Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022)
Abstract
1. Introduction
- The initial identification of the resilience dynamics of the subsystems for the Colombian territory between 1985–2022;
- The evaluation of the historical trajectories of SER changes throughout a complex and widely diverse territory;
- The identification of the driving forces that explain the transformation of SER between 1985 and 2022.
2. Methods and Materials
2.1. Study Area
2.2. The Socio-Ecological Resilience Integrated Index (SERII)
2.2.1. Ecosystem Resilience Assessment (ER)
2.2.2. Social System Resilience (SR)
2.2.3. Production System Resilience (PR)
2.2.4. Normalization, Spatialization, and Weight Calculation of Parameters
2.3. Calculation of the Socio-Ecological Resilience Integrated Index (SERII)
2.4. Spatiotemporal Change in SERII
3. Results
3.1. Weight of Parameters of Subsystems
3.2. Spatiotemporal Changes in ER, SR, and PR 1985–2022
3.2.1. Spatiotemporal Changes in ER 1985–2022
3.2.2. Spatiotemporal Changes in SR 1985–2022
3.2.3. Spatiotemporal Changes in PR 1985–2022
3.3. Socio-Ecological Resilience—SERII in 1985 and 2022
4. Discussion
4.1. Advantages and Disadvantages of the SERII for Colombian Political-Administrative Units Assessment
4.2. Violence and SER
4.3. Implications of SERII for the Colombian Sustainable Management
- The Caribbean departments have experimented with fast changes in many ecosystems driven by economic development [146,147]. The most critical anthropogenic disturbances in Colombian Caribbean departments are mainly due to human population growth [148,149], changes in water quality [150], loss of natural vegetation cover [151,152], overfishing [153], tourism activities [154,155], sand mining [156], litter generation, and continental and/or alluvial mining [157,158]. Additionally, the persistence of poverty and sociopolitical violence in this region of the country are other threats to biodiversity and ER [159];
- The Caribbean livestock departments (Córdoba, Magdalena, and Sucre) show an ecosystem transformation of more than 70%. A correlation between livestock activity and natural capital loss can be identified [160];
- In the La Guajira, Cesar, Magdalena, and Bolívar (south) departments, important mining activities are conducted, represented by ferronickel exploitation (one of the most important worldwide) as well as coal (opencast) and gold mining, the latter at an artisanal and small-scale level using cyanide and Hg for the metal recovery. These economic activities are developed near the riverbeds and main tributaries, and in many cases, such as gold mining, in the rivers and stream currents, potentially contaminating the aquatic food chain [161];
- In the case of the Antioquia department, the history of violence, the high degree of ecosystem transformation, the socioeconomic imbalances between urban and rural areas, and mining and illegal mining largely explain its low SER levels [65].
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holling, C.S.; Meffe, G.K. Command and control and the pathology of natural resource management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyzes. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S.; Light, S.S. (Eds.) Barriers and Bridges to the Renewal of Ecosystems and Institutions; Columbia University Press: New York, NY, USA, 1995. [Google Scholar]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Rose, A. Economic Resilience to Disasters. CARRI Research Report 8. Community & Regional Resilience Institute. 2009. Available online: https://merid.org/case-studies/community-and-regional-resilience-institute/ (accessed on 3 August 2024).
- Holling, C.S. Understanding the complexity of economic, ecological, and social systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Mumby, P.J.; Chollett, I.; Bozec, Y.M.; Wolff, N.H. Ecological resilience, robustness and vulnerability: How do these concepts benefit ecosystem management? Curr. Opin. Environ. Sustain. 2014, 7, 22–27. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Dakos, V.; Nes, E. Generic indicators of ecological resilience: Inferring the change of a critical transition. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 145–167. [Google Scholar] [CrossRef]
- Beisner, B.E.; Haydon, D.T.; Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 2003, 1, 376–382. [Google Scholar] [CrossRef]
- Levin, I.P.; Schneider, S.L.; Gaeth, G.J. All frames are not created equal: A typology and critical analysis of framing effects. Organ. Behav. Hum. Decis. Process. 1998, 76, 149–188. [Google Scholar] [CrossRef]
- Biggs, R.; Schluter, M.; Biggs, D.; Bohensky, E.L.; BurnSilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 2012, 37, 421–448. [Google Scholar] [CrossRef]
- Van Galen, A.; Bellamy, L.J. Resilience Case Studies: Dealing with Uncertainty in Practice: Strengths and Traps in Human Intervention. 2015. Available online: https://www.researchgate.net/publication/303041885_Resilience_Case_Studies_Dealing_with_uncertainty_in_practice_Strengths_and_traps_in_human_intervention?channel=doi&linkId=5735ed7108ae9f741b29c67b&showFulltext=true (accessed on 8 September 2024).
