Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = small-field telescope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4164 KB  
Article
Comparison of Wavefront Sensing Methods for Solar Ground-Layer Adaptive Optics: Multi-Direction Averaging and Wide-Field Correlation
by Yuhe Liu, Ziming Li, Qianhan Zhou, Nanfei Yan, Xian Ran, Ao Tang, Zhen Li, Lanqiang Zhang and Changhui Rao
Photonics 2025, 12(12), 1153; https://doi.org/10.3390/photonics12121153 - 24 Nov 2025
Viewed by 358
Abstract
Solar ground-layer adaptive optics (GLAO) is widely recognized as a key technology for achieving high-resolution, wide-field imaging in ground-based solar telescopes. However, the accuracy differences among various wavefront sensing methods in solar GLAO remain unclear. In this study, Monte Carlo simulations and indoor [...] Read more.
Solar ground-layer adaptive optics (GLAO) is widely recognized as a key technology for achieving high-resolution, wide-field imaging in ground-based solar telescopes. However, the accuracy differences among various wavefront sensing methods in solar GLAO remain unclear. In this study, Monte Carlo simulations and indoor GLAO experiments were conducted to perform, for the first time, a comparative analysis of two representative wavefront sensing methods: multi-direction averaging (MD-A) and wide-field correlation (WF-C). The results demonstrate that WF-C consistently achieves higher detection accuracy than MD-A, although the differences between the two methods are small. With an increasing field of view (FoV), the detection accuracy of MD-A improves but remains lower than that of WF-C. In terms of correction performance, significant improvements in central FoV imaging were achieved using WF-C within narrow-to-moderate FoVs, whereas in wide and ultra-wide FoVs, MD-A produced more uniform image quality enhancements. Using the 1 m New Vacuum Solar Telescope (NVST) GLAO system as an example, MD-A is better suited to wide and future ultra-wide field imaging (over 80″), whereas WF-C is more appropriate for high-precision wavefront sensing within narrow to moderate fields (20″–60″). These findings provide both theoretical guidance and practical insights for the optimization of GLAO systems and wavefront sensing strategies in 1-meter-class wide-field solar telescopes. Full article
(This article belongs to the Special Issue Adaptive Optics in Astronomy)
Show Figures

Figure 1

12 pages, 1328 KB  
Article
Long-Term Variations in Background Bias and Magnetic Field Noise in HSOS/SMFT Observations
by Haiqing Xu, Hongqi Zhang, Suo Liu, Jiangtao Su, Yuanyong Deng, Shangbin Yang, Mei Zhang and Jiaben Lin
Universe 2025, 11(10), 328; https://doi.org/10.3390/universe11100328 - 28 Sep 2025
Viewed by 422
Abstract
The Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station (HSOS) has conducted continuous observations of solar vector magnetic fields for nearly four decades, and while the primary optical system remains unchanged, critical components—including filters, polarizers, and detectors—have undergone multiple upgrades and [...] Read more.
The Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station (HSOS) has conducted continuous observations of solar vector magnetic fields for nearly four decades, and while the primary optical system remains unchanged, critical components—including filters, polarizers, and detectors—have undergone multiple upgrades and replacements. Maintaining data consistency is essential for reliable long-term studies of magnetic field evolution and solar activity, as well as current helicity. In this study, we systematically analyze background bias and noise levels in SMFT observations from 1988 to 2019. Our dataset comprises 12,281 vector magnetograms of 1484 active regions. To quantify background bias, we computed mean values of Stokes Q/I, U/I and V/I over each entire magnetogram. The background bias of Stokes V/I is small for the whole dataset. The background biases of Stokes Q/I and U/I fluctuate around zero during 1988–2000. From 2001 to 2011, however, the fluctuations in the background bias of both Q/I and U/I become significantly larger, exhibiting mixed positive and negative values. Between 2012 and 2019, the background biases shift to predominantly positive values for both Stokes Q/I and U/I parameters. To address this issue, we propose a potential method for removing the background bias and further discuss its impact on the estimation of current helicity. For each magnetogram, we quantify measurement noise by calculating the standard deviation (σ) of the longitudinal (Bl) and transverse (Bt) magnetic field components within a quiet-Sun region. The noise levels for Bl and Bt components were approximately 15 Gauss (G) and 87 G, respectively, during 1988–2011. Since 2012, these values decreased significantly to ∼6 G for Bl and ∼55 G for Bt, likely due to the installation of a new filter. Full article
Show Figures

