Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = small-fruited pepper (Capsicum annuum)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16840 KiB  
Article
Efficient In Vitro Regeneration System and Comparative Transcriptome Analysis Offer Insight into the Early Development Characteristics of Explants from Cotyledon with Partial Petiole in Small-Fruited Pepper (Capsicum annuum)
by Xiaoqi Li, Naveed Mushtaq, Na Xing, Shuhua Wu, Jiancheng Liu and Zhiwei Wang
Int. J. Mol. Sci. 2024, 25(14), 7547; https://doi.org/10.3390/ijms25147547 - 9 Jul 2024
Cited by 1 | Viewed by 1522
Abstract
In our research, we utilized six small-fruited pepper germplasms as materials, selected cotyledons with the petiole and hypocotyls as explants, and conducted in vitro regeneration studies. Our outcomes specify that the most suitable explant is cotyledon with the petiole, and the suitable genotype [...] Read more.
In our research, we utilized six small-fruited pepper germplasms as materials, selected cotyledons with the petiole and hypocotyls as explants, and conducted in vitro regeneration studies. Our outcomes specify that the most suitable explant is cotyledon with the petiole, and the suitable genotype is HNUCA341. The optimal medium for inducing and elongating adventitious buds for this genotype is Murashige and Skoog medium (MS) + 9.12 μM Zeatin (ZT) + 0.57 μM 3-Indoleacetic acid (IAA), with a bud induction rate of 44.4%. The best rooting induction medium is MS + 1.14 μM IAA, with a rooting rate of 86.7%. Research on the addition of exogenous hormones has revealed that the induction speed of buds in small-fruited pepper (HNUCA341) in the combination of ZT and IAA hormones (abbreviated as ZI) is quicker, and the induction effect is better. The histological observations indicate that ZI treatment accelerates the initiation of explant division and differentiation, causing a shorter duration of vascular-bundle tissue production. The plant hormone signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including ARR9 (LOC107843874, LOC107843885), ARR4 (LOC107848380, LOC107862455), AHK4 (LOC107870540), AHP1 (LOC107839518), LAX2 (LOC107846008), SAUR36 (LOC107852624), IAA8 (LOC107841020), IAA16 (LOC107839415), PYL4 (LOC107843441), and PYL6 (LOC107871127); these significantly enriched genes may be associated with in vitro regeneration. In addition, the carbon metabolism pathway and plant mitogen-activated protein kinase (MAPK) signaling pathway are also significantly enriched in KEGG. The results of the Gene Ontology (GO) analysis revealed that differentially expressed genes related to carbon metabolism and fixation, photosynthesis and MAPK signaling pathways were upregulated under ZI treatment. It was found that they might be associated with enhanced regeneration in vitro. Furthermore, we also screened out differentially expressed transcription factors, primarily from the MYB, bHLH, AP2/ERF, and NAC families. Overall, our work accumulated important data for the in-depth analysis of the molecular mechanism of in vitro regeneration of pepper, and provides valuable germplasm for establishing an efficient stable pepper genetic-transformation system based on tissue culture. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 7431 KiB  
Article
Comparative Transcriptome Analysis Identified Genes Associated with Fruit Size in Pepper (Capsicum annuum L.)
by Yuxin Zheng, Qilong Ma, Lianzhen Mao, Zhuoxuan Wu, Zhoubin Liu, Xuexiao Zou and Bozhi Yang
Horticulturae 2023, 9(9), 1009; https://doi.org/10.3390/horticulturae9091009 - 7 Sep 2023
Cited by 7 | Viewed by 2683
Abstract
Pepper (Capsicum annuum L.) is one of the most widely grown vegetable crops in China, with widespread cultivation worldwide. Fruit weight (size) is a complex trait controlled by multiple factors and is an essential determinant of pepper yield. In this study, we [...] Read more.
Pepper (Capsicum annuum L.) is one of the most widely grown vegetable crops in China, with widespread cultivation worldwide. Fruit weight (size) is a complex trait controlled by multiple factors and is an essential determinant of pepper yield. In this study, we analyzed the transcriptome of two pepper recombinant lines with different fruit weights, ‘B302’ and ‘B400’, at five developmental stages to reveal some of the differentially expressed genes and mechanisms controlling fruit weight. The results showed that 21,878 differential genes were identified between the two specimens. Further analysis of the differentially expressed genes revealed that Boron transporter 4 was significantly highly expressed in the large-fruited pepper and almost not expressed at all in the small-fruited pepper. CaAUX1, CaAUX/IAA, CaGH3, CaSAUR, and other related genes in the Auxin signal transduction pathway were highly expressed in the large-fruited pepper but significantly reduced in the small-fruited pepper. In addition, a comparison of differentially expressed transcription factors at different times revealed that transcription factors such as CaMADS3, CaAGL8, CaATHB13, and CaATHB-40 were highly differentially expressed in the large-fruited pepper, and these transcription factors may be related to pepper fruit expansion. Through weighted gene co-expression network analysis (WGCNA), the MEorangered4 module was shown to have a highly significant correlation with fruit weight, and the key modules were analyzed by constructing the hub core gene network interactions map and core genes regulating fruit weight such as APETALA 2 were found. In conclusion, we find that the expression of relevant genes at different developmental stages was different in ‘B302’ and ‘B400’, and it was hypothesized that these genes play essential roles in the development of fruit size and that the interactions occurring between transcription factors and phytohormones may regulate the development of fruit size. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 2865 KiB  
Article
Small Heat Shock Protein (sHSP) Gene Family from Sweet Pepper (Capsicum annuum L.) Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO)
by Salvador González-Gordo, José M. Palma and Francisco J. Corpas
Plants 2023, 12(2), 389; https://doi.org/10.3390/plants12020389 - 13 Jan 2023
Cited by 18 | Viewed by 3520
Abstract
Small heat shock proteins (sHSPs) are usually upregulated in plants under diverse environmental stresses. These proteins have been suggested to function as molecular chaperones to safeguard other proteins from stress-induced damage. The ripening of pepper (Capsicum annuum L.) fruit involves important phenotypic, [...] Read more.
Small heat shock proteins (sHSPs) are usually upregulated in plants under diverse environmental stresses. These proteins have been suggested to function as molecular chaperones to safeguard other proteins from stress-induced damage. The ripening of pepper (Capsicum annuum L.) fruit involves important phenotypic, physiological, and biochemical changes, which have associated endogenous physiological nitro-oxidative stress, but they can also be significantly affected by environmental conditions, such as temperature. Based on the available pepper genome, a total of 41 sHSP genes were identified in this work, and their distributions in the 12 pepper chromosomes were determined. Among these genes, only 19 sHSP genes were found in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study aims to analyze how these 19 sHSP genes present in the transcriptome of sweet pepper fruits are modulated during ripening and after treatment of fruits with nitric oxide (NO) gas. The time-course expression analysis of these genes during fruit ripening showed that 6 genes were upregulated; another 7 genes were downregulated, whereas 6 genes were not significantly affected. Furthermore, NO treatment triggered the upregulation of 7 sHSP genes and the downregulation of 3 sHSP genes, whereas 9 genes were unchanged. These data indicate the diversification of sHSP genes in pepper plants and, considering that sHSPs are important in stress tolerance, the observed changes in sHSP expression support that pepper fruit ripening has an associated process of physiological nitro-oxidative stress, such as it was previously proposed. Full article
(This article belongs to the Special Issue Trends and Prospects of Genetic and Molecular Research in Plant)
Show Figures