- Gupta, N.; Clavin, C.T.; Petropoulos, Z.E.; Mudd, A.B.; Nek, R.; Tinkle, S.S. Case Studies of Community Resilience Policy; U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [CrossRef]
- Joseph, J. Resilience as embedded neoliberalism: A governmentality approach. Resilience 2013, 1, 38–52. Available online: https://www.tandfonline.com/doi/abs/10.1080/21693293.2013.765741 (accessed on 3 August 2024). [CrossRef]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- Seager, T.P.; Clark, S.S.; Eisenberg, D.A.; Thomas, J.E.; Hinrichs, M.M.; Kofron, R.; Jensen, C.N.; McBurnett, L.R.; Snell, M.; Alderson, D.L. Chapter 3—Redesigning resilient infrastructure research. In Resilience Risk: Methods Application in Environment Cyber Social Domains; Lonkov, I., Palma-Oliveira, J.M., Eds.; The NATO Science for Peace and Security Programme; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-94-024 1126-3. [Google Scholar]
- Zhang, Y.; Yang, Y.; Chen, Z.; Zhang, S. Multi-criteria assessment of the resilience of ecological function areas in China with a focus on ecological restoration. Ecol. Indic. 2020, 119, 106862. [Google Scholar] [CrossRef]
- Greaves, C.; Parrott, L. Re-grounding cumulative effects assessments in ecological resilience. Environ. Impact Assess. Rev. 2024, 105, 107403. [Google Scholar] [CrossRef]
- Sajjad, R.H.; Rahaman, M.H.; Sharma, M.Y.; Sharma, A.; Saha, T.K. Vulnerability assessment of forest ecosystem based on exposure, sensitivity and adaptive capacity in the Valmiki Tiger Reserve, India: A geospatial analysis. Ecol. Inform. 2024, 80, 102494. [Google Scholar] [CrossRef]
- Vasilakopoulos, P.; Raitsos, D.E.; Tzanatos, E.; Maravelias, C.D. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 2017, 7, 13647. [Google Scholar] [CrossRef]
- Ferriera, S.; Harwood, T.D.; Ware, C.; Hoskins, A.J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 2020, 117, 106554. [Google Scholar] [CrossRef]
- Jakobsson, S.; Evju, M.; Framstad, E.; Imbert, A.; Lyngstad, A.; Sickel, H.; Sverdrup-Thygeson, A.; Topper, J.P.; Vandvik, V.; Velle, L.G.; et al. Introducing the index-based ecological condition assessment framework (IBECA). Ecol. Indic. 2021, 124, 107252. [Google Scholar] [CrossRef]
- Manolaki, P.; Chourabi, S.; Vogiatzakis, I.N. A rapid qualitative methodology for ecological integrity assessment across a Mediterranean island’s landscapes. Ecol. Complex. 2024, 46, 100921. [Google Scholar] [CrossRef]
- Zaucha, J.; Conides, A.; Klaoudatos, D.; Noren, K. Can the ecosystem services concept help in enhancing the resilience of land-sea social-ecological systems? Ocean Coast. Manag. 2016, 124, 33–41. [Google Scholar] [CrossRef]
- Islam, M.d.A.; Paull, D.J.; Griffin, A.L.; Murshed, S. Assessing ecosystem resilience to a tropical cyclone based on ecosystem service supply proficiency using geospatial techniques and social responses in coastal Bangladesh. Int. J. Disaster Risk Reduct. 2020, 49, 101667. [Google Scholar] [CrossRef]
- Jin, L.; Kim, M.; Chon, J. Modeling the resilient supply of ecosystem function for climate change adaptive management in Wetland City. J. Environ. Manag. 2022, 322, 115788. [Google Scholar] [CrossRef] [PubMed]
- Lorilla, R.S.; Kefalas, G.; Christou, A.K.; Poirazidis, K.; Homer, N.G. Enhancing the conservation status and resilience of a narrowly distributed forest: A challenge to effectively support ecosystem services in practice. J. Nat. Conserv. 2023, 73, 126414. [Google Scholar] [CrossRef]
- Degani, E.; Leigh, S.G.; Barber, H.M.; Jones, H.E.; Lukac, M.; Sutton, P.; Potts, S.G. Crop rotations in a climate change scenario: Short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric. Ecosyst. Environ. 2019, 285, 106625. [Google Scholar] [CrossRef]
- Zampieri, M.; Weissteiner, C.J.; Grizzetti, B.; Toreti, A.; van den Berg, M.; Dentener, F. Estimating resilience of crop production systems: From theory to practice. Sci. Total Environ. 2020, 735, 139378. [Google Scholar] [CrossRef]
- Viñals, E.; Maneja, R.; Rufí-Salís, M.; Martí, M.; Puy, N. Reviewing social-ecological resilience for agroforestry systems under climate change conditions. Sci. Total Environ. 2023, 869, 161763. [Google Scholar] [CrossRef]
- Bravo-Peña, F.; Yoder, L. Agrobiodiversity and smallholder resilience: A scoping review. J. Environ. Manag. 2024, 351, 119882. [Google Scholar] [CrossRef]
- Kapruwan, R.; Kumar-Saksham, A.; Bhadoriya, V.; Kumar, C.; Goyal, Y.; Pandey, R. Household livelihood resilience of pastoralists and smallholders to climate change in Western Himalaya, India. Heliyon 2024, 10, e24133. [Google Scholar] [CrossRef]
- Zhong, F.; Chen, R.; Luo, X.; Song, X.; Ullah, A. Assessing regional resilience in China using a sustainable livelihoods approach: Indicators, influencing factors, and the relationship with economic performance. Ecol. Indic. 2024, 158, 111588. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Chen, Y.; Zhang, S.; He, P.; Yang, L.; Si, M.; Yang, Y. Dynamic evolution of urban resilience and its coupling mechanism with EF3D-driven natural capital utilization: Case study in three typical urban agglomerations of China. Environ. Impact Assess. Rev. 2024, 106, 107518. [Google Scholar] [CrossRef]
- Suárez, M.; Benayas, J.; Justel, A.; Sisto, R.; Montes, C.; Sanz-Casado, E. A holistic index-based framework to assess urban resilience: Application to the Madrid Region, Spain. Ecol. Indic. 2024, 166, 112293. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, S.; Xu, K.; Qian, Y. Ecological network resilience evaluation and ecological strategic space identification based on complex network theory: A case study of Nanjing city. Ecol. Indic. 2024, 158, 111604. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Wang, L.; Xu, B.; Nie, W. The impact of connectivity in natural protected areas on the resilience of urban ecological networks: A research framework based on hierarchical disturbance scenario simulation. Ecol. Indic. 2024, 164, 112144. [Google Scholar] [CrossRef]
- Watanabe, C.; Naveed, K.; Neittaanmäki, P. Dependency on un-captured GDP as a source of resilience beyond economic value in countries with advanced ICT infrastructure: Similarities and disparities between Finland and Singapore. Technol. Soc. 2015, 42, 104–122. [Google Scholar] [CrossRef]
- Ciftcioglu, G.C. Assessment of the resilience of socio-ecological production landscapes and seascapes: A case study from Lefke Region of North Cyprus. Ecol. Indic. 2017, 73, 128–138. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, X.; Chen, H.; Shi, Q. Spatio-temporal evolution of the social-ecological landscape resilience and management zoning in the loess hill and gully region of China. Environ. Dev. 2021, 39, 100616. [Google Scholar] [CrossRef]
