Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (718)

Search Parameters:
Keywords = small water bodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 647 KiB  
Article
Research on a Method for Optimizing the Horizontal Section Length of Ultra-Short-Radius Horizontal Wells
by Huijian Wen, Xueying Li, Shengjuan Qian, Xiangzheng Li and Yuhao Zhang
Processes 2025, 13(8), 2597; https://doi.org/10.3390/pr13082597 (registering DOI) - 17 Aug 2025
Abstract
The primary contradiction in mature oilfields during the high water-cut stage is the uneven vertical water drive, which prevents the effective utilization of residual oil in the upper part of thick sand bodies at small scales. To address this issue, ultra-short-radius horizontal wells [...] Read more.
The primary contradiction in mature oilfields during the high water-cut stage is the uneven vertical water drive, which prevents the effective utilization of residual oil in the upper part of thick sand bodies at small scales. To address this issue, ultra-short-radius horizontal wells are employed to establish large-diameter oil flow channels within the reservoir, thereby achieving precise exploitation of this type of residual oil. Optimizing the length of the horizontal section is a critical issue in the development of small-scale residual oil, but conventional methods for optimizing the length of horizontal sections cannot be directly applied to ultra-short-radius horizontal wells (USRHWs). Therefore, utilizing reservoir seepage mechanics theory, the reservoir numerical simulation method was employed to investigate variations in daily and cumulative oil production for different horizontal section lengths. The theoretical upper limit of the optimal horizontal section length for actual injection and production well patterns was determined. Considering the coupled flow characteristics in the bottom water drive reservoir formation and wellbore, as well as the impact of friction losses caused by the relative roughness of the pipe wall under turbulent flow conditions on productivity, a mathematical model was established for the optimal length of the horizontal section of USRHWs, and the technological optimal value was determined. On this basis, fully accounting for the influence of drilling costs and oil prices on the optimization of the horizontal section length, an economic model for optimizing horizontal section length was established, and we comprehensively determine the optimal length of horizontal sections from multiple perspectives, including simulation, technology, and economics. The effectiveness of this method was validated by the processing results of actual reservoir parameters and the production performance after drilling. Full article
(This article belongs to the Section Energy Systems)
12 pages, 1701 KiB  
Article
Smaller Body Size and Warmer Water Improve Two Temperate Fishes’ Upstream Passage over Wetted Ramps
by Uli Reinhardt and Grace Scott Halcrow
Fishes 2025, 10(8), 401; https://doi.org/10.3390/fishes10080401 - 11 Aug 2025
Viewed by 209
Abstract
Most artificial fishways allow upstream passage of large-bodied, strong-swimming fish species. Wetted ramps, which are moderate in inclination and have little water flow, could allow passage of smaller-bodied fishes over low-head dams and culverts. We observed creek chubs (Semotilus atromculatus) and [...] Read more.
Most artificial fishways allow upstream passage of large-bodied, strong-swimming fish species. Wetted ramps, which are moderate in inclination and have little water flow, could allow passage of smaller-bodied fishes over low-head dams and culverts. We observed creek chubs (Semotilus atromculatus) and white suckers (Catostomus commersonii) on wetted ramps in a laboratory setting. Smaller individuals entered the ramps at lower absolute swim velocities but exhibited superior upstream passage due to positive acceleration in the thin (<1 cm) water layer on the ramps. Larger fish displayed more pronounced, probably less efficient, head and tail amplitudes during passage. We argue that the relatively smaller depth of immersion in water was responsible for hampering the larger-bodied individuals on the ramps. Warmer water temperatures (15 °C vs. 10 °C) roughly doubled the mean distance fish traveled up the ramps. Our findings can inform fishway design for small-bodied fishes. In regions with low-head barriers against invasive sea lamprey (Petromyzon marinus), wetted ramps may help connect habitats for native fish species. Full article
Show Figures