Graphical abstract

18 pages, 3086 KiB  
Article
Tracing Back the History of Pepper (Capsicum annuum) in the Iberian Peninsula from a Phenomics Point of View
by Cristina Silvar, Filomena Rocha and Ana M. Barata
Plants 2022, 11(22), 3075; https://doi.org/10.3390/plants11223075 - 13 Nov 2022
Cited by 6 | Viewed by 4099
Abstract
The Iberian Peninsula was the place where pepper (Capsicum annuum) entered Europe and dispersed to other continents but was also an important secondary center for its diversification. The current work evaluated the phenotypic diversity existing in this region and investigated how [...] Read more.
The Iberian Peninsula was the place where pepper (Capsicum annuum) entered Europe and dispersed to other continents but was also an important secondary center for its diversification. The current work evaluated the phenotypic diversity existing in this region and investigated how that evolved from Capsicum native areas (Mexico and Andean Region). For that purpose, the high-throughput phenotyping tool Tomato Analyzer was employed. Descriptors related to size and shape were the most distinctive among fruit types, reflecting a broad diversity for Iberian peppers. These traits likely reflected those suffering from more intensive human selections, driving the worldwide expansion of C. annuum. Iberian peppers maintained close proximity to the American accessions in terms of fruit phenomics. The highest similarities were observed for those coming from the southeastern edge of the Peninsula, while northwestern accessions displayed more significant differences. Common fruit traits (small, conical) suggested that Portuguese and Spanish landraces may have arisen from an ancient American population that entered the south of Spain and promptly migrated to the central and northern territories, giving rise to larger, elongated, and blocky pods. Such lineages would be the result of adaptations to local soil–climate factors prevailing in different biogeographic provinces. Full article
(This article belongs to the Topic Plant Domestication and Crop Evolution)
Show Figures

