Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = smart drug nanocarriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 3300 KiB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Viewed by 441
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 554
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

42 pages, 4253 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Viewed by 336
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 1061 KiB  
Article
Design of Clofazimine-Loaded Lipid Nanoparticles Using Smart Pharmaceutical Technology Approaches
by Helena Rouco, Nicola Filippo Virzì, Carolina Menéndez-Rodríguez, Carmen Potel, Patricia Diaz-Rodriguez and Mariana Landin
Pharmaceutics 2025, 17(7), 873; https://doi.org/10.3390/pharmaceutics17070873 - 2 Jul 2025
Viewed by 458
Abstract
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the [...] Read more.
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the development of nanoparticle-based formulations is challenging. In the present work, a combination of smart pharmaceutical technology approaches was proposed to develop CFZ-loaded NLCs, taking advantage of previous knowledge on NLCs screening. Methods: A design space previously established using Artificial Intelligence (AI) tools was applied to develop CFZ-loaded NLC formulations. After formulation characterization, Neurofuzzy Logic (NFL) and in silico docking simulations were employed to enhance the understanding of lipid nanocarriers. Then, the performance of formulations designed following NFL guidelines was characterized in terms of biocompatibility, using murine fibroblasts, and antimicrobial activity against several strains of Staphylococcus aureus. Results: The followed approach enabled CFZ-loaded NLC formulations with optimal properties, including small size and high antimicrobial payload. NFL was useful to investigate the existing interactions between NLC components and homogenization conditions, that influence CFZ-loaded NLCs’ final properties. Also, in silico docking simulations were successfully applied to examine interactions and affinity between the drug and the lipid matrix components. Finally, the designed CFZ-loaded formulations demonstrated suitable biocompatibility, together with antimicrobial activity. Conclusions: The implementation of smart strategies during nanoparticle-based therapeutics development, such as those described in this manuscript, would enable the more efficient design of new systems for suitable antimicrobial delivery. Full article
Show Figures

Figure 1

27 pages, 1992 KiB  
Review
Revolutionizing Diabetes Management Through Nanotechnology-Driven Smart Systems
by Aayush Kaushal, Aanchal Musafir, Gourav Sharma, Shital Rani, Rajat Kumar Singh, Akhilesh Kumar, Sanjay Kumar Bhadada, Ravi Pratap Barnwal and Gurpal Singh
Pharmaceutics 2025, 17(6), 777; https://doi.org/10.3390/pharmaceutics17060777 - 13 Jun 2025
Viewed by 1160
Abstract
Diabetes is a global health challenge, and while current treatments offer relief, they often fall short in achieving optimal control and long-term outcomes. Nanotechnology offers a groundbreaking approach to diabetes management by leveraging materials at the nanoscale to improve drug delivery, glucose monitoring, [...] Read more.
Diabetes is a global health challenge, and while current treatments offer relief, they often fall short in achieving optimal control and long-term outcomes. Nanotechnology offers a groundbreaking approach to diabetes management by leveraging materials at the nanoscale to improve drug delivery, glucose monitoring, and therapeutic precision. Early advancements focused on enhancing insulin delivery through smart nanosystems such as tiny capsules that gradually release insulin, helping prevent dangerous drops in blood sugar. Simultaneously, the development of nanosensors has revolutionised glucose monitoring, offering real-time, continuous data that empowers individuals to manage their condition more effectively. Beyond insulin delivery and monitoring, nanotechnology enables targeted drug delivery systems that allow therapeutic agents to reach specific tissues, boosting efficacy while minimising side effects. Tools like microneedles, carbon nanomaterials, and quantum dots have made treatment less invasive and more patient-friendly. The integration of artificial intelligence (AI) with nanotechnology marks a new frontier in personalised care. AI algorithms can analyse individual patient data to adjust insulin doses and predict glucose fluctuations, paving the way for more responsive, customised treatment plans. As these technologies advance, safety remains a key concern. Rigorous research is underway to ensure the biocompatibility and long-term safety of these novel materials. The future of diabetes care lies in the convergence of nanotechnology and AI, offering personalised, data-driven strategies that address the limitations of conventional approaches. This review explores current progress, persistent challenges, and the transformative potential of nanotechnology in reshaping diabetes diagnosis and treatment and improving patient quality of life. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1276
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