Figure 1

29 pages, 7705 KiB  
Article
Deep Learning Small Water Body Mapping by Transfer Learning from Sentinel-2 to PlanetScope
by Yuyang Li, Pu Zhou, Yalan Wang, Xiang Li, Yihang Zhang and Xiaodong Li
Remote Sens. 2025, 17(15), 2738; https://doi.org/10.3390/rs17152738 - 7 Aug 2025
Viewed by 210
Abstract
Small water bodies are widely spread and play crucial roles in supporting regional agricultural and aquaculture activities. PlanetScope imagery has a high resolution (3 m) with daily global coverage and has obviously enhanced small water body mapping. Recent studies have demonstrated the effectiveness [...] Read more.
Small water bodies are widely spread and play crucial roles in supporting regional agricultural and aquaculture activities. PlanetScope imagery has a high resolution (3 m) with daily global coverage and has obviously enhanced small water body mapping. Recent studies have demonstrated the effectiveness of deep learning for mapping small water bodies using PlanetScope; however, a persistent challenge remains in the scarcity of high-quality, manually annotated water masks used for model training, which limits the generalization capability of data-driven deep learning models. In this study, we propose a transfer learning framework that leverages Sentinel-2 data to improve PlanetScope-based small water body mapping, capitalizing on the spectral interoperability between PlanetScope and Sentinel-2 bands and the abundance of open-source Sentinel-2 water masks. Eight state-of-the-art segmentation models have been explored. Additionally, this paper presents the first assessment of the VMamba model for small water body mapping, building on its demonstrated success in segmentation tasks. The models were pre-trained using Sentinel-2-derived water masks and subsequently fine-tuned with a limited set (1292 image patches, 256 × 256 pixels in each patch) of manually annotated PlanetScope labels. Experiments were conducted using 5648 image patches and two areas of 9636 km2 and 2745 km2, respectively. Among the evaluated methods, VMamba achieved higher accuracy compared with both CNN- and Transformer-based models. This study highlights the efficacy of combining global Sentinel-2 datasets for pre-training with localized fine-tuning, which not only enhances mapping accuracy but also reduces reliance on labor-intensive manual annotation in regional small water body mapping. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

14 pages, 375 KiB  
Article
The Use of Humic Substances as an Additive to Feed Mixtures in Pheasant Breeding
by Alena Hreško Šamudovská, Stanislav Hreško, Iveta Maskaľová, Alica Tvrdá and Lukáš Bujňák
Animals 2025, 15(15), 2321; https://doi.org/10.3390/ani15152321 - 7 Aug 2025
Viewed by 250
Abstract
The effect of humic substances on growth performance, excretion, and the digestive organs was studied in pheasant chickens. Three hundred 1-day-old pheasant chicks were assigned to two equal groups. Chicks in the experimental group were fed diets supplemented with humic substances (5 g/kg). [...] Read more.
The effect of humic substances on growth performance, excretion, and the digestive organs was studied in pheasant chickens. Three hundred 1-day-old pheasant chicks were assigned to two equal groups. Chicks in the experimental group were fed diets supplemented with humic substances (5 g/kg). Chickens in the experimental group reached significantly higher average daily weight gains (p ˂ 0.05) in the second phase of rearing (29–49 d) at a significantly better feed conversion ratio (p ˂ 0.05). The supplementation of humic substances led to a significant increase in the average body weight of pheasants at the end of the experiment (p ˂ 0.05), and to a significant increase in average daily weight gains for the entire monitored period (p ˂ 0.05). In the experimental group, significantly higher relative weights of the gizzard (p ˂ 0.05), small intestine (p ˂ 0.05), and jejunum (p ˂ 0.05), along with a significantly larger relative length of the duodenum (p ˂ 0.05), were recorded. A significantly higher concentration of dry matter in the droppings of pheasants was found in the experimental group than in the control group (p ˂ 0.05). According to our results, feeding humic substances had the most beneficial effect on pheasant growth performance during the growing phase. Humic substances can also have a positive effect on the microclimate within the breeding facility. Reductions in the water content of droppings contribute to a reduction in the humidity of the litter, thus limiting the activity of nitrogenic bacteria. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