- Rozer, V.; Surminski, S.; Laurien, F.; McQuistan, C.; Mechler, R. Multiple resilience dividends at the community level: A comparative study of disaster risk reduction interventions in different countries. Clim. Risk Manag. 2023, 40, 100518. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Peng, L. Exploring Social-Ecological System Resilience in South China Karst: Quantification, interaction and policy implication. Geogr. Sustain. 2024, 5, 289–301. [Google Scholar] [CrossRef]
- Wu, W.; Gao, Y.; Chen, C. CLSER: A new indicator for the social-ecological resilience of coastal systems and sustainable management. J. Clean. Prod. 2024, 435, 140564. [Google Scholar] [CrossRef]
- Tanner, S.J.; Escobedo, S.J.; Soto, J.R. Recognizing the insurance value of resilience: Evidence from a forest restoration policy in the southeastern U.S. J. Environ. Manag. 2021, 289, 112442. [Google Scholar] [CrossRef]
- Hahn, T.; Sioen, G.B.; Gasparatos, A.; Elmqvist, T.; Brondizio, E.; Gomez-Baggethun, E.; Folke, C.; Setiawati, M.D.; Atmaja, T.; Arini, E.Y.; et al. Insurance value of biodiversity in the Anthropocene is the full resilience value. Ecol. Econ. 2023, 208, 107799. [Google Scholar] [CrossRef]
- Ncube, S.; Wilson, A.; Petersen, L.; Black, G.; Abrams, A.; Carden, K.; Dick, L.; Dickie, J.; Gibson, L.; Hamilton-Smith, N.; et al. Understanding resilience capitals, agency and habitus in household experiences of water scarcity, floods and fire in marginalized settlements in the Cape Flats, South Africa. Soc. Sci. Humanit. Open 2023, 8, 100710. [Google Scholar] [CrossRef]
- Pinto, G.M.; Attwood, J.; Birkeland, N.; Nordbeck, H.S. Exploring the Links between Displacement, Vulnerability, Resilience. Procedia Econ. Financ. 2014, 18, 849–856. [Google Scholar] [CrossRef]
- Ingalls, M.L.; Mansfield, D. Resilience at the periphery: Insurgency, agency and social-ecological change under armed conflict. Geoforum 2017, 84, 126–137. [Google Scholar] [CrossRef]
- Zúñiga-Upegui, P.; Arnaiz-Schmitz, C.; Herrero-Jáuregui, C.; Smart, S.M.; López-Santiago, C.A.; Schmitz, M.F. Exploring social-ecological systems in the transition from war to peace: A scenario-based approach to forecasting the post-conflict landscape in a Colombian region. Sci. Total Environ. 2019, 695, 133874. [Google Scholar] [CrossRef]
- Béné, C.; Maître d’Hôtel, E.; Pelloquin, R.; Badaoui, O.; Garba, F.; Sankima, J.W. Resilience–and collapse–of local food systems in conflict affected areas; reflections from Burkina Faso. World Dev. 2024, 176, 106521. [Google Scholar] [CrossRef]
- Daiyoub, A.; Saura-Mas, S.; Maarouf, Y. The Impact of War on Logging: Changes in Logging Practices in Syrian Rural Communities. Trees For. People 2024, 18, 100668. [Google Scholar] [CrossRef]
- Kerner, H.R.; Nakalembe, C.; Yeh, B.; Zvonkov, I.; Skakun, S.; Becker-Reshef, I.; McNally, A. Satellite data shows resilience of Tigrayan farmers in crop cultivation during civil war. Sci. Remote Sens. 2024, 10, 100140. [Google Scholar] [CrossRef]
- Quiroga, S.; Suárez, C.; Hernanz, V.; Aguiño, J.E.; Fernández-Manjarrés, J.F. Analysing post-conflict policies to enhance socio-ecological restoration among black communities in Southern Colombia: Cacao cropping as a win–win strategy. For. Policy Econ. 2024, 163, 103198. [Google Scholar] [CrossRef]
- Schwarzer, R. Stress, resilience, and coping resources in the context of war, terror, and migration. Curr. Opin. Behav. Sci. 2024, 57, 101393. [Google Scholar] [CrossRef]
- Williams, T.G.; Guikema, S.D.; Brown, D.G.; Agrawal, A. Resilience and equity: Quantifying the distributional effects of resilience enhancing strategies in a smallholder agricultural system. Agric. Syst. 2020, 182, 102832. [Google Scholar] [CrossRef]
- Haile, D.; Seyoum, A.; Azmeraw, A. Does building the resilience of rural households reduce multidimensional poverty? Analysis of panel data in Ethiopia. Sci. Afr. 2021, 12, e00788. [Google Scholar] [CrossRef]
- Asghar, N.; Asif Amjad, M.; Rehman, H.; Munir, M.; Alhajj, R. Achieving sustainable development resilience: Poverty reduction through affordable access to electricity in developing economies. J. Clean. Prod. 2022, 376, 134040. [Google Scholar] [CrossRef]
- Paszkowski, A.; Laurien, F.; Mechler, R.; Hall, J. Quantifying community resilience to riverine hazards in Bangladesh. Glob. Environ. Change 2024, 84, 102778. [Google Scholar] [CrossRef]
- Holling, C.S.; Gunderson, L.H. Resilience and adaptive cycles. In Panarchy: Understanding Transformation in Human and Natural Systems; Island Press: Washington, DC, USA, 2002; pp. 25–62. [Google Scholar]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Qiang, Y.; Arenas, H.; Brito, P.; Liu, K. Mapping and assessing coastal resilience in the Caribbean region. Cartogr. Geogr. Inf. Sci. 2015, 42, 315–322. [Google Scholar] [CrossRef]
- Jacobi, J.; Mukhovi, S.; Llanque, A.; Augstburger, H.; Kaser, F.; Pozo, C.; Ngutu Peter, M.; Delgado, J.M.F.; Kiteme, B.P.; Rist, S.; et al. Operationalizing food system resilience: An indicator-based assessment in agroindustrial, smallholder farming, and agroecological contexts in Bolivia and Kenya. Land Use Policy 2018, 79, 433–446. [Google Scholar] [CrossRef]
- Rodríguez-Zapata, M.A.; Ruiz-Agudelo, C.A. Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environ. Chall. 2021, 5, 100377. [Google Scholar] [CrossRef]
- Álvarez, M.D. Could peace be worse than war for Colombia’s forests? Environmentalist 2001, 21, 305–315. [Google Scholar] [CrossRef]
- Álvarez, M.D. Forests in the time of violence: Conservation implications of the Colombian war. J. Sustain. For. 2003, 16, 47–68. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J. Disentangling the landscape during armed conflicts and postpeace agreements: Clues from Colombia’s Andes-Amazon region. Integr. Environ. Assess. Manag. 2023, 19, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Sandoval, P.J.; Kilbride, J.; Tellman, E.; Wrathall, D.; Van Den Hoek, J.; Kennedy, R.E. The post-conflict expansion of coca farming and illicit cattle ranching in Colombia. Sci. Rep. 2023, 13, 1965. [Google Scholar] [CrossRef] [PubMed]
- Marin-Burgos, V. Access, Power and Justice in Commodity Frontiers: The Political Ecology of Access to Land and Palm Oil Expansion in Colombia. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2014. [Google Scholar]
- Marin-Burgos, V.; Clancy, J.S. Understanding the expansion of energy crops beyond the global biofuel boom: Evidence from oil palm expansion in Colombia. Energy Sustain. Soc. 2017, 7, 21. [Google Scholar] [CrossRef]
- Garcia-Corrales, L.M.; Avila, H.Y.; Gutierrez, R.R. Land-use and socioeconomic changes related to armed conflicts: A Colombian regional case study. Environ. Sci. Policy 2019, 97, 116–124. [Google Scholar] [CrossRef]
- Díaz-Díaz, C.; López-Bayona, A. Concentración de Tierras en Colombia. Una Radiografía Rural; Primera Edición en Penguin Random House Grupo Editorial: Septiembre 2021; Impreso por Editorial Nomos, S.A.: Bogotá, Colombia; OXFAM-Colombia: The Hague, The Netherlands, 2021; ISBN 978-958-5132-35-1. Available online: https://www.oxfamcolombia.org/ (accessed on 3 August 2024).
