Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = smartphone microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5026 KiB  
Article
Enhancing Biomarker Detection and Imaging Performance of Smartphone Fluorescence Microscopy Devices
by Muhammad Ahsan Sami, Muhammad Nabeel Tahir and Umer Hassan
Biosensors 2025, 15(7), 403; https://doi.org/10.3390/bios15070403 - 21 Jun 2025
Viewed by 432
Abstract
Fluorescence microscopy enabled by smartphone-coupled 3D instruments has shown utility in different biomedical applications ranging from diagnostics to biomanufacturing. Recently, we have designed and developed these devices and have demonstrated their utility in micro-nano particle sensing and leukocyte imaging. Here, we present a [...] Read more.
Fluorescence microscopy enabled by smartphone-coupled 3D instruments has shown utility in different biomedical applications ranging from diagnostics to biomanufacturing. Recently, we have designed and developed these devices and have demonstrated their utility in micro-nano particle sensing and leukocyte imaging. Here, we present a novel application for enhancing the imaging performance of smartphone fluorescence microscopes (SFM) and reducing their operational complexity. Computational noise correction is employed using 3D Averaging and 3D Gaussian filters of different kernel sizes (3 × 3 × 3, 7 × 7 × 7, 11 × 11 × 11, 15 × 15 × 15, and 21 × 21 × 21) and various standard deviations σ (for Gaussian only). Fluorescent beads of different sizes (8.3, 2, 1, 0.8 µm) were imaged using a custom-designed SFM. The application of the computational filters significantly enhanced the signal quality of particle detection in the captured fluorescent images. Amongst the Averaging filters, a kernel size of 21 × 21 × 21 produced the best results for all bead sizes, and similarly, amongst Gaussian filters, σ equal to 5 and a kernel size equal to 21 × 21 × 21 produced the best results. This visual improvement was then quantified by calculating the signal-difference-to-noise ratio (SDNR) and contrast-to-noise ratio (CNR) of filtered and unfiltered original images using a custom-developed quality assessment algorithm (AQAFI). Lastly, noise correction using Averaging and Gaussian filters with the previously identified optimal parameters was applied to images of fluorescently tagged human peripheral blood leukocytes captured using an SFM under various conditions. The ubiquitous nature and simplistic application of these filters enable their utility with a range of existing fluorescence microscope designs, thus allowing us to enhance their imaging capabilities. Full article
Show Figures

Figure 1

20 pages, 9296 KiB  
Article
An Inexpensive, 3D-Printable, Arduino- and Blu-Ray-Based Confocal Laser and Fluorescent Scanning Microscope
by Justin Loose, Samuel H. Hales, Jonah Kendell, Isaac Cutler, Ryan Ruth, Jacob Redd, Samuel Lino and Troy Munro
Metrology 2025, 5(1), 2; https://doi.org/10.3390/metrology5010002 - 6 Jan 2025
Viewed by 1635
Abstract
There is a growing field that is devoted to developing inexpensive microscopes and measurement devices by leveraging low-cost commercial parts that can be controlled using smartphones or embedded devices, such as Arduino and Raspbery Pi. Examples include the use of Blu-ray optical heads [...] Read more.
There is a growing field that is devoted to developing inexpensive microscopes and measurement devices by leveraging low-cost commercial parts that can be controlled using smartphones or embedded devices, such as Arduino and Raspbery Pi. Examples include the use of Blu-ray optical heads like the PHR-803T to perform cytometry, spinning disc microscopy, and lensless holographic microscopy. The modular or disposable nature of these devices means that they can also be used in contaminating and degrading environments, including radioactive environments, where replacement of device elements can be expensive. This paper presents the development and operation of a confocal microscope that uses the PHR-803T optical device in a Blu-ray reader for both imaging and detection of temperature variations with between 1.5 and 15 µm resolution. The benefits of using a PHR-803T confocal system include its relatively inexpensive design and the accessibility of the components that are used in its construction. The design of this scanning confocal thermal microscope (SCoT) was optimized based on cost, modularity, portability, spatial resolution, and ease of manufacturability using common tools (e.g., drill press, 3D printer). This paper demonstrated the ability to resolve microscale features such as synthetic spider silk and measure thermal waves in stainless steel using a system requiring <USD 1000 in material costs. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