27 pages, 17353 KiB  
Article
A Framework to Retrieve Water Quality Parameters in Small, Optically Diverse Freshwater Ecosystems Using Sentinel-2 MSI Imagery
by Matheus Henrique Tavares, David Guimarães, Joana Roussillon, Valentin Baute, Julien Cucherousset, Stéphanie Boulêtreau and Jean-Michel Martinez
Remote Sens. 2025, 17(15), 2729; https://doi.org/10.3390/rs17152729 - 7 Aug 2025
Viewed by 241
Abstract
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland [...] Read more.
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland water bodies. However, due to spatial, radiometric, and spectral constraints, it has been heavily focused on large lakes. Sentinel-2 MSI is the first sensor with the capability to consistently retrieve a wide range of essential water quality variables, such as chlorophyll-a concentration (chl-a) and water transparency, in small water bodies, and to provide long time series. Here, we provide and validate a framework for retrieving two variables, chl-a and turbidity, over lakes with diverse optical characteristics using Sentinel-2 imagery. It is based on GRS for atmospheric and sun glint correction, WaterDetect for water detection, and inversion models that were automatically selected based on two different sets of optical water types (OWTs)—one for each variable; for chl-a, we produced a blended product for improved spatial representation. To validate the approach, we compared the products with more than 600 in situ data from 108 lakes located in the Adour–Garonne river basins, ranging from 3 to ∼5000 ha, as well as remote sensing reflectance (Rrs) data collected during 10 field campaigns during the summer and spring seasons. Rrs retrieval (n = 65) was robust for bands 2 to 5, with MAPE varying from 15 to 32% and achieving correlation from 0.74 up to 0.92. For bands 6 to 8A, the Rrs retrieval was much less accurate, being influenced by adjacency effects. Glint removal significantly enhanced Rrs accuracy, with RMSE improving from 0.0067 to 0.0021 sr−1 for band 4, for example. Water quality retrieval showed consistent results, with an MAPE of 56%, an RMSE of 11.4 mg m−3, and an r of 0.76 for chl-a, and an MAPE of 47%, an RMSE of 9.7 NTU, and an r of 0.87 for turbidity, and no significant effect of lake area or lake depth on retrieval errors. The temporal and spatial representations of the selected parameters were also shown to be consistent, demonstrating that the framework is robust and can be applied over lakes as small as 3 ha. The validated methods can be applied to retrieve time series of chl-a and turbidity starting from 2016 and with a frequency of up to 5 days, largely expanding the database collected by water agencies. This dataset will be extremely useful for studying the dynamics of these small freshwater ecosystems. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

22 pages, 6288 KiB  
Article
The Pontoon Design Optimization of a SWATH Vessel for Resistance Reduction
by Chun-Liang Tan, Chi-Min Wu, Chia-Hao Hsu and Shiu-Wu Chau
J. Mar. Sci. Eng. 2025, 13(8), 1504; https://doi.org/10.3390/jmse13081504 - 5 Aug 2025
Viewed by 246
Abstract
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel [...] Read more.
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel conditions. The vessel’s resistance is simplified into three components: pontoon, strut, and fin stabilizer. Four design parameters define the pontoon geometry: fore-body length, aft-body length, fore-body angle, and aft-body angle. Computational fluid dynamics (CFD) simulations using STAR-CCM+ 2302 provide 1400 resistance data points, including fin stabilizer lift and drag forces at varying angles of attack. These are used to train a DNN in MATLAB 2018a with five hidden layers containing six, eight, nine, eight, and seven neurons. K-fold cross-validation ensures model stability and aids in identifying optimal design parameters. The optimized hull has a 7.8 m fore-body, 6.8 m aft-body, 10° fore-body angle, and 35° aft-body angle. It achieves a 2.2% resistance reduction compared to the baseline. The improvement is mainly due to a reduced Munk moment, which lowers the angle of attack needed by the fin stabilizer, thereby reducing drag. The optimized design provides cost-efficient construction and enhanced payload capacity. This study demonstrates the effectiveness of combining CFD and deep learning for hull form optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