Figure 1

24 pages, 8519 KB  
Article
Probing Equatorial Ionospheric TEC at Sub-GHz Frequencies with Wide-Band (B4) uGMRT Interferometric Data
by Dipanjan Banerjee, Abhik Ghosh, Sushanta K. Mondal and Parimal Ghosh
Universe 2025, 11(7), 210; https://doi.org/10.3390/universe11070210 - 26 Jun 2025
Viewed by 772
Abstract
Phase stability at low radio frequencies is severely impacted by ionospheric propagation delays. Radio interferometers such as the giant metrewave radio telescope (GMRT) are capable of detecting changes in the ionosphere’s total electron content (TEC) over larger spatial scales and with greater sensitivity [...] Read more.
Phase stability at low radio frequencies is severely impacted by ionospheric propagation delays. Radio interferometers such as the giant metrewave radio telescope (GMRT) are capable of detecting changes in the ionosphere’s total electron content (TEC) over larger spatial scales and with greater sensitivity compared to conventional tools like the global navigation satellite system (GNSS). Thanks to its unique design, featuring both a dense central array and long outer arms, and its strategic location, the GMRT is particularly well-suited for studying the sensitive ionospheric region located between the northern peak of the equatorial ionization anomaly (EIA) and the magnetic equator. In this study, we observe the bright flux calibrator 3C48 for ten hours to characterize and study the low-latitude ionosphere with the upgraded GMRT (uGMRT). We outline the methods used for wideband data reduction and processing to accurately measure differential TEC (δTEC) between antenna pairs, achieving a precision of< mTECU (1 mTECU = 103 TECU) for central square antennas and approximately mTECU for arm antennas. The measured δTEC values are used to estimate the TEC gradient across GMRT arm antennas. We measure the ionospheric phase structure function and find a power-law slope of β=1.72±0.07, indicating deviations from pure Kolmogorov turbulence. The inferred diffractive scale, the spatial separation over which the phase variance reaches 1rad2, is ∼6.66 km. The small diffractive scale implies high phase variability across the field of view and reduced temporal coherence, which poses challenges for calibration and imaging. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

23 pages, 3562 KB  
Article
A Unmanned Aerial Vehicle-Based Image Information Acquisition Technique for the Middle and Lower Sections of Rice Plants and a Predictive Algorithm Model for Pest and Disease Detection
by Xiaoyan Guo, Yuanzhen Ou, Konghong Deng, Xiaolong Fan, Ruitao Gao and Zhiyan Zhou
Agriculture 2025, 15(7), 790; https://doi.org/10.3390/agriculture15070790 - 7 Apr 2025
Cited by 2 | Viewed by 1060
Abstract
Aiming at the technical bottleneck of monitoring rice stalk, pest, and grass damage in the middle and lower parts of rice, this paper proposes a UAV-based image information acquisition method and disease prediction algorithm model, which provides an efficient and low-cost solution for [...] Read more.
Aiming at the technical bottleneck of monitoring rice stalk, pest, and grass damage in the middle and lower parts of rice, this paper proposes a UAV-based image information acquisition method and disease prediction algorithm model, which provides an efficient and low-cost solution for the accurate early monitoring of rice diseases, and helps improve the scientific and intelligent level of agricultural disease prevention and control. Firstly, the UAV image acquisition system was designed and equipped with an automatic telescopic rod, 360° automatic turntable, and high-definition image sensing equipment to achieve multi-angle and high-precision data acquisition in the middle and lower regions of rice plants. At the same time, a path planning algorithm and ant colony algorithm were introduced to design the flight layout path of the UAV and improve the coverage and stability of image acquisition. In terms of image information processing, this paper proposes a multi-dimensional data fusion scheme, which combines RGB, infrared, and hyperspectral data to achieve the deep fusion of information in different bands. In disease prediction, the YOLOv8 target detection algorithm and lightweight Transformer network are adopted to determine the detection performance of small targets. The experimental results showed that the average accuracy of the YOLOv8 model (mAP@0.5) in the detection of rice curl disease was 90.13%, which was much higher than that of traditional methods such as Faster R-CNN and SSD. In addition, 1496 disease images and autonomous data sets were collected to verify that the system showed good stability and practicability in field environment. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 6433 KB  
Article
High-Performance Telescope System Design for Space-Based Gravitational Waves Detection
by Huiru Ji, Lujia Zhao, Zichao Fan, Rundong Fan, Jiamin Cao, Yan Mo, Hao Tan, Zhiyu Jiang and Donglin Ma
Sensors 2024, 24(22), 7309; https://doi.org/10.3390/s24227309 - 15 Nov 2024
Cited by 1 | Viewed by 1775
Abstract
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser [...] Read more.
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser link, comes in various configurations, with the off-axis four-mirror design being the most prevalent. In this paper, we present a high-performance design based on this configuration, which exhibits a stable structure, ultra-low wavefront aberration, and high-level stray light suppression capabilities, effectively eliminating background noise. Also, a scientifically justified positioning of the entrance and exit pupils has been implemented, thereby paving adequate spatial provision for the integration of subsequent optical systems. The final design realizes a wavefront error of less than λ/500 in the science field of view, and after tolerance allocation and Monte Carlo analysis, a wavefront error of less than λ/30 can be achieved with a probability of 92%. The chief ray spot diagram dimensions are significantly small, indicating excellent control of pupil aberrations. Additionally, the tilt-to-length (TTL) noise and stray light meet the stringent requirements for space-based gravitational wave detection. The refined design presented in this paper proves to be a more fitting candidate for GW detection projects, offering more accurate and rational guidance. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

