Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = slow-release acid generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 337
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 215
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

17 pages, 8085 KiB  
Article
Synthesis and Characterization of Poly(Lactic-Co-Glycolic Acid)–Paclitaxel (PLGA-PTX) Nanoparticles Evaluated in Ovarian Cancer Models
by Sylwia A. Dragulska, Maxier Acosta Santiago, Sabina Swierczek, Linus Chuang, Olga Camacho-Vanegas, Sandra Catalina Camacho, Maria M. Padron-Rhenals, John A. Martignetti and Aneta J. Mieszawska
Pharmaceutics 2025, 17(6), 689; https://doi.org/10.3390/pharmaceutics17060689 - 23 May 2025
Viewed by 748
Abstract
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer [...] Read more.
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer therapy. The primary mode of PTX’s action is the hyperstabilization of microtubules leading to cell growth arrest. Although highly potent, the drug is water insoluble and requires the Cremophor EL excipient. The toxic effects of the free drug (e.g., neurotoxicity) as well as its solubilizing agent are well established. Thus, there is strong clinical rationale and need for exploring alternative PTX delivery approaches, retaining biological activity and minimizing systemic effects. Methods: The PTX modification method features reacting the C-2′ and C-7 residues with a linker (succinic anhydride) to produce easily accessible carboxyl groups on the PTX for enhanced coupling to the hydroxyl group of PLGA. The PLGA-PTX hybrid, formed via esterification reaction, was used to formulate lipid-coated PLGA-PTX NPs. As proof of concept, the PLGA-PTX NPs were tested in ovarian cancer (OvCA) models, including several patient-derived cell lines (PDCLs), one of which was generated from a platinum-resistant patient. Results: The PLGA-PTX NPs critically remained stable in water and serum while enabling slow drug release. Importantly, PLGA-PTX NPs demonstrated biological activity. Conclusions: We suggest that this approach offers both a new and effective PTX formulation and a possible path towards the development of a new generation of OvCA treatment. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 2881 KiB  
Article
Preparation of Novel Slow-Release Acid Materials for Oilfield Development via Encapsulation
by Xinshu Sun, Chen Chen, Mingxuan Li, Yiming Yao, Baohua Guo and Jun Xu
Materials 2025, 18(1), 83; https://doi.org/10.3390/ma18010083 - 28 Dec 2024
Viewed by 981
Abstract
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, [...] Read more.
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution. In this research, we designed an innovative chloroformate material and investigated the release of the acid at various temperatures. This new chloroformate material reacts slowly with water at room temperature, and can completely react with water to form hydrochloric acid at high temperatures, without residual organic chlorine and other harmful substances; thus, it is suitable for use as an acid agent in oilfields. To isolate the acid-release core material from the outer water phase, we encapsulated the former with various materials, such as cross-linked polyacrylate or polystyrene, to obtain microcapsules. By slowly breaking and degrading the shell layer at a high temperature, the goal of no acid being released at low temperatures with slow acid generation at a high temperature was achieved. The microcapsules were prepared using radical polymerization and the phase separation method. Furthermore, scanning electron microscopy, differential scanning calorimetry, chemical titration analysis, and other methods were used to characterize the structure and the sustained acid release of microcapsules. The results of thermogravimetry and other experiments showed that the prepared microcapsules successfully coated the chloroformate material. In contrast to the bare material, the slow-release performance of the microcapsules was significantly improved, and the continuous acid generating time was able to reach more than 10 h. Under optimum conditions, microcapsules with a uniform particle size with a sustained-release acid core were prepared, and the encapsulation efficiency reached up to 60%. Compared with traditional acid-release systems, the new system prepared in this study has better acid-release performance at high temperatures, while the product is both clean and convenient to use. Multiple important parameters, such as microcapsule particle size, can also be controlled by varying the experimental conditions to meet the needs of different oil/gas extraction environments. In summary, we prepared a promising new and efficient slow-release acid generation system, which has unique practical significance for optimizing current oilfield acid-fracturing technology. Full article
Show Figures