15 pages, 902 KiB  
Article
Silver Nanoparticles for Biosensing and Drug Delivery: A Mechanical Study on DNA Interaction
by Katarína Nemčeková, Patrícia Dudoňová, Tomáš Holka, Sabína Balážová, Michaela Hornychová, Viktória Szebellaiová, Monika Naumowicz, Pavol Gemeiner, Tomáš Mackuľak, Miroslav Gál and Veronika Svitková
Biosensors 2025, 15(5), 331; https://doi.org/10.3390/bios15050331 - 21 May 2025
Viewed by 1028
Abstract
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and [...] Read more.
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and as active components in biosensing platforms. In this work, we discuss various synthesis strategies for AgNPs—ranging from conventional chemical methods to green approaches—and highlight their subsequent functionalization with anticancer drugs, notably doxorubicin (DOX). We also examine the potential of AgNPs in biosensor applications, emphasizing electrochemical and optical detection modalities capable of monitoring drug release, oxidative stress, and relevant biomarkers. Our experimental data support the conclusion that AgNPs can effectively improve therapeutic efficacy by exploiting tumor-specific conditions (e.g., lower pH) while also enhancing biosensor sensitivity via surface plasmon resonance and electrochemical signal amplification. We provide a thorough discussion of the results, including mechanistic aspects of reactive oxygen species (ROS) generation, drug release kinetics, and sensor performance metrics. Overall, AgNP-based nanocarriers emerge as a powerful platform to address current challenges in precision oncology and medical diagnostics. Full article
(This article belongs to the Special Issue Nanotechnology-Based Biosensors in Drug Delivery)
Show Figures

Graphical abstract

17 pages, 3808 KiB  
Review
Smart Nanocarriers in Cosmeceuticals Through Advanced Delivery Systems
by Jinku Kim
Biomimetics 2025, 10(4), 217; https://doi.org/10.3390/biomimetics10040217 - 2 Apr 2025
Viewed by 1670
Abstract
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, [...] Read more.
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, focusing on their design, fabrication, and applications in cosmeceuticals. These nanocarriers offer controlled release of active ingredients, addressing challenges like poor skin penetration and ingredient instability. This work discusses the unique properties and advantages of various nanocarrier types, highlighting their potential in addressing diverse skin concerns. Furthermore, we address the critical aspect of biocompatibility, examining potential health risks associated with nanomaterials. Finally, this review highlights current challenges, including the precise control of drug release, scalability, and the transition from in vitro to in vivo applications. We also discuss future perspectives such as the integration of digital technologies and artificial intelligence for personalized skincare to further advance the technology of smart nanocarriers in cosmeceuticals. Full article
Show Figures

Figure 1

36 pages, 3932 KiB  
Review
Innovations in Cancer Therapy: Endogenous Stimuli-Responsive Liposomes as Advanced Nanocarriers
by Jazmín Torres, Johanna Karina Valenzuela Oses, Antonio María Rabasco-Álvarez, María Luisa González-Rodríguez and Mónica Cristina García
Pharmaceutics 2025, 17(2), 245; https://doi.org/10.3390/pharmaceutics17020245 - 13 Feb 2025
Cited by 2 | Viewed by 2138
Abstract
Recent advancements in nanotechnology have revolutionized cancer therapy—one of the most pressing global health challenges and a leading cause of death—through the development of liposomes (L), lipid-based nanovesicles known for their biocompatibility and ability to encapsulate both hydrophilic and lipophilic drugs. More recent [...] Read more.
Recent advancements in nanotechnology have revolutionized cancer therapy—one of the most pressing global health challenges and a leading cause of death—through the development of liposomes (L), lipid-based nanovesicles known for their biocompatibility and ability to encapsulate both hydrophilic and lipophilic drugs. More recent innovations have led to the creation of stimuli-responsive L that release their payloads in response to specific endogenous or exogenous triggers. Dual- and multi-responsive L, which react to multiple stimuli, offer even greater precision, improving therapeutic outcomes while reducing systemic toxicity. Additionally, these smart L can adjust their physicochemical properties and morphology to enable site-specific targeting and controlled drug release, enhancing treatment efficacy while minimizing adverse effects. This review explores the latest advancements in endogenous stimuli-responsive liposomal nanocarriers, as well as dual- and multi-responsive L that integrate internal and external triggers, with a focus on their design strategies, mechanisms, and applications in cancer therapy. Full article
(This article belongs to the Special Issue Lipid Nanostructures as Drug Carriers for Cancer Therapy)
Show Figures