19 pages, 4585 KB  
Article
A Real-Time Adaptive Station Beamforming Strategy for Next Generation Phased Array Radio Telescopes
by Guoliang Peng, Lihui Jiang, Xiaohui Tao, Yan Zhang and Rui Cao
Sensors 2024, 24(14), 4723; https://doi.org/10.3390/s24144723 - 20 Jul 2024
Cited by 2 | Viewed by 2204
Abstract
The next generation phased array radio telescopes, such as the Square Kilometre Array (SKA) low frequency aperture array, suffer from RF interference (RFI) because of the large field of view of antenna element. The classical station beamformer used in SKA-low is resource efficient [...] Read more.
The next generation phased array radio telescopes, such as the Square Kilometre Array (SKA) low frequency aperture array, suffer from RF interference (RFI) because of the large field of view of antenna element. The classical station beamformer used in SKA-low is resource efficient but cannot deal with the unknown sidelobe RFI. A real-time adaptive beamforming strategy is proposed for SKA-low station, which trades the capability of adaptive RFI nulling at an acceptably cost, it doesn’t require hardware redesign but only modifies the firmware accordingly. The proposed strategy uses a Parallel Least Mean Square (PLMS) algorithm, which has a computational complexity of 4N+2 and can be performed in parallel. Beam pattern and output SINR simulation results show deeply nulling performance to sidelobe RFI, as well as good mainlobe response similar to the classical beamformer. The convergence performance depends on the signal-and-interference environments and step size, wherein too large a step size leads to a non-optimal output SINR and too small a step size leads to slow convergence speed. FPGA implementation demonstrations are implemented and tested on a NI FPGA module, and test results demonstrate good real-time performance and low slice resource consumption. Full article
Show Figures

Figure 1

11 pages, 2907 KB  
Article
Design and Analysis of the Dual-Band Far-Field Super-Resolution Metalens with Large Aperture
by Cheng Guo, Zhishuai Zheng, Ziang Liu, Zilong Yan, Yucheng Wang, Ruotong Chen, Zhuonan Liu, Peiquan Yu, Weihao Wan, Qing Zhao and Xiaoping Huang
Nanomaterials 2024, 14(6), 513; https://doi.org/10.3390/nano14060513 - 13 Mar 2024
Cited by 4 | Viewed by 2168
Abstract
The resolving power of metalens telescopes rely on their aperture size. Flat telescopes are advancing with the research on super-resolution confocal metalenses with large aperture. However, the aperture sizes of metalenses are usually bound within hundreds of micrometers due to computational and fabrication [...] Read more.
The resolving power of metalens telescopes rely on their aperture size. Flat telescopes are advancing with the research on super-resolution confocal metalenses with large aperture. However, the aperture sizes of metalenses are usually bound within hundreds of micrometers due to computational and fabrication challenges, limiting their usage on practical optical devices like telescopes. In this work, we demonstrated a two-step designing method for the design of dual-band far-field super-resolution metalens with aperture sizes from the micro-scale to macro-scale. By utilizing two types of inserted unit cells, the phase profile of a dual-wavelength metalens with a small aperture of 100 μm was constructed. Through numerical simulation, the measured FWHM values of the focal spots of 5.81 μm and 6.81 μm at working wavelengths of 632.8 nm and 1265.6 nm were found to all be slightly smaller than the values of 0.61 λ/NA, demonstrating the super-resolution imaging of the designed metalens. By measuring the optical power ratio of the focal plane and the incident plane, the focusing efficiencies were 76% at 632.8 nm and 64% at 1265.6 nm. Based on the design method for small-aperture metalens, far-field imaging properties through the macro metalens with an aperture of 40 mm were simulated by using the Huygens–Fresnel principle. The simulation results demonstrate confocal far-field imaging behavior at the target wavelengths of 632.8 nm and 1265.6 nm, with a focal length of 200 mm. The design method for dual-band far-field super-resolution metalens with a large aperture opens a door towards the practical applications in the dual-band space telescope system. Full article
Show Figures