- Ganzenmüller, R.; Sylvester, J.; Castro-Nunez, A. What peace means for deforestation: An analysis of local deforestation dynamics in times of conflict and peace in Colombia. Front. Environ. Sci. 2022, 10, 803368. [Google Scholar] [CrossRef]
- DANE (Departamento Nacional de Estadística). Información para Todos, Censo Nacional de Población y Vivienda. 2022. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos (accessed on 26 February 2024).
- Ruiz-Agudelo, C.A.; Cortes-Gómez, A.M. Sustainable behaviors, prosocial behaviors, and religiosity in Colombia. A first empirical assessment. Environ. Chall. 2021, 4, e100088. [Google Scholar] [CrossRef]
- Rojas-Ariza, Y.H.; Díaz Boada, S.A. Education and Sensitization on Violence: Seeking to Understand the Victims of the Colombian Armed Conflict. Procedia-Soc. Behav. Sci. 2017, 237, 562–567. [Google Scholar] [CrossRef]
- Sanchez-Cuervo, A.M.; Aide, T.M.; Clark, M.L.; Etter, A. Land cover change in Colombia: Surprising forest recovery trends between 2001 and 2010. PLoS ONE 2012, 7, e43943. [Google Scholar] [CrossRef]
- Suarez, A.; Arias-Arévalo, P.; Martinez-Mera, E.; Granobles-Torres, J.C.; Enríquez-Acevedo, T. Involving victim population in environmentally sustainable strategies: An analysis for post-conflict Colombia. Sci. Total Environ. 2018, 643, 1223–1231. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, A.; Villegas, J.C.; Clerici, N.; Salazar, J.F. Spatial-temporal dynamics of deforestation and its drivers indicate need for locally adapted environmental governance in Colombia. Ecol. Indic. 2021, 126, 107695. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Gutiérrez-Bonilla, F.d.P.; Cortes-Gómez, A.M. The natural capital of the Colombian Orinoco River basin. intact ecosystems with high rates of anthropogenic change. J. Environ. Econ. Policy 2022, 12, 418–437. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Gutierrez-Bonilla, F.d.P.; Cortes-Gomez, A.M.; Suarez, A. A first approximation to the Colombian Amazon basin remnant natural Capital. Policy and development implications. Trees For. People 2022, 10, 100334. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Gutiérrez-Bonilla, F.d.P. The remnant natural capital of the Magdalena-Cauca basin: Immense losses for the 80% of Colombian inhabitants. J. Environ. Stud. Sci. 2023, 14, 135–153. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; Gutiérrez-Bonilla, F.d.P. Unlocking Natural Capital in the Megadiverse Colombian Pacific Basin: Navigating Challenges and Governance Gaps; Qeios ID: OGBYJE.3; Qeios: London, UK, 2023. [Google Scholar] [CrossRef]
- Cumming, G.S. Spatial resilience: Integrating landscape ecology, resilience, and sustainability. Landsc. Ecol. 2011, 26, 899–909. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- IDEAM. Mapa de Ecosistemas Continentales, Costeros y Marinos de Colombia. Versión 2.1. 100K. 2017. Available online: https://www.ideam.gov.co/web/ecosistemas (accessed on 21 May 2024).
- Cumming, G.S. The relevance and resilience of protected areas in the Anthropocene. Anthropocene 2016, 13, 46–56. [Google Scholar] [CrossRef]
- Karim, R.; Mukul, S.A.; Zahir, R.B.; Saimun, S.R.; Arfin-Khan, M.A.S. The role of protected areas co-management in enhancing resistance and resilience of deciduous forest ecosystem to extreme climatic events in Bangladesh. J. Environ. Manag. 2023, 326, 116800. [Google Scholar] [CrossRef]
- Thebaud, O.; Hailu, F.F.; Bitew, W.T.; Ayele, T.G.; Zawka, S.D. Marine protected areas for resilience and economic development. Aquat. Living Resour. 2023, 36, 22. [Google Scholar] [CrossRef]
- RUNAP. Single Registry of Colombian Protected Areas. 2024. Available online: https://runap.parquesnacionales.gov.co/ (accessed on 3 August 2024).
- Brand, F. Critical natural capital revisited: Ecological resilience and sustainable development. Ecol. Econ. 2009, 68, 605–612. [Google Scholar] [CrossRef]
- Fundación Gaia Amazonas. Proyecto Mapbiomas Colombia Colección 1.0—Mapeo Anuel de Cobertura y Uso del Suelo. Colombia Colección 1: Mapeo de 1985 al 2022. Metodología con Machine Learning—Random Forest. 156 Capas de Información (Bandas Landsat Originales, Información Fraccional y de Textura, Indices Espectrales e Información Geofísica). En Esta Colección se Mapearon 20 Clases Temáticas. 2023. Available online: https://colombia.mapbiomas.org/ (accessed on 3 August 2024).
- UNU-IAS; Biodiversity International; IGES; UNDP. Toolkit for the Indicators of Resilience in Socio-Ecological Production Landscapes and Seascapes; UNU-IAS Policy Report 38, 70; UNU-IAS: Shibuya, Japan, 2014. [Google Scholar]
- Li, G.; Wang, L. Study of regional variations and convergence in ecological resilience of Chinese cities. Ecol. Indic. 2023, 154, 110667. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Wang, P.; Zhou, L.; Sun, Y. Estimating the nonlinear response of landscape patterns to ecological resilience using a random forest algorithm: Evidence from the Yangtze River Delta. Ecol. Indic. 2023, 153, 110409. [Google Scholar] [CrossRef]
- DANE. National Statistics Department of the Colombian Government. 2024. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales (accessed on 3 August 2024).