Graphical abstract

48 pages, 8840 KiB  
Review
Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment
by Fatih Ciftci, Ali Can Özarslan, İmran Cagri Kantarci, Aslihan Yelkenci, Ozlem Tavukcuoglu and Mansour Ghorbanpour
Pharmaceutics 2025, 17(1), 121; https://doi.org/10.3390/pharmaceutics17010121 - 16 Jan 2025
Cited by 12 | Viewed by 4306
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to [...] Read more.
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body’s organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included. Full article
Show Figures

Graphical abstract

28 pages, 2888 KiB  
Review
Nanotechnology-Based Approaches for the Management of Diabetes Mellitus: An Innovative Solution to Long-Lasting Challenges in Antidiabetic Drug Delivery
by Shounak Sarkhel, Saikat Mollick Shuvo, Md Ahesan Ansari, Sourav Mondal, Pritam Kapat, Arindam Ghosh, Tanima Sarkar, Ranu Biswas, Leonard Ionut Atanase and Alexandru Carauleanu
Pharmaceutics 2024, 16(12), 1572; https://doi.org/10.3390/pharmaceutics16121572 - 9 Dec 2024
Cited by 8 | Viewed by 3006
Abstract
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients’ quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden [...] Read more.
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients’ quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease. This manuscript explores the multifaceted utilization of nanomaterials in diabetes care, emphasizing the unique features of nano-based medication delivery methods and smart drug delivery mechanisms. Additionally, this paper talks about research on nanocarrier-integrated oral, transdermal, and inhalable insulin delivery; dendrimer- and nanocarrier-coupled antisense oligonucleotide-driven gene therapy; the implementation of gold nanoparticles and quantum dots for glucose surveillance; and nucleic acid therapies. There are certain restrictions when using medication delivery methods that are commonly available to handle diabetes. In order to increase efficacy and safety, the rapidly developing science of nanotechnology is also being explored and employed in medical biology. Nanomaterials like liposomes, dendrimers, niosomes, polymeric and metallic nanocarriers, and solid lipid nanoparticles are among the nanocarriers that have been developed for better delivery of various oral hypoglycemic agents in comparison to conventional therapies. These nanocarriers provide great control over elevated blood glucose levels, making them one of the most intriguing and promising technologies available today. Furthermore, adding additional ligands to nanocarriers allows for more focused distribution while protecting the encapsulated hypoglycemic drugs. Full article
Show Figures