Figure 1

9 pages, 643 KiB  
Article
Effect of Fruit Weight and Fruit Locule Number in Bell Pepper on Industrial Waste and Quality of Roasted Pepper
by Marcos Guerra, Rosa María Gómez, Miguel Ángel Sanz, Álvaro Rodríguez-González and Pedro Antonio Casquero
Horticulturae 2022, 8(5), 455; https://doi.org/10.3390/horticulturae8050455 - 19 May 2022
Cited by 2 | Viewed by 3515
Abstract
Bell pepper (Capsicum annuum L.), one of the most consumed vegetables worldwide, shows great differences between its diverse varieties. These differences affect the fruit type, size and shape. Food preservation techniques prolong the availability of sweet pepper. Roasted pepper is a product [...] Read more.
Bell pepper (Capsicum annuum L.), one of the most consumed vegetables worldwide, shows great differences between its diverse varieties. These differences affect the fruit type, size and shape. Food preservation techniques prolong the availability of sweet pepper. Roasted pepper is a product marketed with the European recognition of Protected Geographical Indication ‘Pimiento Asado del Bierzo’. The objective of this work was to analyse the effect of the fruit weight and fruit locule number of the industrial fresh pepper on quality and roasted pepper yield. Large trilocular fruits and large tetralocular fruits reached higher roast yield and uniformity than small trilocular fruits. Regardless of fruit locule number and fruit weight, the overall quality of all the samples of roasted pepper was categorised as very good. Large tetralocular and large trilocular fruits are the most appropriate peppers for industrial purposes, whereas small trilocular fruits should be intended for the fresh product market. This easy method of sorting bell pepper fruit attending to fruit weight will decrease the amount of pepper waste in the industrial roasting process (around 18%), while maintaining the high overall quality of the final product. Moreover, the faster peeling of large peppers will also contribute to increasing the productivity of the industrial processing of roasted pepper. Full article
(This article belongs to the Collection Advances in Fruit Quality Formation and Regulation)
Show Figures

Figure 1

21 pages, 5288 KiB  
Article
Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species
by Carlos Lopez-Ortiz, Yadira Peña-Garcia, Menuka Bhandari, Venkata Lakshmi Abburi, Purushothaman Natarajan, John Stommel, Padma Nimmakayala and Umesh K. Reddy
Int. J. Mol. Sci. 2021, 22(9), 4866; https://doi.org/10.3390/ijms22094866 - 4 May 2021
Cited by 17 | Viewed by 4643
Abstract
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, [...] Read more.
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories “genetic information processing”, “signaling and cellular processes”, “amino acid metabolism”, and “carbohydrate metabolism”. Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA–target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3979 KiB  
Article
A Maturity Estimation of Bell Pepper (Capsicum annuum L.) by Artificial Vision System for Quality Control
by Marcos-Jesús Villaseñor-Aguilar, Micael-Gerardo Bravo-Sánchez, José-Alfredo Padilla-Medina, Jorge Luis Vázquez-Vera, Ramón-Gerardo Guevara-González, Francisco-Javier García-Rodríguez and Alejandro-Israel Barranco-Gutiérrez
Appl. Sci. 2020, 10(15), 5097; https://doi.org/10.3390/app10155097 - 24 Jul 2020
Cited by 35 | Viewed by 13307
Abstract
Sweet bell peppers are a Solanaceous fruit belonging to the Capsicum annuum L. species whose consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes and the absence of spicy [...] Read more.
Sweet bell peppers are a Solanaceous fruit belonging to the Capsicum annuum L. species whose consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes and the absence of spicy flavor. In addition, these fruits have a characteristic flavor and nutritional attributes that include ascorbic acid, polyphenols, and carotenoids. A quality criterion for the harvest of this fruit is maturity; this attribute is visually determined by the consumer when verifying the color of the fruit’s pericarp. The present work proposes an artificial vision system that automatically describes ripeness levels of the bell pepper and compares the Fuzzy logic (FL) and Neuronal Networks for the classification stage. In this investigation, maturity stages of bell peppers were referenced by measuring total soluble solids (TSS), ° Brix, using refractometry. The proposed method was integrated in four stages. The first one consists in the image acquisition of five views using the Raspberry Pi 5 Megapixel camera. The second one is the segmentation of acquired image samples, where background and noise are removed from each image. The third phase is the segmentation of the regions of interest (green, yellow, orange and red) using the connect components algorithm to select areas. The last phase is the classification, which outputs the maturity stage. The classificatory was designed using Matlab’s Fuzzy Logic Toolbox and Deep Learning Toolbox. Its implementation was carried out onto Raspberry Pi platform. It tested the maturity classifier models using neural networks (RBF-ANN) and fuzzy logic models (ANFIS) with an accuracy of 100% and 88%, respectively. Finally, it was constructed with a content of ° Brix prediction model with small improvements regarding the state of art. Full article
Show Figures