15 pages, 10080 KiB  
Tutorial
Spatial Ensemble Mapping for Coded Aperture Imaging—A Tutorial
by Narmada Joshi, Agnes Pristy Ignatius Xavier, Shivasubramanian Gopinath, Vipin Tiwari and Vijayakumar Anand
Photonics 2024, 11(12), 1174; https://doi.org/10.3390/photonics11121174 - 13 Dec 2024
Cited by 1 | Viewed by 1356
Abstract
Coded aperture imaging (CAI) is a well-established computational imaging technique consisting of two steps, namely the optical recording of an object using a coded mask, followed by a computational reconstruction using a computational algorithm using a pre-recorded point spread function (PSF). In this [...] Read more.
Coded aperture imaging (CAI) is a well-established computational imaging technique consisting of two steps, namely the optical recording of an object using a coded mask, followed by a computational reconstruction using a computational algorithm using a pre-recorded point spread function (PSF). In this tutorial, we introduce a simple yet elegant technique called spatial ensemble mapping (SEM) for CAI that allows us to tune the axial resolution post-recording from a single camera shot recorded using an image sensor. The theory, simulation studies, and proof-of-concept experimental studies of SEM-CAI are presented. We believe that the developed approach will benefit microscopy, holography, and smartphone imaging systems. Full article
(This article belongs to the Special Issue Optical Imaging Innovations and Applications)
Show Figures

Figure 1

31 pages, 3081 KiB  
Review
Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications
by Alessandro Molani, Francesca Pennati, Samuele Ravazzani, Andrea Scarpellini, Federica Maria Storti, Gabriele Vegetali, Chiara Paganelli and Andrea Aliverti
Sensors 2024, 24(20), 6682; https://doi.org/10.3390/s24206682 - 17 Oct 2024
Cited by 4 | Viewed by 6841
Abstract
The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as [...] Read more.
The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as compact 3D-printed devices integrated with the Internet of Things (IoT) for data sharing and cloud computing, as well as automated image processing using deep learning algorithms, can address these limitations and enhance the conventional imaging workflow. This review reports on recent advancements in microscope miniaturization, with a focus on emerging technologies such as photoacoustic microscopy and more established approaches like smartphone-based microscopy. The potential applications of IoT in microscopy are examined in detail. Furthermore, this review discusses the evolution of image processing in microscopy, transitioning from traditional to deep learning methods that facilitate image enhancement and data interpretation. Despite numerous advancements in the field, there is a noticeable lack of studies that holistically address the entire microscopy acquisition chain. This review aims to highlight the potential of IoT and artificial intelligence (AI) in combination with portable microscopy, emphasizing the importance of a comprehensive approach to the microscopy acquisition chain, from portability to image analysis. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Figure 1

15 pages, 5080 KiB  
Article
Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores
by Yanting Liu, Zhexuan Lin, Xiaochun Li, Rui Huang, Xuewan Wu, Ruyi Deng and Kaisong Yuan
Biosensors 2024, 14(9), 414; https://doi.org/10.3390/bios14090414 - 26 Aug 2024
Viewed by 1990
Abstract
Humidity sensors deeply influence human manufacturing production and daily life, while researchers generally focus on developing humidity sensors with higher stability, higher linearity, rapid response time, etc. Yet, few people discuss measuring humidity in the microenvironment by miniaturizing sensor size into a microscale, [...] Read more.
Humidity sensors deeply influence human manufacturing production and daily life, while researchers generally focus on developing humidity sensors with higher stability, higher linearity, rapid response time, etc. Yet, few people discuss measuring humidity in the microenvironment by miniaturizing sensor size into a microscale, in which the existing humidity sensors are difficult to reach. Accordingly, this study proposes a methodology for measuring relative humidity in the microscale by utilizing the distinctive morphologies of Equisetum spores across a range of relative humidities between 50% and 90%. Equisetum spores are responsive to changes in ambient relative humidity and remain in their original activities even after iron sputtering, which aims to endow the sensor with magnetic properties. The test performed in this study demonstrated a response time of 3.3 s and a recovery time of 3.6 s. In the first application, we employed such microscale sensors to work in the channel of the microfluidic chip or the cell migration microchip, as an example of working in the microenvironment. COMSOL Multiphysics 6.2 software was also used to simulate the change in relative humidity in such microchannels. Secondly, such microscale sensors are combined with smartphone-based microscopy to measure the humidity of the skin. These microscale sensors pave the new way to sensing humidity in microenvironments. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