Figure 1

13 pages, 1765 KiB  
Article
Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue
by Mengying Ruan, Zhenqi Hu, Huiming Fang, Yuan Li and Zhewei Shi
Sustainability 2024, 16(23), 10598; https://doi.org/10.3390/su162310598 - 3 Dec 2024
Viewed by 1033
Abstract
The processes of coal mining and washing generate a substantial amount of coal gangue. During prolonged outdoor storage, this waste can lead to both direct and indirect environmental pollution, as well as geological hazards. Recent research has indicated that the redox processes of [...] Read more.
The processes of coal mining and washing generate a substantial amount of coal gangue. During prolonged outdoor storage, this waste can lead to both direct and indirect environmental pollution, as well as geological hazards. Recent research has indicated that the redox processes of coal gangue are regulated by microorganisms. Techniques such as the application of biocides and the facilitation of microbial interactions have proven effective in controlling the acidic pollution of coal gangue in the short term. However, conventional doping methods that couple sulfate-reducing bacteria with biocides face challenges, including a short effective duration and poor stability. To address these issues, this study utilized corn straw biochar as a microbial attachment material and incorporated water-retaining agents as slow-release biocide carriers, resulting in the development of an environmentally friendly microbial remediation material. This study selected 0.6 g of biochar produced from the pyrolysis of corn straw at 700 °C to immobilize sulfate-reducing bacteria. Additionally, 0.6 g of polyacrylamide was used to prepare a slow-release bactericide with 100 mL of a sodium dodecyl sulfate solution at a concentration of 50 mg·L−1. The composite remediation material successfully raises the pH of weathered coal gangue leachate from 4.32 to 6.88. Its addition notably reduces the sulfate ion concentration in the weathered coal gangue, with sulfate content decreasing by 86.45%. Additionally, the composite material effectively lowers the salinity of the weathered coal gangue. The composite immobilizes heavy metal ions within the weathered coal gangue, achieving an approximate removal rate of 80% over 30 days. Following the introduction of the composite material, significant changes were observed in the dominant microbial communities and population abundances on the surface of the coal gangue. The composite demonstrated the ability to rapidly, sustainably, and effectively remediate the acidification pollution associated with coal gangue. Full article
Show Figures

Figure 1

12 pages, 1354 KiB  
Article
Slow Subcutaneous Release of Glatiramer Acetate or CD40-Targeting Peptide KGYY6 Is More Advantageous in Treating Ongoing Experimental Autoimmune Encephalomyelitis
by Gisela M. Vaitaitis and David H. Wagner
Neurol. Int. 2024, 16(6), 1540-1551; https://doi.org/10.3390/neurolint16060114 - 20 Nov 2024
Viewed by 1171
Abstract
Background/Objectives: One of the first-line disease-modifying treatments of multiple sclerosis (MS) is Glatiramer Acetate (GA), which requires daily or three-times-weekly subcutaneous injections. Disease progression, while slowed, still occurs with time. Increasing the impact of the treatment while decreasing the frequency of injections would [...] Read more.
Background/Objectives: One of the first-line disease-modifying treatments of multiple sclerosis (MS) is Glatiramer Acetate (GA), which requires daily or three-times-weekly subcutaneous injections. Disease progression, while slowed, still occurs with time. Increasing the impact of the treatment while decreasing the frequency of injections would be ideal. The mechanism of action of GA remains undefined. We developed an alternate approach, KGYY6, whose mechanism of action targets the CD40 receptor with promising results in an Experimental Autoimmune Encephalomyelitis (EAE) model. Methods: GA and a CD40-targeting peptide, KGYY6, were formulated as slow-release particles used to treat EAE in C57BL/6 mice. Results: Compared to liquid formulations, the particle formulations vastly improved drug efficacy in both cases, which would be advantageous in treating MS. GA is a combination of randomly generated peptides, in the size range of 5000–9000 Da, using the amino acids E, A, Y, and K. This approach introduces batch differences that impacts efficacy, a persistent problem with GA. KGYY6 is generated in a controlled process and has a motif, K-YY, which could be generated when manufacturing GA. When testing two different lots of GA or KGYY6, the latter performed equally well across lots, while GA did not. Conclusions: Slow-release formulations of both GA and KGYY6 vastly improve the efficacy of both, and KGYY6 is more consistent in efficacy across different lots. Full article
Show Figures

Graphical abstract

13 pages, 4708 KiB  
Article
Preparation and Characterization of Nanofiber Coatings on Bone Implants for Localized Antimicrobial Activity Based on Sustained Ion Release and Shape-Preserving Design
by Yubao Cao, Hong Wang, Shuyun Cao, Zaihao Liu and Yanni Zhang
Materials 2024, 17(11), 2584; https://doi.org/10.3390/ma17112584 - 28 May 2024
Cited by 2 | Viewed by 1081
Abstract
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated [...] Read more.
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated with bioactive Cu2+ ions were fabricated through a compound process involving acid etching, hydrothermal treatment (HT), and ion exchange (IE). A novel coating based on sustained ion release and a shape-preserving design is successfully obtained. Cu2+ substituted Na+ in sodium titanate lattice to generate Cu-doped SNW (CNW), which maintains the micro-structure and phase components of the original SNW, and can be efficiently released from the structure by immersing them in physiological saline (PS) solutions, ensuring superior long-term structural stability. The synergistic effects of the acid etching, bidirectional cogrowth, and solution-strengthening mechanisms endow the coating with higher bonding strengths. In vitro antibacterial tests demonstrated that the CNW coatings exhibited effective good antibacterial properties against both Gram-positive and Gram-negative bacteria based on the continuous slow release of copper ions. This is an exciting attempt to achieve topographic, hydrophilic, and antibacterial activation of metal implants, demonstrating a paradigm for the activation of coatings without dissolution and providing new insights into insoluble ceramic-coated implants with high bonding strengths. Full article
Show Figures