- Sapirstein, G. Social resilience: The forgotten element in disaster reduction. Jamba-Q. Bull. Afr. Cent. Disaster Stud. 2006, 1, 54–63. [Google Scholar]
- Dardonville, M.; Bockstaller, C.; Therond, O. Review of quantitative evaluations of the resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems. J. Clean. Prod. 2021, 286, 125456. [Google Scholar] [CrossRef]
- Eeswaran, R.; Nejadhashemi, A.P.; Kpodo, J.; Curtis, Z.K.; Adhikari, U.; Liao, H.; Li, S.G.; Hernandez-Suarez, J.S.; Alves, F.P.; Raschke, A.; et al. Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agric. Ecosyst. Environ. 2021, 320, 107612. [Google Scholar] [CrossRef]
- Aghababaei, M.; Koliou, M. An agent-based modeling approach for community resilience assessment accounting for system interdependencies: Application on education system. Eng. Struct. 2022, 255, 113889. [Google Scholar] [CrossRef]
- Hua, H.H.; Brown, P.R. Social capital enhances the resilience of agricultural cooperatives: Comparative case studies in the Mekong Delta, Vietnam. World Dev. Sustain. 2024, 5, 100170. [Google Scholar] [CrossRef]
- Berkes, F.; Ross, H. Community resilience: Toward an integrated approach. Soc. Nat. Resour. 2013, 26, 5–20. [Google Scholar] [CrossRef]
- Burian, A.; Karaya, R.; Wernersson, J.V.W.; Egberth, M.; Lokorwa, B.; Nyberg, G. A community-based evaluation of population growth and agro-pastoralist resilience in Sub-Saharan drylands. Environ. Sci. Policy 2019, 92, 323–330. [Google Scholar] [CrossRef]
- Heinzlef, C.; Serre, D. Improving a resilience observatory with a post cyclonic event resilience assessment: Application to the 2010 OLI cyclone in three Pacific islands. Ocean Coast. Manag. 2024, 250, 107044. [Google Scholar] [CrossRef]
- Jaafari, A.; Mafi-Gholami, D.; Yousefi, S. A spatiotemporal analysis using expert-weighted indicators for assessing social resilience to natural hazards. Sustain. Cities Soc. 2024, 100, 105051. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Shen, Z.; Yu, J.; Xu, Z. The impact of population agglomeration on economic resilience: Evidence from 280 cities in China. Int. Rev. Econ. Financ. 2024, 94, 103429. [Google Scholar] [CrossRef]
- National Center for Historical Memory. Memory and Conflict Observatory for Colombia. 2024. Available online: https://micrositios.centrodememoriahistorica.gov.co/observatorio/portal-de-datos/el-conflicto-en-cifras/acciones-belicas/ (accessed on 3 August 2024).
- Olcese, M.; Cardinali, P.; Madera, F.; Camilleri, A.P.; Migliorini, L. Migration and community resilience: A scoping review. Int. J. Intercult. Relat. 2024, 98, 101924. [Google Scholar] [CrossRef]
- Nelson, L.; Ahmadpoor, N. An examination of flood resilience in London Borough of Southwark. Urban Clim. 2023, 52, 101692. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Li, T.; Zhao, S.; Yi, J. Livelihood capitals and livelihood resilience: Understanding the linkages in China’s government-led poverty alleviation resettlement. Habitat Int. 2024, 147, 103057. [Google Scholar] [CrossRef]
- Garmestani, A.; Benson, M.H. A Framework for Resilience-based Governance of Social-Ecological Systems. Ecol. Soc. 2013, 18, 9. Available online: https://www.jstor.org/stable/26269259 (accessed on 3 August 2024). [CrossRef]
- Zhang, Y.; Li, W.; Sun, G.; King, J.S. Coastal wetland resilience to climate variability: A hydrologic perspective. J. Hydrol. 2019, 568, 275–284. [Google Scholar] [CrossRef]
- Zhu, E.; Gao, H.; Chen, L.; Yao, J.; Liu, T.; Sha, M. Interactions between coastal protection forest ecosystems and human activities: Quality, service and resilience. Ocean Coast. Manag. 2024, 254, 107190. [Google Scholar] [CrossRef]
- Gukurume, S.; Tombindo, F. Mining-induced displacement and livelihood resilience: The case of Marange, Zimbabwe. Extr. Ind. Soc. 2023, 13, 101210. [Google Scholar] [CrossRef]
- Jia, M.; Lu, G.; Yan, Y.; Nazir, S. Resilience through mineral resource development, oil, and natural resource efficiency: Strengthening economies. Resour. Policy 2024, 91, 104942. [Google Scholar] [CrossRef]
- Shiozaki, Y.; Nagamatsu, S.; Sato, K.; Bhattacharya, Y. A systematic literature review of empirical validation of disaster resilience indicators. Int. J. Disaster Risk Reduct. 2024, 111, 104681. [Google Scholar] [CrossRef]
- Unidad de Víctimas del Conflicto Armado del Gobierno de Colombia. 2024. Available online: https://cifras.unidadvictimas.gov.co/Cifras/#!/infografia (accessed on 3 August 2024).