20 pages, 10432 KiB  
Article
Halochromic Bacterial Cellulose/Anthocyanins Hybrid Polymer Film with Wound-Healing Potential
by Ganna Zubova, Hanna Melnyk, Iryna Zaets, Tetyana Sergeyeva, Olesia Havryliuk, Sergiy Rogalsky, Lyudmila Khirunenko, Leonid Zaika, Tetiana Ruban, Svitlana Antonenko and Natalia Kozyrovska
Polymers 2024, 16(16), 2327; https://doi.org/10.3390/polym16162327 - 16 Aug 2024
Cited by 2 | Viewed by 2944
Abstract
Polymer-based dressings deriving from natural biomaterials have advantages such as nontoxicity, biocompatibility, and mechanical stability, which are essential for efficient wound healing and microbial infection diagnostics. Here, we designed a prototype of an intelligent hydrogel dressing on the base of bacterial cellulose (BC) [...] Read more.
Polymer-based dressings deriving from natural biomaterials have advantages such as nontoxicity, biocompatibility, and mechanical stability, which are essential for efficient wound healing and microbial infection diagnostics. Here, we designed a prototype of an intelligent hydrogel dressing on the base of bacterial cellulose (BC) for monitoring wound microbial infection due to the uploaded natural pH dye-sensor, anthocyanins (ANC) of elderberry fruit (Sambucus nigra L.). The highest sensor responses to bacterial metabolites for ANC immobilized to BC were observed at pH 5.0 and 6.0. The detection limit of the sensor signals was 3.45 A.U., as it was evaluated with a smartphone-installed application. The FTIR spectral analysis of the hybrid BC/ANC hydrogel films has proved the presence of anthocyanins within the BC matrix. Hybrid films differed from the control ones by thicker microfibrils and larger pores, as detected with scanning electron microscopy. Halochromic BC/ANC films exhibited antimicrobial activities mainly against gram-positive bacteria and yeast. They showed no cytotoxicity for the in vitro human cell lines and mouse fibroblasts within a selected range of anthocyanin concentrations released from the BC/ANC film/dressing prototype. Compared to the control, the in vitro healing test showed overgrowth of primary mouse fibroblasts after applying 0.024–2.4 µg/mL ANC. Full article
(This article belongs to the Special Issue Natural Polymer Materials: Cellulose, Lignin and Chitosan)
Show Figures