Figure 1

12 pages, 1207 KiB  
Article
Phytochemical Profile of Capsicum annuum L. cv Senise, Incorporation into Liposomes, and Evaluation of Cellular Antioxidant Activity
by Chiara Sinisgalli, Immacolata Faraone, Antonio Vassallo, Carla Caddeo, Faustino Bisaccia, Maria Francesca Armentano, Luigi Milella and Angela Ostuni
Antioxidants 2020, 9(5), 428; https://doi.org/10.3390/antiox9050428 - 15 May 2020
Cited by 39 | Viewed by 5854
Abstract
Overproduction of oxidants in the human body is responsible for oxidative stress, which is associated with several diseases. High intake of vegetables and fruits can reduce the risk of chronic diseases, as they are sources of bioactive compounds capable of contrasting the free [...] Read more.
Overproduction of oxidants in the human body is responsible for oxidative stress, which is associated with several diseases. High intake of vegetables and fruits can reduce the risk of chronic diseases, as they are sources of bioactive compounds capable of contrasting the free radical effects involved in cancer, obesity, diabetes, and neurodegenerative and cardiovascular diseases. Capsicum annuum L. cv Senise is a sweet pepper that is grown in the Basilicata region (Italy). It is an important source of polyphenols, carotenoids, and capsinoids and can play a key role in human health. In this study, an ethanol extract was obtained from C. annuum dried peppers and the analysis of the phytochemical composition was performed by LC-ESI/LTQ Orbitrap/MS. The extract was incorporated into liposomes, which showed small size (~80 nm), good homogeneity, negative surface charge, and good stability in storage. The biological activity of the extract was evaluated in the human hepatoma (HepG2) cell line, used as model cells. The extract showed no cytotoxic activity and reduced the intracellular reactive oxygen species (ROS) level in stressed cells. The antioxidant activity was further improved when the extract was loaded into liposomes. Moreover, the extract promoted the expression of endogenous antioxidants, such as catalase, superoxide dismutase, and glutathione peroxidase through the Nrf-2 pathway evaluated by RT-PCR. Full article
(This article belongs to the Special Issue Anti-inflammatory and Antioxidant Properties of Plant Extracts)
Show Figures

Graphical abstract

16 pages, 4468 KiB  
Article
Development and Characterization of an Ethyl Methane Sulfonate (EMS) Induced Mutant Population in Capsicum annuum L.
by Muhammad Irfan Siddique, Seungki Back, Joung-Ho Lee, Jinkwan Jo, Siyoung Jang, Koeun Han, Jelli Venkatesh, Jin-Kyung Kwon, Yeong Deuk Jo and Byoung-Cheorl Kang
Plants 2020, 9(3), 396; https://doi.org/10.3390/plants9030396 - 23 Mar 2020
Cited by 40 | Viewed by 11724
Abstract
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to [...] Read more.
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to elucidate gene functions through the analysis of mutant phenotypes. Here, we developed a mutant population using the small and pungent ornamental Capsicum annuum pepper “Micro-Pep”. This accession is particularly suitable for mutation studies and molecular research due to its compact growth habit and small size. We treated 9500 seeds with 1.3% EMS and harvested 3996 M2 lines. We then selected 1300 (32.5%) independent M2 families and evaluated their phenotypes over four years. The mutants displayed phenotypic variations in plant growth, habit, leaf color and shape, and flower and fruit morphology. An experiment to optimize Targeting Induced Local Lesions IN Genomes (TILLING) in pepper detected nine EMS-induced mutations in the eIF4E gene. The M2 families developed here exhibited broad phenotypic variation and should be valuable genetic resources for functional gene analysis in pepper molecular breeding programs using reverse genetics tools, including TILLING. Full article
(This article belongs to the Special Issue Plant Mutation Breeding)
Show Figures

Figure 1

19 pages, 250 KiB  
Article
Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing
by Dakshina R. Seal and Cliff G. Martin
Insects 2016, 7(1), 9; https://doi.org/10.3390/insects7010009 - 4 Mar 2016
Cited by 16 | Viewed by 5575
Abstract
Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in [...] Read more.
Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin “Habanero” was least susceptible, and C. annuum L. cultivars “SY” and “SR” were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (<1.5 cm). However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation. Full article
Back to TopTop