- Boothby, N. Political Violence and Development: An Ecologic Approach to Children in War Zones. Child Adolesc. Psychiatr. Clin. N. Am. 2008, 17, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Shekhar Yadav, S.; Gjere, K.M. The ocean, climate change and resilience: Making ocean areas beyond national jurisdiction more resilient to climate change and other anthropogenic activities. Mar. Policy 2020, 122, 104–184. [Google Scholar] [CrossRef]
- Hossain, M.d.L.; Li, J.; Hoffmann, S.; Beierkuhnlein, C. Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. Sci. Total Environ. 2022, 827, 154322. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.J.; Chadwick, D.R.; Hill, P.W.; Hayes, F.; Sánchez-Rodríguez, A.R.; Gwynn-Jones, D.; Smart, S.M.; Jones, D.L. Resilience of ecosystem service delivery in grasslands in response to single and compound extreme weather events. Sci. Total Environ. 2023, 861, 160660. [Google Scholar] [CrossRef]
- Dzekashu, F.F.; Yusuf, A.A.; Takemoto, K.; Peters, M.K.; Lattorff, H.M.; Steffan-Dewenter, I.; Pirk, C.W.W. Network resilience of plant-bee interactions in the Eastern Afromontane Biodiversity Hotspot. Ecol. Indic. 2024, 166, 112415. [Google Scholar] [CrossRef]
- Costello, M.J. Biodiversity Conservation Through Protected Areas Supports Healthy Ecosystems and Resilience to Climate Change and Other Disturbances. In Imperiled: The Encyclopedia of Conservation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 423–429. [Google Scholar] [CrossRef]
- Groner, V.P.; Williams, J.J.; Pearson, R.G. Limited evidence for quantitative contribution of rare and endangered species to agricultural production. Agric. Ecosyst. Environ. 2023, 345, 108326. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, H.; Huang, H.; Li, F.; Ju, L.; Hu, W.; Yu, P.; Deng, Z.; Chen, Y. Assessing the resilience of complex ecological spatial networks using a cascading failure model. J. Clean. Prod. 2024, 434, 140014. [Google Scholar] [CrossRef]
- Peng, P.; Li, M.; Ao, Y.; Deng, S.; Martek, I. Spatial-temporal evolution of driving mechanisms of city resilience: A Sichuan-based case study. Land Use Policy 2024, 143, 107210. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Mupfiga, S.; Olagbegi, B.R.; Katiyatiya, C.; Molotsi, A.H.; Abiodun, B.J.; Dzama, K.; Mapiye, C. Impact of water scarcity on dryland sheep meat production and quality: Key recovery and resilience strategies. J. Arid. Environ. 2021, 190, 104511. [Google Scholar] [CrossRef]
- Lebu, S.; Lee, A.; Salzberg, A.; Bauza, V. Adaptive strategies to enhance water security and resilience in low- and middle-income countries: A critical review. Sci. Total Environ. 2024, 925, 171520. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, D.Y. An overview of the resilience of agro-ecosystems. Resour. Sci. 2015, 37, 1747–1754. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Wang, Y. The analysis of entropy changes on the evolutional tendency of geographical environment. Acta Geogr. Sin. 2011, 66, 1508–1517. [Google Scholar]
- Yang, C.; Zhang, S.; Chen, W.; Zhong, M. Spatiotemporal evolution of information entropy of land use structure in guangdong province. Res. Soil Water Conserv. 2021, 6, 251–259. [Google Scholar]
- Yu, S.; Kong, X.; Wang, Q.; Yang, Z.; Peng, J. A new approach of Robustness-Resistance-Recovery (3Rs) to assessing flood resilience: A case study in Dongting Lake Basin. Landsc. Urban Plan. 2023, 230, 104605. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A social vulnerability index for disaster management. J. Homel. Secur. Emerg. Manag. 2011, 8, 21. Available online: https://www.degruyterbrill.com/document/doi/10.2202/1547-7355.1792/html (accessed on 3 August 2024). [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 1–21. Available online: https://www.degruyterbrill.com/document/doi/10.2202/1547-7355.1732/html (accessed on 3 August 2024). [CrossRef]
- Peacock, W.G.; Brody, S.D.; Seitz, W.A.; Merrell, W.J.; Vedlitz, A.; Zahran, S.; Harriss, R.C.; Stickney, R. Advancing Resilience of Coastal Localities: Developing, Implementing, and Sustaining the Use of Coastal Resilience Indicators: A Final Report; Hazard Reduction and Recovery Center: College Station, TX, USA, 2010. [Google Scholar]
- Foster, K.A. In search of regional resilience. In Urban and Regional Policy and Its Effects: Building Resilient Regions; Brookings Institution Press: Washington, DC, USA, 2012; Volume 4, pp. 24–59. [Google Scholar]
- Bakkensen, L.A.; Fox-Lent, C.; Read, L.K.; Linkov, I. Validating resilience and vulnerability indices in the context of natural disasters. Risk Anal. 2017, 37, 982–1004. [Google Scholar] [CrossRef]
- Kapucu, N.; Hawkins, C.V.; Rivera, F.I. Disaster resiliency: Interdisciplinary perspectives. In Disaster Resiliency; Routledge: London, UK, 2013; pp. 23–36. [Google Scholar] [CrossRef]
- OEPR. Vulnerable Populations: A Function-Based Vulnerability Measure for the New York City Region; Office of Emergency Preparedness Response, City Department of Health and Mental Hygiene: New York, NY, USA, 2013.
- Evans, J.; Hardy, D.; Hauer, M. Social Vulnerability and Local Hazard Mitigation Planning: Application and Evaluation of a “SoVILite” Approach for Glynn County; Technical Report; Georgia Institute of Technology: Atlanta, GA, USA, 2014. [Google Scholar]
- Angeler, D.G.; Allen, C.R. EDITORIAL: Quantifying resilience. J. Appl. Ecol. 2016, 53, 617–624. [Google Scholar] [CrossRef]
- Sguotti, C.; Vasilakopoulos, P.; Tzanatos, E.; Frelat, R. Resilience assessment in complex natural systems. Proc. R. Soc. B 2024, 291, 20240089. [Google Scholar] [CrossRef] [PubMed]
- Uribe, E.; Luna-Acosta, A.; Etter, A. Red List of Ecosystems: Risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manag. 2021, 199, 105416. [Google Scholar] [CrossRef]
- Chang-Muñoza, E.; Mercado-Caruso, N.; Ovallos, D.; Segarra-Oña, M.; Noguera, S. Product or process innovation? The dilemma for exporting SMEs in emerging economies: The case of the Colombian Caribbean. Procedia Comput. Sci. 2022, 198, 620–625. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Cooper, A.G. The Last Beach; Duke University Press: Durham, NC, USA, 2014. [Google Scholar]
- Goudie, A.; Viles, H. Geomorphology in the Anthropocene; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Gavio, B.; Palmer-Cantillo, S.; Mancera, E. Historical analysis (2000–2005) of the coastal water quality in San Andrés Island, Sea Flower Biosphere Reserve, Caribbean Colombia. Mar. Pollut. Bull. 2010, 60, 1018–1030. [Google Scholar] [CrossRef]
- Kesavan, S.; Xavier, M.; Deshmukhe, G.; Jaiswar, A.K.; Bhusan, S.; Shukla, S.P. Anthropogenic pressure on mangrove ecosystems: Quantification and source identification of surficial and trapped debris. Sci. Total Environ. 2021, 794, 148677. [Google Scholar] [CrossRef]
- Negret, P.J.; Maron, M.; Fuller, R.A.; Possingham, H.P.; Watson, J.M.E.; Simmonds, J.S. Deforestation and bird habitat loss in Colombia. Biol. Conserv. 2021, 257, 109044. [Google Scholar] [CrossRef]