Figure 1

29 pages, 9352 KiB  
Article
Preparation of a Molecularly Imprinted Polymer on Polyethylene Terephthalate Platform Using Reversible Addition-Fragmentation Chain Transfer Polymerization for Tartrazine Analysis via Smartphone
by Christian Jacinto Hernández, Raúl Medina, Ily Maza Mejía, Mario Hurtado, Sabir Khan, Gino Picasso, Rosario López and María D. P. T. Sotomayor
Polymers 2024, 16(10), 1325; https://doi.org/10.3390/polym16101325 - 8 May 2024
Viewed by 1762
Abstract
This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and [...] Read more.
This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and confocal microscopy. The optimal pH and adsorption time conditions were determined. The adsorption capacity of the MIP-PET plates with RAFT treatment (0.057 mg cm−2) was higher than that of the untreated plates (0.028 mg cm−2). The kinetic study revealed a pseudo-first-order model with intraparticle diffusion, while the isotherm study indicated a fit for the Freundlich model. Additionally, the MIP-PET demonstrated durability by maintaining its adsorption capacity over five cycles of reuse without significant loss. To quantify tartrazine, images were captured using a smartphone, and the RGB values were obtained using the ImageJ® free program. A partial least squares regression (PLS) was performed, obtaining a linear range of 0 to 7 mg L−1 of tartrazine. The accuracy of the method was 99.4% (4.97 ± 0.74 mg L−1) for 10 samples of 5 mg L−1. The concentration of tartrazine was determined in two local soft drinks (14.1 mg L−1 and 16.5 mg L−1), with results comparable to the UV–visible spectrophotometric method. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection
by Anabel Laza, Sirley V. Pereira, Germán A. Messina, Martín A. Fernández-Baldo, Julio Raba, Matías D. Regiart and Franco A. Bertolino
Chemosensors 2024, 12(1), 10; https://doi.org/10.3390/chemosensors12010010 - 5 Jan 2024
Cited by 6 | Viewed by 2989
Abstract
Nowadays, mycotoxin contamination in cereals and wastewater exposes a safety hazard to consumer health. This work describes the design of a simple, low-cost, and sensitive origami microfluidic paper-based device using electrochemical detection for zearalenone determination. The microfluidic immunosensor was designed on a paper [...] Read more.
Nowadays, mycotoxin contamination in cereals and wastewater exposes a safety hazard to consumer health. This work describes the design of a simple, low-cost, and sensitive origami microfluidic paper-based device using electrochemical detection for zearalenone determination. The microfluidic immunosensor was designed on a paper platform by a wax printing process. The graphitized carbon working electrode modified with carbon nanohorns-decorated nanoporous gold showed a higher surface area, sensitivity, and adequate analytical performance. Electrodes were characterized by scanning electron microscopy, energy-dispersive spectroscopy, and cyclic voltammetry. The determination of zearalenone was carried out through a competitive immunoassay using specific antibodies immobilized by a covalent bond on the electrode surface. In the presence of HRP-labeled enzyme conjugate, substrate, and catechol, zearalenone was detected employing the developed immunosensor by applying −0.1 V to the working electrode vs silver as a pseudo-reference electrode. A calibration curve with a linear range between 10 and 1000 µg Kg−1 (R2 = 0.998) was obtained, and the limit of detection and quantification for the electrochemical immunosensor were 4.40 and 14.90 µg Kg−1, respectively. The coefficient of variation for intra- and inter-day assays was less than 5%. The selectivity and specificity of the sensor were evaluated, comparing the response against zearalenone metabolites and other mycotoxins that could affect the corn samples. Therefore, origami is a promising approach for paper-based electrochemical microfluidic sensors coupled to smartphones as a rapid and portable tool for in situ mycotoxins detection in real samples. Full article
(This article belongs to the Special Issue Microfluidic Device Based Chemical and Biochemical Sensors)
Show Figures

Figure 1

24 pages, 6330 KiB  
Review
Updates in Diagnostic Imaging for Infectious Keratitis: A Review
by Maria Cabrera-Aguas and Stephanie L Watson
Diagnostics 2023, 13(21), 3358; https://doi.org/10.3390/diagnostics13213358 - 31 Oct 2023
Cited by 9 | Viewed by 4154
Abstract
Infectious keratitis (IK) is among the top five leading causes of blindness globally. Early diagnosis is needed to guide appropriate therapy to avoid complications such as vision impairment and blindness. Slit lamp microscopy and culture of corneal scrapes are key to diagnosing IK. [...] Read more.
Infectious keratitis (IK) is among the top five leading causes of blindness globally. Early diagnosis is needed to guide appropriate therapy to avoid complications such as vision impairment and blindness. Slit lamp microscopy and culture of corneal scrapes are key to diagnosing IK. Slit lamp photography was transformed when digital cameras and smartphones were invented. The digital camera or smartphone camera sensor’s resolution, the resolution of the slit lamp and the focal length of the smartphone camera system are key to a high-quality slit lamp image. Alternative diagnostic tools include imaging, such as optical coherence tomography (OCT) and in vivo confocal microscopy (IVCM). OCT’s advantage is its ability to accurately determine the depth and extent of the corneal ulceration, infiltrates and haze, therefore characterizing the severity and progression of the infection. However, OCT is not a preferred choice in the diagnostic tool package for infectious keratitis. Rather, IVCM is a great aid in the diagnosis of fungal and Acanthamoeba keratitis with overall sensitivities of 66–74% and 80–100% and specificity of 78–100% and 84–100%, respectively. Recently, deep learning (DL) models have been shown to be promising aids for the diagnosis of IK via image recognition. Most of the studies that have developed DL models to diagnose the different types of IK have utilised slit lamp photographs. Some studies have used extremely efficient single convolutional neural network algorithms to train their models, and others used ensemble approaches with variable results. Limitations of DL models include the need for large image datasets to train the models, the difficulty in finding special features of the different types of IK, the imbalance of training models, the lack of image protocols and misclassification bias, which need to be overcome to apply these models into real-world settings. Newer artificial intelligence technology that generates synthetic data, such as generative adversarial networks, may assist in overcoming some of these limitations of CNN models. Full article
(This article belongs to the Special Issue Diagnosis and Management of Eye Infections)
Show Figures