Figure 1

17 pages, 5844 KB  
Article
Optical–Mechanical Integration Analysis and Validation of LiDAR Integrated Systems with a Small Field of View and High Repetition Frequency
by Lu Li, Kunming Xing, Ming Zhao, Bangxin Wang, Jianfeng Chen and Peng Zhuang
Photonics 2024, 11(2), 179; https://doi.org/10.3390/photonics11020179 - 16 Feb 2024
Cited by 2 | Viewed by 2265
Abstract
Integrated systems are facing complex and changing environments with the wide application of atmospheric LiDAR in civil, aerospace, and military fields. Traditional analysis methods employ optical software to evaluate the optical performance of integrated systems, and cannot comprehensively consider the influence of optical [...] Read more.
Integrated systems are facing complex and changing environments with the wide application of atmospheric LiDAR in civil, aerospace, and military fields. Traditional analysis methods employ optical software to evaluate the optical performance of integrated systems, and cannot comprehensively consider the influence of optical and mechanical coupling on the optical performance of the integrated system, resulting in the unsatisfactory accuracy of the analysis results. Optical–mechanical integration technology provides a promising solution to this problem. A small-field-of-view LiDAR system with high repetition frequency, low energy, and single-photon detection technology was taken as an example in this study, and the Zernike polynomial fitting algorithm was programmed to enable transmission between optical and mechanical data. Optical–mechanical integration technology was employed to obtain the optical parameters of the integrated system under a gravity load in the process of designing the optical–mechanical structure of the integrated system. The experimental validation results revealed that the optical–mechanical integration analysis of the divergence angle of the transmission unit resulted in an error of 2.586%. The focal length of the telescope increased by 89 μm, its field of view was 244 μrad, and the error of the detector target surface spot was 4.196%. The continuous day/night detection results showed that the system could accurately detect the temporal and spatial variations in clouds and aerosols. The inverted optical depths were experimentally compared with those obtained using a solar photometer. The average optical depth was 0.314, as detected using LiDAR, and 0.329, as detected by the sun photometer, with an average detection error of 4.559%. Therefore, optical–mechanical integration analysis can effectively improve the stability of the structure of highly integrated and complex optical systems. Full article
Show Figures

Figure 1

17 pages, 2369 KB  
Review
Science with the ASTRI Mini-Array: From Experiment to Open Observatory
by Stefano Vercellone
Universe 2024, 10(2), 94; https://doi.org/10.3390/universe10020094 - 16 Feb 2024
Cited by 2 | Viewed by 1947
Abstract
Although celestial sources emitting in the few tens of GeV up to a few TeV are being investigated by imaging atmospheric Čerenkov telescope arrays such as H.E.S.S., MAGIC, and VERITAS, at higher energies, up to PeV, more suitable instrumentation is required to detect [...] Read more.
Although celestial sources emitting in the few tens of GeV up to a few TeV are being investigated by imaging atmospheric Čerenkov telescope arrays such as H.E.S.S., MAGIC, and VERITAS, at higher energies, up to PeV, more suitable instrumentation is required to detect ultra-high-energy photons, such as extensive air shower arrays, as HAWC, LHAASO, Tibet AS-γ. The Italian National Institute for Astrophysics has recently become the leader of an international project, the ASTRI Mini-Array, with the aim of installing and operating an array of nine dual-mirror Čerenkov telescopes at the Observatorio del Teide in Spain starting in 2025. The ASTRI Mini-Array is expected to span a wide range of energies (1–200 TeV), with a large field of view (about 10 degrees) and an angular and energy resolution of ∼3 arcmin and ∼10 %, respectively. The first four years of operations will be dedicated to the exploitation of Core Science, with a small and selected number of pointings with the goal of addressing some of the fundamental questions on the origin of cosmic rays, cosmology, and fundamental physics, the time-domain astrophysics and non γ-ray studies (e.g., stellar intensity interferometry and direct measurements of cosmic rays). Subsequently, four more years will be dedicated to Observatory Science, open to the scientific community through the submission of observational proposals selected on a competitive basis. In this paper, I will review the Core Science topics and provide examples of possible Observatory Science cases, taking into account the synergies with current and upcoming observational facilities. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