- Barrios, L.M.; Prowse, A.; Ruiz, V. Sustainable development and women’s leadership: A participatory exploration of capabilities in Colombian Caribbean fisher communities. J. Clean. Prod. 2020, 264, 121277. [Google Scholar] [CrossRef]
- Manzolli, R.P.; Blanco, D.; Portz, L.; Yanes, A.; Zielinski, S.; Ruiz-Agudelo, C.A.; Suarez, A. Large Wood Debris Contributes to Beach Ecosystems but Colombian Beachgoer’s Do Not Recognize It. Sustainability 2022, 14, 8140. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Velez-Mendoza, A.; Gracia, A.; Neal, W. The impact of anthropogenic litter on Colombia’s central Caribbean beaches. Mar. Pollut. Bull. 2020, 152, 110909. [Google Scholar] [CrossRef]
- UN Environment. UN Annual Report 2016: Engaging People to Protect the Planet; UN: New York, NY, USA, 2016. [Google Scholar]
- Olivero, J.; Solano, B. Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci. Total Environ. 1998, 217, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Marrugo, J.; Olivero, J.; Benitez, L. Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in Northern Colombia. Arch. Environ. Contam. Toxicol. 2008, 55, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Tapias-Ortega, J.M. Poverty and Violence in the Caribbean Region of Colombia: A Spatial Approach. Ens. Sobre Política Econ. 2017, 35, 139–153. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, M. Perfil Ambiental De La Región Caribe Colombiana. Econ. Reg. 2013, 7, 193–220. [Google Scholar]
- Marrugo, J.; Lans, E. Impacto Ambiental por Contaminación con Níquel, Mercurio y Cadmio en Aguas, Peces y Sedimentos en la Cuenca del río San Jorge, en el Departamento de Córdoba; Informe Final; Oficina de Investigaciones, Universidad de Córdoba: Montería, Colombia, 2006; 106p. [Google Scholar]
- Armenteras, D.; Murcia, U.; Gonzalez, Y.M.; Baron, O.J.; Arias, J.E. Land use and land cover change scenarios for NW Amazonia: Impact on forest intactness. Glob. Ecol. Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- Hansen, A.; Barnett, K.; Jantz, P.; Phillips, L.; Goetz, S.J.; Hansen, M.; Venter, O.; Watson, J.E.M.; Burns, P.; Atkinson, S.; et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 2019, 6, 232. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef]
- Carvalho, S.; Oliveira, C.; Strandsbjer-Pedersen, J.; Manhice, H.; Lisboa, F.; Norguetf, J.; de Wit, F.; Duarte-Santos, F. A changing Amazon rainforest: Historical trends and future projections under post-Paris climate scenarios. Glob. Planet. Change 2020, 195, 103328. [Google Scholar] [CrossRef]
- Martins, R.; Brito, J.; Dias-Silva, K.; Leal, C.; Leit, R.; Oliveira, V.C.; Oliveira-Júnior, J.; Ferraz, S.; de Paula, F.; Roque, F.; et al. Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecol. Indic. 2021, 127, 107773. [Google Scholar] [CrossRef]
Subsystem | Principle | Parameters | Unit | +/− |
---|---|---|---|---|
Ecosystem resilience | Ecosystem function [34,35,36] | Natural capital availability (1985): the remnant natural capital after human intervention in each Colombian department [81,82,83,84] | Int1985USD/ha/year | + |
Landscape diversity [20,38,44,85,86] | Biome diversity: information from the 2017 Colombian continental, coastal, and marine ecosystems map (V.2.1) [87] to define and map Colombia’s biomes at 1:100,000 scale | Score (number of biomes per Colombian department) | + | |
Ecological protection [29,39,88,89,90] | Areas under legal protection in Colombia (1985): RUNAP [91] (https://runap.parquesnacionales.gov.co/) (Accessed on 3 October 2024) | % (area under legal protection/total area of each Colombian department) | + | |
Biodiversity loss [19,21,25,42,46,92] | Natural cover loss (1985) [93]: MAPBIOMAS-Colombia (https://colombia.mapbiomas.org/) (Accessed on 5 October 2024) | % (natural ecosystems loss area/total area of each Colombian department) | − | |
Ecological stress [23,45,94] | Natural capital loss (1985): the natural capital loss after human intervention in each Colombian department [81,82,83,84] | Int1985USD/ha/year | − | |
Social system resilience | Development level [40,41,47,95,96] | Total GDP (1985), per Colombian departments [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 5 October 2024) | COP | + |
Economic support [30,31,98,99,100] | Primary industry GDP (1985), per departments [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) Accessed on 10 October 2024 | COP | + | |
Cultural maintenance of natural conditions [42,43,44,101,102] | Literacy rate (1985) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/educacion) (Accessed on 20 September 2024). | % | + | |
Demographics [20,103,104,105,106,107] | Population growth rate (1985) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion) Accessed on 5 October 2024) | Person/yr | − | |
Regional military violence [50,51,55] | War actions (1985): National Center for Historical Memory [108], Memory and Conflict Observatory (https://micrositios.centrodememoriahistorica.gov.co/observatorio/portal-de-datos/el-conflicto-en-cifras/acciones-belicas/) (Accessed on 3 October 2024) | Score (total number of events by Colombian department) | − | |
Events of armed violence against civilians [53,56,109] | Population attacks (1985): National Center for Historical Memory [108], Memory and Conflict Observatory (https://micrositios.centrodememoriahistorica.gov.co/observatorio/portal-de-datos/el-conflicto-en-cifras/ataque-a-la-pobacion/) (Accessed on 10 October 2024) | Score (total number of events by Colombian department) | − | |
Poverty [57,58,59,60,110,111] | Poverty (unmet basic needs—1985) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi) (Accessed on 3 October 2024) | % | − | |
Production system resilience | Production ability, diversity of agricultural and fishery products [33,112] | Agricultural GDP (1985): total GDP (1985), per Colombian departments [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 10 October 2024) | COP | + |
Natural condition [113,114] | Biome diversity: information from the 2017 Colombian continental, coastal, and marine ecosystems map (V.2.1) [87] to define and map Colombia’s biomes at 1:100,000 scale | Score (number of biomes per Colombian department) | + | |
Natural condition Loss [115,116,117] | Extractive activities GDP (1985): total GDP (1985), per Colombian departments [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 3 October 2024) | COP | − | |
Production ability loss [53,54,56] | Forced displacement (1985): Unidad de Víctimas del Conflicto armado del Gobierno de Colombia [118] (https://cifras.unidadvictimas.gov.co/Cifras/#!/infografia) (Accessed on 15 October 2024) | Score (total number of events by Colombian Department) | − | |