Figure 1

20 pages, 4931 KiB  
Article
Evaluating Sand Particle Surface Smoothness Using a New Computer-Based Approach to Improve the Characterization of Macroscale Parameters
by Anthony Tessari and Mark Muszynski
Geotechnics 2023, 3(3), 854-873; https://doi.org/10.3390/geotechnics3030046 - 5 Sep 2023
Cited by 1 | Viewed by 1733
Abstract
The analysis of sands, and the foundation systems with which they interact, are largely dependent on macroscale behavioral parameters that represent the aggregated response of several microscale characteristics. This research paper examines the influence of surface texture, or smoothness, on the behavior of [...] Read more.
The analysis of sands, and the foundation systems with which they interact, are largely dependent on macroscale behavioral parameters that represent the aggregated response of several microscale characteristics. This research paper examines the influence of surface texture, or smoothness, on the behavior of sands. The challenge of estimating or measuring smoothness, due to its microscale feature domain, is addressed through an examination of six artificially graded sand specimens. These specimens are evaluated both visually and numerically to characterize their surface smoothness. The first approach described is a simple visual method that uses a smoothness scale consistent with those of roundness and sphericity. This method, which can be performed with a tool as simple as a hand lens, evaluates a group of representative particles collectively. The second approach is also a visual evaluation, but it utilizes images obtained via scanning electronic microscopy, traditional optical microscopy, and newer low-cost digital microscopes that can be rapidly connected to a smartphone or laptop. To validate these visual estimates, a novel third approach is introduced. This approach is a more objective numerical analysis measurement technique that enables rapid and economic quantification of smoothness. This technique may assist both practitioners and academics in their understanding of the macroscale response of coarse-grained soils. In addition to the visual methods, this research also conducted several laboratory index tests to observe the mechanical behavior of the specimens, considering their particle shape and surface smoothness properties. The results indicate that angular sands have greater minimum and maximum void ratios, a larger difference between the minimum and maximum void ratios, greater critical state friction angles, and greater flow rates through an orifice of fixed size. When adjusted for surface smoothness using the proposed approach, the behavior of the sands—particularly the limit void ratio results—appears to be more predictable in some cases. These results provide additional evidence of particle smoothness contributing to the strength behavior of sand, which may be particularly useful in the domains of slope stability, land reclamation, soil–structure interaction, and soil dynamics. Full article
Show Figures

Figure 1

19 pages, 5006 KiB  
Article
Investigation on the Effect of Mesomixing on Crystal Quality during Antisolvent Crystallization of Nd2(SO4)3·8H2O
by Tinjombo Octavious Baloyi, Jemitias Chivavava and Alison Emslie Lewis
Metals 2023, 13(8), 1378; https://doi.org/10.3390/met13081378 - 31 Jul 2023
Viewed by 1465
Abstract
Rare earth elements (REEs) are essential for permanent magnets that are vital for wind turbines and electric vehicles motors (EV), and are also used in a range of high-tech devices such as smartphones, digital cameras, and electronic displays. Nickel metal hydride (NiMH) batteries [...] Read more.
Rare earth elements (REEs) are essential for permanent magnets that are vital for wind turbines and electric vehicles motors (EV), and are also used in a range of high-tech devices such as smartphones, digital cameras, and electronic displays. Nickel metal hydride (NiMH) batteries have been identified as a potential source due to their short lifespans and an anticipated boom in the production of EV. The aim of this study was to investigate the effect of mesomixing on crystal quality in a non-confined impinging jet mixer (NCIJM) during antisolvent crystallization of 3.2 g/L Nd2(SO4)3 from a synthetic leach solution of NiMH battery using ethanol at an O/A ratio of 1.1. The jet streams were supplied at a Reynolds number (Re) between 7500 and 15,000. The product slurry was allowed to further crystallize in a stirred batch crystallizer at a Re of 13,000 for 45 s. An average yield of 90% was achieved. Laser diffraction and scanning electron microscopy (SEM) were used for size analysis. The initial results were inconclusive due to the secondary mixing effect in the stirred batch crystallizer. Therefore, the experiments were repeated, and samples were collected immediately after mixing in the NCIJM onto a porous grid placed on a high absorbance filter paper to abruptly halt crystallization. The samples were analysed using a transmission electron microscope (TEM), and the acquired images were processed using ImageJ to obtain crystal size distributions (CSDs). It was found that the enhanced mesomixing conditions resulted in smaller crystal sizes and narrower CSDs. This was because the nucleation rate was found to be mass-transfer-limited, such that higher mesomixing intensities promoted the nucleation rate from 6 × 1012 to 5 × 1013 m−3 s−1 and, therefore, favoured the formation of smaller crystals. In parallel, intensified mesomixing resulted in uniform distribution of the supersaturation and, hence, narrowed the CSDs. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