Figure 1

17 pages, 334 KiB  
Review
Nanomaterial-Enhanced Microneedles: Emerging Therapies for Diabetes and Obesity
by Mehrnaz Abbasi, Divine Afunu Boka and Hannah DeLoit
Pharmaceutics 2024, 16(10), 1344; https://doi.org/10.3390/pharmaceutics16101344 - 21 Oct 2024
Cited by 9 | Viewed by 2620
Abstract
Drug delivery systems (DDS) have improved therapeutic agent administration by enhancing efficacy and patient compliance while minimizing side effects. They enable targeted delivery, controlled release, and improved bioavailability. Transdermal drug delivery systems (TDDS) offer non-invasive medication administration and have evolved to include methods [...] Read more.
Drug delivery systems (DDS) have improved therapeutic agent administration by enhancing efficacy and patient compliance while minimizing side effects. They enable targeted delivery, controlled release, and improved bioavailability. Transdermal drug delivery systems (TDDS) offer non-invasive medication administration and have evolved to include methods such as chemical enhancers, iontophoresis, microneedles (MN), and nanocarriers. MN technology provides innovative solutions for chronic metabolic diseases like diabetes and obesity using various MN types. For diabetes management, MNs enable continuous glucose monitoring, diabetic wound healing, and painless insulin delivery. For obesity treatment, MNs provide sustained transdermal delivery of anti-obesity drugs or nanoparticles (NPs). Hybrid systems integrating wearable sensors and smart materials enhance treatment effectiveness and patient management. Nanotechnology has advanced drug delivery by integrating nano-scaled materials like liposomes and polymeric NPs with MNs. In diabetes management, glucose-responsive NPs facilitate smart insulin delivery. At the same time, lipid nanocarriers in dissolving MNs enable extended release for obesity treatment, enhancing drug stability and absorption for improved metabolic disorder therapies. DDS for obesity and diabetes are advancing toward personalized treatments using smart MN enhanced with nanomaterials. These innovative approaches can enhance patient outcomes through precise drug administration and real-time monitoring. However, widespread implementation faces challenges in ensuring biocompatibility, improving technologies, scaling production, and obtaining regulatory approval. This review will present recent advances in developing and applying nanomaterial-enhanced MNs for diabetes and obesity management while also discussing the challenges, limitations, and future perspectives of these innovative DDS. Full article
(This article belongs to the Special Issue Application of Nanomedicine in Metabolic and Chronic Diseases)
22 pages, 2313 KiB  
Review
An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review
by Jordi Guardià, José Antonio Reina, Marta Giamberini and Xavier Montané
Polymers 2024, 16(16), 2293; https://doi.org/10.3390/polym16162293 - 14 Aug 2024
Cited by 16 | Viewed by 7863
Abstract
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in [...] Read more.
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted. Full article
Show Figures

Figure 1

46 pages, 8589 KiB  
Review
Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy
by Ahmed M. Agiba, Nihal Elsayyad, Hala N. ElShagea, Mahmoud A. Metwalli, Amin Orash Mahmoudsalehi, Saeed Beigi-Boroujeni, Omar Lozano, Alan Aguirre-Soto, Jose Luis Arreola-Ramirez, Patricia Segura-Medina and Raghda Rabe Hamed
Pharmaceutics 2024, 16(8), 1017; https://doi.org/10.3390/pharmaceutics16081017 - 31 Jul 2024
Cited by 12 | Viewed by 4323
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target [...] Read more.
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy. Full article
Show Figures

Figure 1

21 pages, 1427 KiB  
Review
Stimuli-Responsive Liposomes of 5-Fluorouracil: Progressive Steps for Safe and Effective Treatment of Colorectal Cancer
by Hamad Alrbyawi
Pharmaceutics 2024, 16(7), 966; https://doi.org/10.3390/pharmaceutics16070966 - 22 Jul 2024
Cited by 7 | Viewed by 2203
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades to treat various types of cancer. It is considered the standard first-line treatment for patients with metastatic colorectal cancer. Unfortunately, traditional chemotherapy with 5-FU presents many limitations, [...] Read more.
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades to treat various types of cancer. It is considered the standard first-line treatment for patients with metastatic colorectal cancer. Unfortunately, traditional chemotherapy with 5-FU presents many limitations, such as a short half-life, a low bioavailability, and a high cytotoxicity, affecting both tumor tissue and healthy tissue. In order to overcome the drawbacks of 5-FU and enhance its therapeutic effectiveness against colorectal cancer, many studies have focused on designing new delivery systems to successfully deliver 5-FU to tumor sites. Liposomes have gained attention as a well-accepted nanocarrier for several chemotherapeutic agents. These amphipathic spherical vesicles consist of one or more phospholipid bilayers, showing promise for the drug delivery of both hydrophobic and hydrophilic components in addition to distinctive properties, such as biodegradability, biocompatibility, a low toxicity, and non-immunogenicity. Recent progress in liposomes has mainly focused on chemical and structural modifications to specifically target and activate therapeutic actions against cancer within the proximity of tumors. This review provides a comprehensive overview of both internal-stimuli-responsive liposomes, such as those activated by enzymes or pH, and external-stimuli-responsive liposomes, such as those activated by the application of a magnetic field, light, or temperature variations, for the site-specific delivery of 5-FU in colorectal cancer therapy, along with the future perspectives of these smart-delivery liposomes in colorectal cancer. In addition, this review critically highlights recent innovations in the literature on various types of stimuli-responsive liposomal formulations designed to be applied either exogenously or endogenously and that have great potential in delivering 5-FU to colorectal cancer sites. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop