Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Morphological Changes in Spores at Different Relative Humidities
2.3. Response/Recovery Time of Equisetum Spores
2.4. Fabrication of Iron-Coated Equisetum Spores
2.5. Characterization of the Microscale Humidity Sensors
2.6. Humidity Changes in Spores in Microfluidic Chip Channels
2.7. Fabrication of Smartphone-Based Device for Skin Humidity Measurement
3. Results and Discussion
3.1. Microscale Humidity Sensing Strategy Based on Iron-Coated Elaters of Equisetum Spores
3.2. Humidity-Responsive Properties of the Microscale Sensor
3.3. Characterization of the Microscale Humidity Sensor
3.4. Sensing Humidity in the Microenvironment and Related Numerical Simulation
3.5. Microscale Sensor Combined with Smartphone-Based Microscopy for Skin Humidity Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kano, S.; Kim, K.; Fujii, M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2017, 2, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, A.; Yadav, A.; Gupta, G.; Gupta, G.; Shivagan, D.D.; Bapna, K. Chitosan-based highly sensitive viable humidity sensor for human health monitoring. ACS Omega 2023, 8, 39511–39522. [Google Scholar] [CrossRef]
- Athanasiadou, M.; Papaefthymiou, C.; Kontarinis, A.; Spiliopoulou, M.; Koutoulas, D.; Konstantopoulos, M.; Kafetzi, S.; Barlos, K.; Barlos, K.K.; Dadivanyan, N. Structural Evolution of the Pharmaceutical Peptide Octreotide upon Controlled Relative Humidity and Temperature Variation. SynBio 2024, 2, 205–222. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Z. Ultralong luminescence lifetime imaging of edible plant tissue for humidity sensing in food packaging by a smartphone. Food Chem. 2024, 454, 139778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.; Li, Z.; Hou, M.; Dong, G.; Liu, T.; Sun, T.; Grattan, K.T. Quasi-distributed fiber optic temperature and humidity sensor system for monitoring of grain storage in granaries. IEEE Sens. J. 2020, 20, 9226–9233. [Google Scholar] [CrossRef]
- Beniwal, A.; Khandelwal, G.; Mukherjee, R.; Mulvihill, D.M.; Li, C. Eco-Friendly Textile-Based Wearable Humidity Sensor with Multinode Wireless Connectivity for Healthcare Applications. ACS Appl. Bio Mater. 2024, 7, 4772–4784. [Google Scholar] [CrossRef]
- Sasono, S.; Nugroho, A.S.; Supriyanto, E.; Hasan, A.; Wasito, E. IoT Smart Health for Monitoring and Control of Temperature and Humidity of Vaccine and Drug Storage based on Android at Health Center. JAICT 2022, 7, 119–124. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, D.; Zhang, H.; Sun, Y.; Wang, Z.; Ji, X.; Liu, Y.; Wang, J.; Jiao, G. Ultrafast response humidity sensor based on titanium dioxide quantum dots/silica and its multifunctional applications. Chem. Eng. J. 2024, 495, 153551. [Google Scholar] [CrossRef]
- Trajcheva, A.; Elgoyhen, J.; Ehsani, M.; Joseph, Y.; Gilev, J.B.; Tomovska, R. Advanced Nanostructured All-Waterborne Thiol-Ene/Reduced Graphene Oxide Humidity Sensors with Outstanding Selectivity. Adv. Mater. Technol. 2023, 9, 2400114. [Google Scholar] [CrossRef]
- Chaudhary, P.; Verma, A.; Chaudhary, S.; Kumar, M.; Lin, M.-F.; Huang, Y.-C.; Chen, K.-L.; Yadav, B. Design of a Humidity Sensor for a PPE Kit Using a Flexible Paper Substrate. Langmuir 2024, 40, 9602–9612. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Hu, C.; Li, Z.-X.; Zhao, Q.-L.; Wang, H.-Y.; Chen, J.-H.; Zheng, D.-Z.; Yang, G.-Y.; Liu, B. A fast response humidity sensor based on MXene-SWCNTs for the monitoring of respiration. Sens. Actuators B Chem. 2024, 410, 135655. [Google Scholar] [CrossRef]