24 pages, 2250 KiB  
Review
Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses—A Review
by Pauline John, Nilesh J. Vasa and Azhar Zam
Diagnostics 2023, 13(14), 2418; https://doi.org/10.3390/diagnostics13142418 - 20 Jul 2023
Cited by 14 | Viewed by 3672
Abstract
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification [...] Read more.
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification of the SARS-CoV-2 virus. The main aim of this review is to emphasize the capabilities of various optical techniques to facilitate not only the timely and effective diagnosis of the virus but also to apply its potential toward therapy in the field of virology. This review paper categorizes the potential optical biosensors into the three main categories, spectroscopic-, nanomaterial-, and interferometry-based approaches, used for detecting various types of viruses, including SARS-CoV-2. Various classifications of spectroscopic techniques such as Raman spectroscopy, near-infrared spectroscopy, and fluorescence spectroscopy are discussed in the first part. The second aspect highlights advances related to nanomaterial-based optical biosensors, while the third part describes various optical interferometric biosensors used for the detection of viruses. The tremendous progress made by lab-on-a-chip technology in conjunction with smartphones for improving the point-of-care and portability features of the optical biosensors is also discussed. Finally, the review discusses the emergence of artificial intelligence and its applications in the field of bio-photonics and medical imaging for the diagnosis of COVID-19. The review concludes by providing insights into the future perspectives of optical techniques in the effective diagnosis of viruses. Full article
Show Figures

Figure 1

15 pages, 5155 KiB  
Article
Smartphone-Based Electrochemical Biosensor for On-Site Nutritional Quality Assessment of Coffee Blends
by Cristine D’Agostino, Claudia Chillocci, Francesca Polli, Luca Surace, Federica Simonetti, Marco Agostini, Sergio Brutti, Franco Mazzei, Gabriele Favero and Rosaceleste Zumpano
Molecules 2023, 28(14), 5425; https://doi.org/10.3390/molecules28145425 - 15 Jul 2023
Cited by 2 | Viewed by 2241
Abstract
This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend’s total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) [...] Read more.
This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend’s total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 μA/μM, a linear response ranging from 5 to 70 μM, and a lower detection limit (LOD) of 2.99 μM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor’s performance was validated through the Folin–Ciocâlteu standard method. Full article
Show Figures