34 pages, 3521 KiB  
Review
Overview of Water-Ice in Asteroids—Targets of a Revolution by LSST and JWST
by Ákos Kereszturi, Mohamed Ramy El-Maarry, Anny-Chantal Levasseur-Regourd, Imre Tóth, Bernadett D. Pál and Csaba Kiss
Universe 2025, 11(8), 253; https://doi.org/10.3390/universe11080253 - 30 Jul 2025
Viewed by 282
Abstract
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There [...] Read more.
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There might be several extinct comets among the asteroids with only internal ice content, demonstrating the complex evolution of such bodies. To evaluate the formation of ice-hosting small objects, their migration and retention capacity by a surface covering dust layer are also overviewed to provide a complex picture of volatile occurrences. This review aims to support further work and search for sublimation-induced activity of asteroids by future missions and telescopic surveys. Based on the observed and hypothesized occurrence and characteristics of icy asteroids, future observation-related estimations were made regarding the low limiting magnitude future survey of LSST/Vera Rubin and also the infrared ice identification by the James Webb space telescope. According to these estimations, there is a high probability of mapping the distribution of ice in the asteroid belt over the next decade. Full article
(This article belongs to the Special Issue The Hidden Stories of Small Planetary Bodies)
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 435
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 224
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 298
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

21 pages, 2238 KiB  
Article
DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images
by Ziqiang Xu, Mingfeng Li and Haixiang Guo
Appl. Sci. 2025, 15(14), 7733; https://doi.org/10.3390/app15147733 - 10 Jul 2025
Viewed by 262
Abstract
The delineation of aquatic features from satellite remote sensing data is vital for environmental monitoring and disaster early warning. However, existing water body detection models struggle with cross-scale feature extraction, often failing to resolve blurred boundaries, and they under-detect small water bodies in [...] Read more.
The delineation of aquatic features from satellite remote sensing data is vital for environmental monitoring and disaster early warning. However, existing water body detection models struggle with cross-scale feature extraction, often failing to resolve blurred boundaries, and they under-detect small water bodies in complex landscapes. To tackle these challenges, in this study, we present DMLU-Net, a U-shaped neural network integrated with a dynamic multi-kernel large-scale attention mechanism. The model employs a dynamic multi-kernel large-scale attention module (DMLKA) to enhance cross-scale feature capture; a spectral–spatial attention module (SSAM) in the decoder to boost water region sensitivity; and a dynamic upsampling module (DySample) in the encoder to restore image details. DMLU-Net and six models are tested and compared on two publicly available Chinese remote sensing datasets. The results show that the F1-scores of DMLU-net on the two datasets are 94.50% and 86.86%, and the IoU (Intersection over Union) values are 90.46% and 77.74%, both demonstrating the best performance. Notably, the model significantly reduces water boundary artifacts, and it improves overall prediction accuracy and small water body recognition, thus verifying its generalization ability and practical application potential in real-world scenarios. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

13 pages, 620 KiB  
Article
Assessing Environmental Risk Posed by Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part B
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 231; https://doi.org/10.3390/environments12070231 - 8 Jul 2025
Viewed by 1020
Abstract
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it [...] Read more.
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it is essential to ascertain whether these contaminants pose any risk to aquatic organisms who live in the water bodies receiving this waste. Risk quotients (RQ) are a commonly used method to do so. For our pilot study, we undertook such analysis for three trophic levels: algae, crustaceans, and fish from two small lakes, one fed by septic tanks and the other not. This research was conducted in 2021 from the end of the dry season and through most of the wet season in west central Florida, USA. Of the 14 PPCPs measured, six had RQs that posed a risk to all three trophic levels. This risk increased during the wet season. Both lakes, regardless of whether they directly received PPCPs from septic tanks or not, had some level of risk. However, the lake without septic tanks had a smaller risk, both in elevated RQs and the occurrence to the various species. Of the PPCPs measured, DEET, caffeine, and theophylline posed the greatest risk. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Graphical abstract