Figure 1

21 pages, 3377 KiB  
Article
Amikacin-Loaded Chitosan Hydrogel Film Cross-Linked with Folic Acid for Wound Healing Application
by Yasir Mehmood, Hira Shahid, Numera Arshad, Akhtar Rasul, Talha Jamshaid, Muhammad Jamshaid, Usama Jamshaid, Mohammad N. Uddin and Mohsin Kazi
Gels 2023, 9(7), 551; https://doi.org/10.3390/gels9070551 - 6 Jul 2023
Cited by 11 | Viewed by 3186
Abstract
Purpose: Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid [...] Read more.
Purpose: Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. Methods: Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. Results: The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. Conclusions: The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application)
Show Figures

Figure 1

19 pages, 2443 KiB  
Article
Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics
by Chainarong Sakulthaew, Chanat Chokejaroenrat, Sidaporn Panya, Apisit Songsasen, Kitipong Poomipuen, Saksit Imman, Nopparat Suriyachai, Torpong Kreetachat and Steve Comfort
Antibiotics 2023, 12(6), 1025; https://doi.org/10.3390/antibiotics12061025 - 7 Jun 2023
Cited by 2 | Viewed by 2010
Abstract
Copious use of antibiotics in aquaculture farming systems has resulted in surface water contamination in some countries. Our objective was to develop a slow-release oxidant that could be used in situ to reduce antibiotic concentrations in discharges from aquaculture lagoons. We accomplished this [...] Read more.
Copious use of antibiotics in aquaculture farming systems has resulted in surface water contamination in some countries. Our objective was to develop a slow-release oxidant that could be used in situ to reduce antibiotic concentrations in discharges from aquaculture lagoons. We accomplished this by generating a slow-release permanganate (SR-MnO4) that was composed of a biodegradable wax and a phosphate-based dispersing agent. Sulfadimethoxine (SDM) and its synergistic antibiotics were used as representative surrogates. Kinetic experiments verified that the antibiotic-MnO4 reactions were first-order with respect to MnO4 and initial antibiotic concentration (second-order rates: 0.056–0.128 s−1 M−1). A series of batch experiments showed that solution pH, water matrices, and humic acids impacted SDM degradation efficiency. Degradation plateaus were observed in the presence of humic acids (>20 mgL−1), which caused greater MnO2 production. A mixture of KMnO4/beeswax/paraffin (SRB) at a ratio of 11.5:4:1 (w/w) was better for biodegradability and the continual release of MnO4, but MnO2 formation altered release patterns. Adding tetrapotassium pyrophosphate (TKPP) into the composite resulted in delaying MnO2 aggregation and increased SDM removal efficiency to 90% due to the increased oxidative sites on the MnO2 particle surface. The MnO4 release data fit the Siepmann–Peppas model over the long term (t < 48 d) while a Higuchi model provided a better fit for shorter timeframes (t < 8 d). Our flow-through discharge tank system using SRB with TKPP continually reduced the SDM concentration in both DI water and lagoon wastewater. These results support SRB with TKPP as an effective composite for treating antibiotic residues in aquaculture discharge water. Full article
Show Figures