14 pages, 418 KB  
Article
GLADE: Gravitational Light-Bending Astrometry Dual-Satellite Experiment
by Mario Gai, Alberto Vecchiato, Alberto Riva, Alexey G. Butkevich, Deborah Busonero and Federico Landini
Appl. Sci. 2024, 14(2), 888; https://doi.org/10.3390/app14020888 - 20 Jan 2024
Cited by 1 | Viewed by 1955
Abstract
Light bending is one of the classical tests of general relativity and is a crucial aspect to be taken into account for accurate assessments of photon propagation. In particular, high-precision astrometry can constrain theoretical models of gravitation in the weak field limit applicable [...] Read more.
Light bending is one of the classical tests of general relativity and is a crucial aspect to be taken into account for accurate assessments of photon propagation. In particular, high-precision astrometry can constrain theoretical models of gravitation in the weak field limit applicable to the Sun neighborhood. We propose a concept for experimental determination of the light deflection close to the Sun in the 107 to 108 range, in a modern rendition of the 1919 experiment by Dyson, Eddington and Davidson, using formation flying to generate an artificial long-lasting eclipse. The technology is going to be demonstrated by the forthcoming ESA mission PROBA3. The experimental setup includes two units separated by 150 m and aligned to the mm level: an occulter and a small telescope (0.3 m diameter) with an annular field of view covering a region 0.7 from the Sun. The design is compatible with a space weather payload, merging several instruments for observation of the solar corona and environment. We discuss the measurement conditions and the expected performance. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