- Malik, P.; Duhan, S.; Malik, R. A high-performance humidity sensor based on 3D porous SnO2-encapsulated MCM-48 for real-time breath monitoring and contactless gesture detection. Mater. Adv. 2024, 5, 2510–2525. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Falk, M.; Björklund, S.; Gonzalez-Martinez, J.F.; Shleev, S. Monoolein-Based Wireless Capacitive Sensor for Probing Skin Hydration. Sensors 2024, 24, 4449. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Stavrakis, A.K.; Simic, M.; Stojanovic, G.M. Polymer-thread-based fully textile capacitive sensor embroidered on a protective face mask for humidity detection. ACS Omega 2022, 7, 44928–44938. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, J.; Yu, C. MgAl-LDH nanoflowers as a novel sensing material for high-performance humidity sensing. RSC Adv. 2024, 14, 21991–21998. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Sheng, W.; Wang, X.; Zhang, K.; Du, L.; Zhou, J. Humidity sensors with shielding electrode under interdigitated electrode. Sensors 2019, 19, 659. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, B.; Liu, J. Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuators B Chem. 2018, 271, 256–263. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, F.; Lin, Q. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home. Micro Nano Lett. 2022, 17, 134–138. [Google Scholar] [CrossRef]
- Yu, X.; Ding, X.; Yu, X.; Tang, K.; Chen, Q. A capacitive humidity sensor based on nanodiamond/silver nanoparticles (ND/Ag) nanocomposite with high stability and rapid response for respiratory monitoring. Sens. Actuators B Chem. 2024, 416, 136035. [Google Scholar] [CrossRef]
- Xie, F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr. Polym. 2024, 337, 122116. [Google Scholar] [CrossRef]
- Sajid, M.; Khattak, Z.; Rahman, K.; Hassan, G.; Choi, K. Progress and future of relative humidity sensors: A review from materials perspective. Bull. Mater. Sci. 2022, 45, 238. [Google Scholar] [CrossRef]
- Sharma, S.K.; Tiwari, A.; Arjumand, M.; Yella, A. Self-powered humidity sensors based on zero-dimensional perovskite-like structures with fast response and high stability. Nanoscale 2024, 16, 11028–11037. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M. Estimation of humidity with cobalt thiocyanate papers and permanent colour standards. Bull. Entomol. Res. 1957, 48, 489–506. [Google Scholar] [CrossRef]
- Chang, C.-Y. Study on the correlation between humidity and material strains in separable micro humidity sensor design. Sensors 2017, 17, 1066. [Google Scholar] [CrossRef]
- Yang, M.-Z.; Dai, C.-L.; Lu, D.-H. Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip. Sensors 2010, 10, 10095–10104. [Google Scholar] [CrossRef]
- Zhou, W.; Wei, J.; Wang, L. A Micro Capacitive Humidity Sensor Based on Al-Mo Electrodes and Polyimide Film. Polymers 2024, 16, 1916. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Fan, W.-Y.; Chang, C.-P. Micro humidity sensor for monitoring water flooding in a proton exchange membrane fuel cell. Int. J. Green Energy 2012, 9, 389–397. [Google Scholar] [CrossRef]
- Marmottant, P.; Ponomarenko, A.; Bienaimé, D. The walk and jump of Equisetum spores. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131465. [Google Scholar] [CrossRef]
- Adams, K.; Bonnett, R. Long chain α, ω-dicarboxylic acids from the spores of Equisetum telmateia and E. arvense. Phytochemistry 1971, 10, 1885–1890. [Google Scholar] [CrossRef]
- Saptadi, A.H. Perbandingan akurasi pengukuran suhu dan kelembaban antara sensor DHT11 dan DHT22. J. Infotel 2014, 6, 49–56. [Google Scholar] [CrossRef]
- Yang, Y.; Su, G.; Li, Q.; Zhu, Z.; Liu, S.; Zhuo, B.; Li, X.; Ti, P.; Yuan, Q. Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel via freeze drying. RSC Adv. 2021, 11, 1543–1552. [Google Scholar] [CrossRef]
- Uehara, K.; Kurita, o. An ultrastructural study of spore wall morphogenesis in Equisetum arvense. Am. J. Bot. 1989, 76, 939–951. [Google Scholar] [CrossRef]
- Elbaum, R.; Abraham, Y. Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Sci. 2014, 223, 124–133. [Google Scholar] [CrossRef]
