret BMI changes not merely as individual behavioral outcomes but as consequences shaped by environmental and policy-level determinants. The findings underscore the need for equity-based interventions in physical education and health policy to mitigate adolescent health inequalities during future public health crises. Full article
(This article belongs to the Special Issue Advances in Primary Health Care and Community Health)
Show Figures

Figure 1

17 pages, 278 KiB  
Essay
Educational Leadership: Enabling Positive Planetary Action Through Regenerative Practices and Complexity Leadership Theory
by Marie Beresford-Dey
Challenges 2025, 16(3), 32; https://doi.org/10.3390/challe16030032 - 15 Jul 2025
Viewed by 414
Abstract
Uniquely rooted in regenerative leadership and complemented by Complexity Leadership Theory (CLT), this conceptual essay offers a theoretical exploration of how educational institutions can act as dynamic systems that catalyze adaptive, community-led responses to anthropocentric socio-environmental crises. Rather than sustaining existing structures, educational [...] Read more.
Uniquely rooted in regenerative leadership and complemented by Complexity Leadership Theory (CLT), this conceptual essay offers a theoretical exploration of how educational institutions can act as dynamic systems that catalyze adaptive, community-led responses to anthropocentric socio-environmental crises. Rather than sustaining existing structures, educational leadership for regeneration seeks to restore ecological balance and nurture emergent capacities for long-term resilience. Positioned as key sites of influence, educational institutions are explored as engines of innovation capable of mobilizing students, educators, and communities toward collective environmental action. CLT offers a valuable lens for understanding how leadership emerges from nonlinear, adaptive processes within schools, enabling the development of innovative, collaborative, and responsive strategies required for navigating complexity and leading planetary-positive change. Drawing on a synthesis of the recent global literature, this paper begins by outlining the need to go beyond sustainability in envisioning regenerative futures, followed by an introduction to regenerative principles. It then examines the current and evolving role of educational leadership, the relevance in enabling whole-institution transformation, and how this relates to regenerative practices. The theoretical frameworks of systems thinking and CLT are introduced before noting their application within regenerative educational leadership. The final sections identify implementation challenges and offer practical recommendations, including curriculum innovation, professional development, and youth-led advocacy, before concluding with a call for education as a vehicle for cultivating planetary-conscious citizens and systemic change. This work contributes a timely and theoretically grounded model for reimagining educational leadership in an era of global turbulence. Full article
(This article belongs to the Section Planetary Health Education and Communication)
25 pages, 23420 KiB  
Article
Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022)
by Cesar Augusto Ruiz-Agudelo
Sustainability 2025, 17(14), 6461; https://doi.org/10.3390/su17146461 - 15 Jul 2025
Viewed by 524
Abstract
Colombia is a megadiverse, multiethnic, and multicultural country with a tremendous socio-ecological systems (SESs) diversity, which faces essential challenges arising from human activities, low levels of sustainable economic development, poverty, and social inequality rates, and the persistence of multiple forms of military, political, [...] Read more.
Colombia is a megadiverse, multiethnic, and multicultural country with a tremendous socio-ecological systems (SESs) diversity, which faces essential challenges arising from human activities, low levels of sustainable economic development, poverty, and social inequality rates, and the persistence of multiple forms of military, political, and social violence. Understanding the resilience of this complex system is both fundamental and challenging due to the contradictory effects of economic development and regional ecosystem degradation. This research proposes the Socio-Ecological Resilience Integrated Index (SERII) to assess historical changes in socio-ecological resilience in Colombia’s departments (political-administrative units) between 1985–2022. The SERII considers the trade-offs between ecosystems, social systems, and production systems, providing a complete perspective of integrated management with a geographic resolution at the level of general political-administrative units. The results reveal a spatial variation in the SERII, with worse conditions in the Caribbean, the Pacific, and the Colombian Amazon (on the country periphery) and better conditions in departments of the country center. From 1985 to 2022, the SERII experienced a decrease (51.5%), driven by ecosystem degradation, increased extractive activities (illegal and illegal), and the persistence of military, political, and social violence. While the limitations of the proposed indicator are described, the SERII effectively replicates the overall resilience of Colombia’s departments to external shocks and allows for suggesting regional management priorities for the targeted promotion of sustainable development. Full article
(This article belongs to the Special Issue Ecosystem Services and Sustainable Development of Human Health)
Show Figures