15 pages, 311 KB  
Article
Quantum Spacetime Geometrization: QED at High Curvature and Direct Formation of Supermassive Black Holes from the Big Bang
by Piero Chiarelli
Quantum Rep. 2024, 6(1), 14-28; https://doi.org/10.3390/quantum6010002 - 26 Dec 2023
Viewed by 2607
Abstract
In this work, the author employs the quantum hydrodynamic formalism to achieve the geometrization of spacetime for describing the gravitational interaction within the framework of quantum theory. This approach allows for the development of an equation of gravity that is mathematically connected to [...] Read more.
In this work, the author employs the quantum hydrodynamic formalism to achieve the geometrization of spacetime for describing the gravitational interaction within the framework of quantum theory. This approach allows for the development of an equation of gravity that is mathematically connected to the fermion and boson fields. This achievement is accomplished by incorporating two fundamental principles: covariance of the quantum field equations and the principle of least action. By considering these principles, a theory is established that enables the calculation of gravitational corrections to quantum electrodynamics and, potentially, to the standard model of particle physics as well. The theory also provides an explanation for two phenomena: the existence of a cosmological pressure density similar to quintessence, which is compatible with the small value of the observed cosmological constant, and the breaking of matter–antimatter symmetry at high energies, offering insights into why there is an imbalance between the two in the early universe. In the cosmological modeling of the theory, there exists a proposal to account for the formation of supermassive black holes that are accompanied by their own surrounding galaxies, without relying on the process of mass accretion. The model, in accordance with recent observations conducted by the James Webb Space Telescope, supports the notion that galactic configurations were established relatively early in the history of the universe, shortly after the occurrence of the Big Bang. Full article
25 pages, 3033 KB  
Article
SAINT (Small Aperture Imaging Network Telescope)—A Wide-Field Telescope Complex for Detecting and Studying Optical Transients at Times from Milliseconds to Years
by Grigory Beskin, Anton Biryukov, Alexey Gutaev, Sergey Karpov, Gor Oganesyan, Gennady Valyavin, Azamat Valeev, Valery Vlasyuk, Nadezhda Lyapsina and Vyacheslav Sasyuk
Photonics 2023, 10(12), 1352; https://doi.org/10.3390/photonics10121352 - 7 Dec 2023
Cited by 2 | Viewed by 3027
Abstract
In this paper, we present a project of a multi-channel wide-field optical sky monitoring system with high temporal resolution—Small Aperture Imaging Network Telescope (SAINT)— mostly built from off-the-shelf components and aimed towards searching and studying optical transient phenomena on the shortest time scales. [...] Read more.
In this paper, we present a project of a multi-channel wide-field optical sky monitoring system with high temporal resolution—Small Aperture Imaging Network Telescope (SAINT)— mostly built from off-the-shelf components and aimed towards searching and studying optical transient phenomena on the shortest time scales. The instrument consists of twelve channels each containing 30 cm (F/1.5) GENON Max objectives mounted on separate ASA DDM100 mounts with pointing speeds up to 50 deg/s. Each channel is equipped with a 4128 × 4104 pixel Andor Balor sCMOS detector and a set of photometric griz filters and linear polarizers. At the heart of every channel is a custom-built reducer-collimator module allowing rapid switching of an effective focal length of the telescope—due to it the system is capable of operating in either wide-field survey or narrow-field follow-up modes. In the first case, the field of view of the instrument is 470 square degrees (39 sq.deg. for a single channel) and the detection limits (5σ level at 5500 Å) are 12.5, 16.5, 19, 21 with exposure times of 20 ms, 1 s, 30 s and 20 min, correspondingly. In the second, follow-up (e.g., upon detection of a transient of interest by either a real-time detection pipeline, or upon receiving an external trigger) regime, all telescopes are oriented towards the single target, and SAINT becomes an equivalent to a monolithic 1-meter telescope, with the field of view reduced to 11 × 11, and the exposure times decreased down to 0.6 ms (1684 frames per second). Different channels may then have different filters installed, thus allowing a detailed study—acquiring both color and polarization information—of a target object with the highest possible temporal resolution. The telescopes are located in two pavilions with sliding roofs and are controlled by a cluster of 25 computers that both govern their operation and acquire and store up to 800 terabytes of data every night, also performing its real-time processing using a dedicated fast image subtraction pipeline. Long-term storage of the data will require a petabyte class storage. The operation of SAINT will allow acquiring an unprecedented amount of data on various classes of astrophysical phenomena, from near-Earth to extragalactic ones, while its multi-channel design and the use of commercially available components allows easy expansion of its scale, and thus performance and detection capabilities. Full article
(This article belongs to the Special Issue Optical Systems for Astronomy)
Show Figures

Figure 1

16 pages, 5220 KB  
Communication
Underwater Single-Photon Lidar Equipped with High-Sampling-Rate Multi-Channel Data Acquisition System
by Zaifa Lin, Mingjia Shangguan, Fuqing Cao, Zhifeng Yang, Ying Qiu and Zhenwu Weng
Remote Sens. 2023, 15(21), 5216; https://doi.org/10.3390/rs15215216 - 2 Nov 2023
Cited by 9 | Viewed by 5084
Abstract
Lidar has emerged as an important technology for the high-precision three-dimensional remote sensing of the ocean. While oceanic lidar has been widely deployed on various platforms, its underwater deployment is relatively limited, despite its significance in deep-sea exploration and obstacle avoidance for underwater [...] Read more.
Lidar has emerged as an important technology for the high-precision three-dimensional remote sensing of the ocean. While oceanic lidar has been widely deployed on various platforms, its underwater deployment is relatively limited, despite its significance in deep-sea exploration and obstacle avoidance for underwater platforms. Underwater lidar systems must meet stringent requirements for high performance, miniaturization, and high integration. Single-photon lidar, by elevating the detection sensitivity to the single-photon level, enables high-performance detection under the condition of a low-pulse-energy laser and a small-aperture telescope, making it a stronger candidate for underwater lidar applications. However, this imposes demanding requirements for the data acquisition system utilized in single-photon lidar systems. In this work, a self-developed multi-channel acquisition system (MCAS) with a high-resolution and real-time histogram statistics capability was developed. By utilizing field-programmable gate array (FPGA) technology, a method that combines coarse counters with multi-phase clock interpolation achieved an impressive resolution of 0.5 ns and enabled a time of flight duration of 1.5 μs. To address counting instability, a dual-counter structure was adopted in the coarse counter, and real-time histogram statistics were achieved in the data acquisition system through a state machine. Furthermore, the non-uniform phase shift of the clock was analyzed, and a correction algorithm based on code density statistics was proposed to mitigate the periodic modulation of the backscattered signal, with the effectiveness of the algorithm demonstrated through experimental results. The robustness and stability of the MCAS were validated through an underwater experiment. Ultimately, the development of this compact acquisition system enables the implementation of underwater single-photon lidar systems, which will play a crucial role in underwater target imaging, obstacle avoidance in underwater platforms, and deep-sea marine environment monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Underwater and Terrestrial Remote Sensing)
Show Figures