- Wang, D.; Cong, Y.; Deng, Q.; Han, X.; Zhang, S.; Zhao, L.; Luo, Y.; Zhang, X. Physiological and disease models of respiratory system based on organ-on-a-chip technology. Micromachines 2021, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, J.; Razavi Bazaz, S.; Aboulkheyr Es, H.; Yaghobian Azari, D.; Thierry, B.; Ebrahimi Warkiani, M.; Ghadiri, M. Lung-on-a-chip: The future of respiratory disease models and pharmacological studies. Crit. Rev. Biotechnol. 2020, 40, 213–230. [Google Scholar] [CrossRef]
- Frost, T.S.; Jiang, L.; Zohar, Y. Pharmacokinetic analysis of epithelial/endothelial cell barriers in microfluidic bilayer devices with an air–liquid interface. Micromachines 2020, 11, 536. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Hassan, A.; Mdallal, Q.A.; Ahmad, H.; Sherif, E.-S.M.; Rehman, A.; Arshad, M. Comsolic solution of an elliptic cylindrical compressible fluid flow. Sci. Rep. 2021, 11, 20030. [Google Scholar] [CrossRef]
- Yuan, K.S.; Huang, R.; Gong, K.S.; Xiao, Z.Y.; Chen, J.L.; Cai, S.Y.; Shen, J.Y.; Xiong, Z.R.; Lin, Z.X. Smartphone-based hand-held polarized light microscope for on-site pharmaceutical crystallinity characterization. Anal. Bioanal. Chem. 2023, 415, 4401–4410. [Google Scholar] [CrossRef]
- Lübbe, A.S.; Alexiou, C.; Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res. 2001, 95, 200–206. [Google Scholar] [CrossRef]
- Arunachalam, S.; Izquierdo, R.; Nabki, F. Low-hysteresis and fast response time humidity sensors using sus-pended functionalized carbon nanotubes. Sensors 2019, 19, 680. [Google Scholar] [CrossRef]
- Zhao, Z.; Meng, X.; Pan, Y.; Jin, G.; Shen, X.; Wu, L. Humidity Sensor Based on In(OH)3 Nanoparticles. ACS Appl. Nano Mater. 2024, 7, 16498–16505. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Man, J.; Chen, C. Preparation of high performance Fe-doped SnO2 humidity sensor and its application in respiration detection. Sens. Actuators A Phys. 2023, 362, 114644. [Google Scholar] [CrossRef]
- Sekulić, D.L.; Ivetić, T.B. Characterization of an Impedance-Type Humidity Sensor Based on Porous SnO2/TiO2 Composite Ceramics Modified with Molybdenum and Zinc. Sensors 2023, 23, 8261. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yu, K.; Yang, T.; Zhang, Q.; Cong, W.; Yin, H.; Zhang, Z.; Chen, Y.; Zhu, Z. The combinations of hollow MoS2 micro@ nano-spheres: One-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C 2014, 2, 5422–5430. [Google Scholar] [CrossRef]
- Liu, L.; Tan, H.; Zhang, L.; Huang, Y.; Xiang, C.; Li, M.; Wang, W.; Wang, D. Flexible Humidity Sensing Fiber with High Sensitivity and Stability for Wearable Weaving and Physiological Signal Monitoring. ACS Appl. Nano Mater. 2024, 7, 14458–14467. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Huang, X.-H.; Liu, D.; Mao, K.-L. Simulation analysis and experimental verification for sensitivity of IDE-QCM humidity sensors. Sens. Actuators B Chem. 2021, 341, 129992. [Google Scholar] [CrossRef]
- Pongampai, S.; Pengpad, P.; Meananeatra, R.; Chaisriratanakul, W.; Poyai, A.; Horprathum, M.; Chananonnawathorn, C.; Titiroongruang, W.; Muanghlua, R. Sensing layer combination of vertically aligned ZnO nanorods and graphene Engineering. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 965–975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lin, Z.; Li, X.; Huang, R.; Wu, X.; Deng, R.; Yuan, K. Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores. Biosensors 2024, 14, 414. https://doi.org/10.3390/bios14090414
Liu Y, Lin Z, Li X, Huang R, Wu X, Deng R, Yuan K. Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores. Biosensors. 2024; 14(9):414. https://doi.org/10.3390/bios14090414
Chicago/Turabian StyleLiu, Yanting, Zhexuan Lin, Xiaochun Li, Rui Huang, Xuewan Wu, Ruyi Deng, and Kaisong Yuan. 2024. "Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores" Biosensors 14, no. 9: 414. https://doi.org/10.3390/bios14090414
APA StyleLiu, Y., Lin, Z., Li, X., Huang, R., Wu, X., Deng, R., & Yuan, K. (2024). Microscale Humidity Sensor Based on Iron-Coated Elaters of Equisetum Spores. Biosensors, 14(9), 414. https://doi.org/10.3390/bios14090414