Figure 1

38 pages, 5409 KiB  
Article
Quantifying the Synergy Between Industrial Structure Optimization, Ecological Environment Management, and Socio-Economic Development
by Zexi Xue, Zhouyun Chen, Qun Lin and Ansheng Huang
Buildings 2025, 15(14), 2469; https://doi.org/10.3390/buildings15142469 - 14 Jul 2025
Viewed by 295
Abstract
In the context of the new developmental philosophy, this study aimed to address the bottleneck of regional sustainable development; it constructs a three-system evaluation indicator system for Industrial Structure Optimization (ISO), Ecological Environment Management (EEM), and Socio-economic Development (SED), based on panel data [...] Read more.
In the context of the new developmental philosophy, this study aimed to address the bottleneck of regional sustainable development; it constructs a three-system evaluation indicator system for Industrial Structure Optimization (ISO), Ecological Environment Management (EEM), and Socio-economic Development (SED), based on panel data from 20 cities in the Western Taiwan Straits Economic Zone between 2011 and 2023. To reveal how the synergistic development of the three subsystems in different domains can achieve sustainable development through their interactions and to analyze the dynamic patterns of the three subsystems, this study employed the panel vector autoregression (PVAR) model to examine the interactions between subsystems. Additionally, drawing on the framework of evolutionary economics, the study quantified the temporal evolution and spatial characteristics of the coupling coordination level among the three subsystems based on the results of the degree of coupling coordination model. The results indicate the following: (1) ISO shows a significant upward trend, EEM slightly declines, and SED experiences minor fluctuations before accelerating. (2) ISO, EEM, and SED exhibited self-reinforcing effects. (3) The degree of coupling, coordination, and coupling coordination all exhibit a trend of “fluctuating and increasing initially, followed by steady growth”. The spatial patterns of the degree of coupling, coordination, and coupling coordination have shifted from “decentralized” to “centralized”, with clear signs of synergistic development. (4) The difference in the degree of coupling coordination along the north–south direction remained the primary factor contributing to inter-regional disparities. Regions with the higher degrees of coupling coordination were concentrated in the southeastern coastal areas, while those with the lower degrees of coupling coordination appeared in the northeastern mountainous areas and southwestern coastal areas. (5) The spatial connection in the strength of the degree of coupling coordination has gradually increased, with notable intra-provincial connections and weakened inter-city connections across the province. The study’s results provided decision-making references for the construction of a sustainable development community. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

21 pages, 448 KiB  
Article
Enhancing Urban Resilience: Integrating Actions for Resilience (A4R) and Multi-Criteria Decision Analysis (MCDA) for Sustainable Urban Development and Proactive Hazard Mitigation
by Goran Janaćković, Žarko Vranjanac and Dejan Vasović
Sustainability 2025, 17(14), 6408; https://doi.org/10.3390/su17146408 - 13 Jul 2025
Viewed by 429
Abstract
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR [...] Read more.
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR 22370:2020 that integrates principles from various scientific disciplines to enhance resilience in systems, whether they are socio-ecological systems, communities, or organisations. A4R emphasises proactive measures and interventions aimed at fostering resilience rather than merely reacting to crises or disruptions. It recognises that resilience is a multifaceted concept influenced by various factors, including social, economic, environmental, and institutional dimensions. Central to A4R is the understanding of complex system dynamics. Also, A4R involves rigorous risk assessment to identify potential threats and vulnerabilities within a system, as well as to build adaptive capacity within systems. A4R advocates for the development of resilience metrics and monitoring systems to assess the effectiveness of interventions and track changes in resilience over time. These metrics may include indicators related to social cohesion, ecosystem health, economic stability, and public infrastructure resilience. In this context, the study aims to apply the proposed hierarchy of factors and group decision-making using fuzzy numbers to identify strategic priorities for improving the urban resilience of the pilot area. The identified priority factors are then analysed across different scenarios, and corresponding actions are described in detail. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

21 pages, 1404 KiB  
Project Report
Implementation Potential of the SILVANUS Project Outcomes for Wildfire Resilience and Sustainable Forest Management in the Slovak Republic
by Andrea Majlingova, Maros Sedliak and Yvonne Brodrechtova
Forests 2025, 16(7), 1153; https://doi.org/10.3390/f16071153 - 12 Jul 2025
Viewed by 229
Abstract
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS [...] Read more.
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS project developed a comprehensive multi-sectoral platform combining technological innovation, stakeholder engagement, and sustainable forest management strategies. This report analyses the Slovak Republic’s participation in SILVANUS, applying a seven-criterion fit–gap framework (governance, legal, interoperability, staff capacity, ecological suitability, financial feasibility, and stakeholder acceptance) to evaluate the platform’s alignment with national conditions. Notable contributions include stakeholder-supported functional requirements for wildfire prevention, climate-sensitive forest models for long-term adaptation planning, IoT- and UAV-based early fire detection technologies, and decision support systems (DSS) for emergency response and forest-restoration activities. The Slovak pilot sites, particularly in the Podpoľanie region, served as important testbeds for the validation of these tools under real-world conditions. All SILVANUS modules scored ≥12/14 in the fit–gap assessment; early deployment reduced high-risk fuel polygons by 23%, increased stand-level structural diversity by 12%, and raised the national Sustainable Forest Management index by four points. Integrating SILVANUS outcomes into national forestry practices would enable better wildfire risk assessment, improved resilience planning, and more effective public engagement in wildfire management. Opportunities for adoption include capacity-building initiatives, technological deployments in fire-prone areas, and the incorporation of DSS outputs into strategic forest planning. Potential challenges, such as technological investment costs, inter-agency coordination, and public acceptance, are also discussed. Overall, the Slovak Republic’s engagement with SILVANUS demonstrates the value of participatory, technology-driven approaches to sustainable wildfire management and offers a replicable model for other European regions facing similar challenges. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

Back to TopTop