Figure 1

13 pages, 1211 KiB  
Review
Methods of Assessing Nailfold Capillaroscopy Compared to Video Capillaroscopy in Patients with Systemic Sclerosis—A Critical Review of the Literature
by Zechen Ma, Douwe Johannes Mulder, Robert Gniadecki, Jan Willem Cohen Tervaert and Mohammed Osman
Diagnostics 2023, 13(13), 2204; https://doi.org/10.3390/diagnostics13132204 - 28 Jun 2023
Cited by 9 | Viewed by 2951
Abstract
Introduction: Nailfolds of patients with systemic sclerosis (SSc) provide an opportunity to directly visualize microvascular remodeling in SSc. Nailfold video capillaroscopy (NVC) remains the gold standard for assessing nailfold capillaroscopy (NFC). However, access to NVC is limited by expense and expertise. This review [...] Read more.
Introduction: Nailfolds of patients with systemic sclerosis (SSc) provide an opportunity to directly visualize microvascular remodeling in SSc. Nailfold video capillaroscopy (NVC) remains the gold standard for assessing nailfold capillaroscopy (NFC). However, access to NVC is limited by expense and expertise. This review aims to synthesize current research on other NFC devices compared to NVC. Methods: The literature search included the primary research of adult patients with SSc as defined by the 2013 ACR/EULAR criteria. Methods of assessing NFC included stereomicroscopy/wide-field microscopy, ophthalmoscopy, dermatoscopy, smartphone devices, and digital USB microscopy. Primary outcomes included both qualitative (normal vs. abnormal nailfolds, overall pattern recognition, presence/absence of giant capillaries, hemorrhages, and abnormal morphology) and quantitative (capillary density and dimension) measures. Results: The search yielded 471 studies, of which 9 were included. Five studies compared NVC to dermatoscopy, two compared it to widefield/stereomicroscopy, one to smartphone attachments, and one to USB microscopy. In dermatoscopy studies, NVC had a higher percentage of images that were interpretable (63–77% vs. 100%), classifiable (70% vs. 84%), or gradable (70% vs. 79.3%) across three studies. Dermatoscopy had a lower sensitivity (60.2% vs. 81.6%) and higher specificity (92.5% vs. 84.6%) compared to NVC. One stereomicroscopy study found a significant difference between methods in capillary density in limited cutaneous SSc, while another found correlations in all parameters between stereomicroscopy and NVC. One smartphone lens had good agreement with NVC on abnormal capillary morphology and density. USB microscopy was able to differentiate between SSc and healthy controls using mean capillary width but not by capillary density. Discussion: A dermatoscope may serve as a more portable and affordable screening tool to identify a normal “scleroderma pattern”, and images that need further corroboration by NVC. NFC parameters reported are heterogenous and the standardization of these parameters is important, especially in non-gold-standard devices. Full article
(This article belongs to the Special Issue Diagnosis and Management of Systemic Sclerosis in 2023)
Show Figures

Figure 1

13 pages, 3935 KiB  
Article
Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework
by Qi Kang, Yulong Xu and Xuwei Chen
Sensors 2023, 23(8), 3881; https://doi.org/10.3390/s23083881 - 11 Apr 2023
Cited by 9 | Viewed by 2945
Abstract
Monitoring of uric acid (UA) levels in biological samples is of great significance for human health, while the development of a simple and effective method for the precise determination of UA content is still challenging. In the present study, a two-dimensional (2D) imine-linked [...] Read more.
Monitoring of uric acid (UA) levels in biological samples is of great significance for human health, while the development of a simple and effective method for the precise determination of UA content is still challenging. In the present study, a two-dimensional (2D) imine-linked crystalline pyridine-based covalent organic framework (TpBpy COF) was synthesized using 2,4,6-triformylphloroglucinol (Tp) and [2,2′-bipyridine]-5,5′-diamine (Bpy) as precursors via Schiff-base condensation reactions and was characterized with scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, and Brunauer–Emmett–Teller (BET) assays. The as-synthesized TpBpy COF exhibited excellent visible light-induced oxidase-like activity, ascribed to the generation of superoxide radicals (O2•−) by photo-generated electron transfer. TpBpy COF could efficiently oxidase the colorless substrate 3,3′,5,5′-tetramethylbenzydine (TMB) into blue oxidized TMB (oxTMB) under visible light irradiation. Based on the color fade of the TpBpy COF + TMB system by UA, a colorimetric procedure was developed for UA determination with a detection limit of 1.7 μmol L−1. Moreover, a smartphone-based sensing platform was also constructed for instrument-free and on-site detection of UA with a sensitive detection limit of 3.1 μmol L−1. The developed sensing system was adopted for UA determination in human urine and serum samples with satisfactory recoveries (96.6–107.8%), suggesting the potential practical application of the TpBpy COF-based sensor for UA detection in biological samples. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications)
Show Figures

Figure 1

Back to TopTop