Production ability loss [49,52,53,54,56,60,119] | Violent land dispossession (1985): Unidad de Víctimas del Conflicto armado del Gobierno de Colombia [118] (https://cifras.unidadvictimas.gov.co/Cifras/#!/infografia) (Accessed on 3 October 2024) | Score (total number of events by Colombian department) | − |
Subsystem | Principle | Parameters | Unit | +/− |
---|---|---|---|---|
Ecosystem resilience | Biological diversity [22,24,120,121,122,123] | Total diversity (2022): map of life (https://mol.org/regions/) (Accessed on 10 October 2024) | Score (total number of species reported by Colombian department) | + |
Landscape diversity [20,44,45,85,86] | Biome diversity: information from the 2017 Colombian continental, coastal, and marine ecosystems map (V.2.1) [87] to define and map Colombia’s biomes at 1:100,000 scale | Score (number of biomes per Colombian department) | + | |
Ecosystem function [34,35,36] | Natural capital availability (2022): the remnant natural capital after human intervention in each Colombian department [81,82,83,84] | Int2022USD/ha/year | + | |
Ecological protection [29,39,88,89,90,124] | Areas under legal protection in Colombia (2022): RUNAP (Single Registry of Colombian Protected Areas) [91] (https://runap.parquesnacionales.gov.co/) (Accessed on 15 October 2024) | % (area under legal protection/total area of each Colombian department) | + | |
Biodiversity loss [19,21,25,42,46,92] | Natural cover loss (2022): Fundación Gaia Amazonas [93], MAPBIOMAS-Colombia (https://colombia.mapbiomas.org/) (Accessed on 3 October 2024) | % (natural ecosystems loss area/total area of each Colombian department) | − | |
Biodiversity loss [125,126] | Endangered species (2022): map of life (https://mol.org/regions/) (Accessed on 3 October 2024) | Score (total number of endangered species by Colombian department) | − | |
Ecological stress [23,45] | Natural capital loss (2022): the natural capital loss after human intervention in each Colombian department [81,82,83,84] | Int1985USD/ha/year | − | |
Social system resilience | Development level [40,41,47,95,96] | Total GDP 2022, per Colombian Department [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 15 October 2024) | COP | + |
Economic support [30,31,98,100] | Primary industry GDP (2022), per department [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 5 October 2024) | COP | + | |
Cultural maintenance of natural conditions [42,43,44,101,102] | Literacy rate (2022) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/educacion) (Accessed on 3 October 2024) | % | + | |
Economic support [98] | Overcoming poverty (2022) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-multidimensional) (Accessed on 3 October 2024) | % | + | |
Demographics [20,103,104,105,106,107] | Population growth rate (2022) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion) (Accessed on 3 October 2024) | Person/yr | − | |
Regional military violence [50,51,55] | War actions (2022): National Center for Historical Memory [108], Memory and Conflict Observatory (https://micrositios.centrodememoriahistorica.gov.co/observatorio/portal-de-datos/el-conflicto-en-cifras/acciones-belicas/) (Accessed on 3 October 2024) | Score (total number of events by Colombian department) | − | |
Events of armed violence against civilians [53,56,109] | Population attacks (2022): National Center for Historical Memory [108], Memory and Conflict Observatory (https://micrositios.centrodememoriahistorica.gov.co/observatorio/portal-de-datos/el-conflicto-en-cifras/ataque-a-la-pobacion/) (Accessed on 10 October 2024) | Score (total number of events by Colombian department) | − | |
Poverty [57,58,59,60,110,111] | Multidimensional poverty (2022) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-multidimensional) (Accessed on 10 October 2024) | % | − | |
Unemployment [37,106,127] | Unemployment (2022) [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo) (Accessed on 3 October 2024) | % | − | |
Production system resilience | Production ability, diversity of agricultural and fishery products [33,45,112] | Productive units per department (2022) [97]: Encuesta Nacional Agropecuaria (https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena) (Accessed on 15 October 2024) | Score (number of productive units per Colombian department) | + |
Social support [32,45] | Population working in agricultural systems (2022) [97]: Encuesta Nacional Agropecuaria (https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena) (Accessed on 3 October 2024) | % | + | |
Production ability [33,45,112] | Agricultural units with access to communications (2022) [97]: Encuesta Nacional Agropecuaria (https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena) (Accessed on 3 October 2024) | % | + | |
Social support [33,45,112] | The professional workforce in agricultural units (2022) [97]: Encuesta Nacional Agropecuaria (https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena) (Accessed on 3 October 2024) | % | + | |
Natural condition loss [115,116,117] | Extractive activities GDP (2022): total GDP (1985), per Colombian departments [97] (https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales) (Accessed on 10 October 2024) | COP | − | |
Natural condition loss [48,128,129] | Access to poor-quality water (2022) [97]: Encuesta Nacional Agropecuaria (https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena) (Accessed on 3 October 2024). | % | − | |
Production ability loss [53,54,56] | Forced displacement (2022): Unidad de Víctimas del Conflicto armado del Gobierno de Colombia [118] (https://cifras.unidadvictimas.gov.co/Cifras/#!/infografia) (Accessed on 3 October 2024). | Score (total number of events by Colombian department) | − |
Index | Very Low | Low | Middle | High | Very High |
---|---|---|---|---|---|
ER | <0.0 | 0.0–0.05 | 0.05–0.1 | 0.1–0.3 | >0.3 |
SR | <0.0 | 0.0–0.06 | 0.06–0.1 | 0.1–0.3 | >0.3 |
PR | <0.0 | 0.0–0.08 | 0.08–0.3 | 0.3–0.4 | >0.4 |
SERII | <=0.0 | 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | >0.6 |
MS-ER (1985–2022) | <=−1.0 | −1.0–0.0 | 0.0–2.0 | 2.0–9.0 | >9.0 |
MS-SR (1985–2022) | <=−1.0 | −1.0–0.0 | 0.0–2.0 | 2.0–9.0 | >9.0 |
MS-PR (1985–2022) | <=−1.0 | −1.0–0.0 | 0.0–2.0 | 2.0–6.0 | >6.0 |
MS-SERII (1985–2022) | <=−1.0 | −1.0–0.0 | 0.0–2.0 | 2.0–6.0 | >6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Agudelo, C.A. Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022). Sustainability 2025, 17, 6461. https://doi.org/10.3390/su17146461
Ruiz-Agudelo CA. Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022). Sustainability. 2025; 17(14):6461. https://doi.org/10.3390/su17146461
Chicago/Turabian StyleRuiz-Agudelo, Cesar Augusto. 2025. "Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022)" Sustainability 17, no. 14: 6461. https://doi.org/10.3390/su17146461
APA StyleRuiz-Agudelo, C. A. (2025). Proposal of a Socio-Ecological Resilience Integrated Index (SERII) for Colombia, South America (1985–2022). Sustainability, 17(14), 6461. https://doi.org/10.3390/su17146461