Figure 1

18 pages, 5177 KB  
Article
Weak Spatial Target Extraction Based on Small-Field Optical System
by Xuguang Zhang, Yunmeng Liu, Huixian Duan and E Zhang
Sensors 2023, 23(14), 6315; https://doi.org/10.3390/s23146315 - 11 Jul 2023
Cited by 7 | Viewed by 2077
Abstract
Compared to wide-field telescopes, small-field detection systems have higher spatial resolution, resulting in stronger detection capabilities and higher positioning accuracy. When detecting by small fields in synchronous orbit, both space debris and fixed stars are imaged as point targets, making it difficult to [...] Read more.
Compared to wide-field telescopes, small-field detection systems have higher spatial resolution, resulting in stronger detection capabilities and higher positioning accuracy. When detecting by small fields in synchronous orbit, both space debris and fixed stars are imaged as point targets, making it difficult to distinguish them. In addition, with the improvement in detection capabilities, the number of stars in the background rapidly increases, which puts higher requirements on recognition algorithms. Therefore, star detection is indispensable for identifying and locating space debris in complex backgrounds. To address these difficulties, this paper proposes a real-time star extraction method based on adaptive filtering and multi-frame projection. We use bad point repair and background suppression algorithms to preprocess star images. Afterwards, we analyze and enhance the target signal-to-noise ratio (SNR). Then, we use multi-frame projection to fuse information. Subsequently, adaptive filtering, adaptive morphology, and adaptive median filtering algorithms are proposed to detect trajectories. Finally, the projection is released to locate the target. Our recognition algorithm has been verified by real star images, and the images were captured using small-field telescopes. The experimental results demonstrate the effectiveness of the algorithm proposed in this paper. We successfully extracted hip-27066 star, which has a magnitude of about 12 and an SNR of about 1.5. Compared with existing methods, our algorithm has advantages in both recognition rate and false-alarm rate, and can be used as a real-time target recognition algorithm for space-based synchronous orbit detection payloads. Full article
(This article belongs to the Special Issue Optical Sensors for Space Situational Awareness)
Show Figures

Figure 1

20 pages, 34233 KB  
Article
Multi-Level Convolutional Network for Ground-Based Star Image Enhancement
by Lei Liu, Zhaodong Niu, Yabo Li and Quan Sun
Remote Sens. 2023, 15(13), 3292; https://doi.org/10.3390/rs15133292 - 27 Jun 2023
Cited by 5 | Viewed by 2110
Abstract
The monitoring of space debris is important for spacecraft such as satellites operating in orbit, but the background in star images taken by ground-based telescopes is relatively complex, including stray light caused by diffuse reflections from celestial bodies such as the Earth or [...] Read more.
The monitoring of space debris is important for spacecraft such as satellites operating in orbit, but the background in star images taken by ground-based telescopes is relatively complex, including stray light caused by diffuse reflections from celestial bodies such as the Earth or Moon, interference from clouds in the atmosphere, etc. This has a serious impact on the monitoring of dim and small space debris targets. In order to solve the interference problem posed by a complex background, and improve the signal-to-noise ratio between the target and the background, in this paper, we propose a novel star image enhancement algorithm, MBS-Net, based on background suppression. Specifically, the network contains three parts, namely the background information estimation stage, multi-level U-Net cascade module, and recursive feature fusion stage. In addition, we propose a new multi-scale convolutional block, which can laterally fuse multi-scale perceptual field information, which has fewer parameters and fitting capability compared to ordinary convolution. For training, we combine simulation and real data, and use parameters obtained on the simulation data as pre-training parameters by way of parameter migration. Experiments show that the algorithm proposed in this paper achieves competitive performance in all evaluation metrics on multiple real ground-based datasets. Full article
Show Figures

Figure 1

Back to TopTop