13 pages, 1338 KiB  
Article
Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China
by Liang Liu, Jinhua Gao, Yijun Sun, Yibo Sun, Handan Liu, Hongqing Sun and Guangyi Mu
Water 2025, 17(13), 2037; https://doi.org/10.3390/w17132037 - 7 Jul 2025
Viewed by 407
Abstract
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration [...] Read more.
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration of cresols in the water bodies of Lake Xingkai (i.e., Daxingkai and Xiaoxingkai Lakes) during four typical hydrological periods (30 April, 22 June, 5 September, and 1 November 2021), assessed the human health risk from phenolic contaminants using the mean value method, and determined the health risk of adult cresol exposure in the Lake Xingkai watershed based on local population exposure parameters. This study developed a water environmental pollution health risk assessment model based on the methodology proposed by the United States Environmental Protection Agency (US EPA). It further evaluated the health risks to humans posed by phenolic pollutants via the drinking water pathway. The results revealed that the concentration range of cresols in water bodies was between 5.91 × 10−1 ng·mL−1 and 6.68 ng·mL−1. The adult drinking water health risk values of cresols in the Lake Xingkai watershed were between 3.15 × 10−4 and 3.57 × 10−3, and all water samples from the 10 sites had hazard quotient (HQ) values less than 1, indicating that the non-carcinogen risk was small or negligible. The cresol HQ value in the water of Xiaoxingkai Lake was 4.6 times that found in Daxingkai Lake. Full article
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
A Phosphorus Microfractionation (P-MF) Method for Measuring Phosphorus Fractions in Small Quantities of Suspended Solids and Sediments: Detailed Method and Example Application
by Jacob B. Taggart, Rebecca L. Ryan, A. Woodruff Miller, Theron G. Miller and Gustavious P. Williams
Environments 2025, 12(7), 218; https://doi.org/10.3390/environments12070218 - 26 Jun 2025
Viewed by 401
Abstract
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed [...] Read more.
The standard methods for sediment phosphorus (P) fractionation are impractical for use with suspended solids due to the inherent difficulties associated with collecting sufficient sample quantities for analysis. To allow the fractionation analysis of small quantities of suspended solids or sediment, we developed a P-microfractionation (P-MF) method and evaluated the minimum sample size threshold. The dry mass threshold is likely <1.0 g for Utah Lake suspended solids and between 0.35 and 0.99 g for Utah Lake sediments, though we recommend experimentation to refine these thresholds for other locations, as Utah Lake sediment P concentrations are high (~1000 mg kg−1). We estimated dry mass using duplicate samples, as drying a sample changes the P fractions. We show that Utah Lake suspended solids have a significantly higher P content across most P fractions compared to those in sediments, emphasizing the importance of considering suspended solids when managing water nutrient levels in eutrophic water bodies. P-MF has the potential to enable researchers to use reasonably sized water samples to assess the P sorption behavior of suspended solids, a measurement not typically performed. Full article
Show Figures

Figure 1

15 pages, 1757 KiB  
Review
Arsenic in Water and Food: Toxicity and Human Exposure
by Pierina Visciano
Foods 2025, 14(13), 2229; https://doi.org/10.3390/foods14132229 - 24 Jun 2025
Viewed by 614
Abstract
Arsenic is a human carcinogen present in drinking water and food, especially rice, rice products and seafood. It can be found in both organic and inorganic forms, the latter being the most toxic. In addition to the carcinogenic effect, exposure to inorganic arsenic [...] Read more.
Arsenic is a human carcinogen present in drinking water and food, especially rice, rice products and seafood. It can be found in both organic and inorganic forms, the latter being the most toxic. In addition to the carcinogenic effect, exposure to inorganic arsenic can cause numerous disorders in different organs/systems of the human body, such as the skin, cardiovascular, neurological, endocrine, immune, and reproductive systems. The risk assessment associated with dietary arsenic is mainly based on the margin of exposure, i.e., the ratio between the dose at which a small but measurable adverse effect may occur and the estimated daily intake of the target substance. It is mainly influenced by arsenic concentrations and consumption data of average or 95th percentile consumers. This review focuses on the toxicity of arsenic, its sources and routes of human exposure, with particular attention to the ingestion of contaminated water and food, considering the differences between age groups and dietary habits. Full article
(This article belongs to the Special Issue Advances in Food Toxin Analysis and Risk Assessment)
Show Figures

Figure 1

Back to TopTop