Figure 1

21 pages, 5121 KiB  
Article
Enhanced Cell Osteogenic Differentiation in Alendronate Acid and Flufenamic Acid Drug-Impregnated Nanoparticles of Mesoporous Bioactive Glass Composite Calcium Phosphate Bone Cement In Vitro
by Shih-Ming Liu, Jian-Chih Chen, Ssu-Meng Huang, Shang-Hong Lin and Wen-Cheng Chen
Pharmaceuticals 2023, 16(5), 680; https://doi.org/10.3390/ph16050680 - 1 May 2023
Cited by 11 | Viewed by 2785
Abstract
This study aims to compare the anti-osteoporotic drugs alendronic acid (ALN) and flufenamic acid (FA) alone impregnate into nanoparticles of mesoporous bioactive glass (nMBG), which further composites calcium phosphate cement (CPC) and investigates their in vitro performance. The drug release, physicochemical properties, and [...] Read more.
This study aims to compare the anti-osteoporotic drugs alendronic acid (ALN) and flufenamic acid (FA) alone impregnate into nanoparticles of mesoporous bioactive glass (nMBG), which further composites calcium phosphate cement (CPC) and investigates their in vitro performance. The drug release, physicochemical properties, and biocompatibility of nMBG@CPC composite bone cement are tested, and the effect of the composites on improving the proliferation and differentiation efficiency of mouse precursor osteoblasts (D1 cells) is also investigated. Drug release shows that FA impregnates nMBG@CPC composite, a large amount of FA is released rapidly within 8 h, gradually reaching a stable release within 12 h, followed by a slow and sustained release within 14 days, and then reaches a plateau within 21 days. The release phenomenon confirms that the drug-impregnated nBMG@CPC composite bone cement effectively achieves slow drug delivery. The working time and setting time of each composite are within 4–10 min and 10–20 min, respectively, meeting the operational requirements of clinical applications. The addition of nMBG nanoparticles in the CPC matrix did not prevent the aggregation phenomenon under microstructural observation, thus resulting in a decrease in the strength of the nMBG@CPC composite. However, after 24 h of immersed reaction, the strength of each 5 wt.% nMBG impregnated with different concentrations of FA and ALN is still greater than 30 MPa, which is higher than the general trabecular bone strength. The drug-impregnated nMBG@CPC composites did not hinder the product formation and exhibit biocompatibility. Based on the proliferation and mineralization of D1 cells, the combination of nMBG with abundant FA and ALN in CPC is not conducive to the proliferation of D1 cells. However, when D1 cells are contact cultured for 21 days, alkaline phosphatase (ALP) enzyme activity shows higher ALP secretion from drug-impregnated nMBG@CPC composites than drug-free composites. Accordingly, this study confirms that nMBG can effectively impregnate the anti-osteoporosis drugs FA and ALN, and enhance the mineralization ability of osteoblasts. Furthermore, drug-impregnated nMBG applications can be used alone or in combination with CPC as a new option for osteoporotic bone-filling surgery. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

12 pages, 11259 KiB  
Article
Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment
by Wu Zhong, Zhehao Shen, Menglan Wang, Hongyi Wang, Yuting Sun, Xiaojun Tao and Defu Hou
Pharmaceuticals 2023, 16(3), 374; https://doi.org/10.3390/ph16030374 - 1 Mar 2023
Cited by 6 | Viewed by 2448
Abstract
Triple negative breast cancer (TNBC), which has poor prognosis, easily develops drug resistance and metastasizes. In general, those TNBC characteristics are related to a high activation of the epithelial-mesenchymal transition (EMT) pathway, which is inhibited by shikonin (SKN). Therefore, the synergistic therapy of [...] Read more.
Triple negative breast cancer (TNBC), which has poor prognosis, easily develops drug resistance and metastasizes. In general, those TNBC characteristics are related to a high activation of the epithelial-mesenchymal transition (EMT) pathway, which is inhibited by shikonin (SKN). Therefore, the synergistic therapy of SKN and doxorubicin (DOX) will increase anti-tumor efficacy and reduce metastasis. In this study, we prepared the folic acid-linked PEG nanomicelle (NM) grafted with the DOX (denoted as FPD) to load the SKN. We prepared the SKN@FPD NM according to the effective ratio of dual drugs, where the drug loadings of DOX and SKN were 8.86 ± 0.21% and 9.43 ± 0.13%, with 121.8 ± 1.1 nm of its hydrodynamic dimension and 6.33 ± 0.16 mV of zeta potential, respectively. The nanomaterials significantly slowed down the release of DOX and SKN over 48 h, leading to the release of pH-responsive drugs. Meanwhile, the prepared NM inhibited the activity of MBA-MD-231 cells in vitro. Further in vitro study revealed that the SKN@FPD NM increased the DOX uptake and significantly reduced the metastasis of MBA-MD-231 cells. Overall, these active-targeting NMs improved the tumor-targeting of small molecular drugs and effectively treated TNBC. Full article
(This article belongs to the Special Issue Biodegradable Polymeric Nanosystems for Drug Delivery)
Show Figures

Figure 1

15 pages, 3427 KiB  
Article
pH-Induced Orthogonal Photoresponse of trans-Chalcone Isomers and Related Compounds in Equilibria
by Jeonghee Kang, Ketevan Basilashvili, Barney Yoo and Jong I. Lee
Colorants 2023, 2(1), 58-72; https://doi.org/10.3390/colorants2010005 - 17 Feb 2023
Cited by 2 | Viewed by 2982
Abstract
Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1 [...] Read more.
Photoresponsive molecular devices can be a valuable tool to promote chemical changes in response to multiple signals, such as photons and pH, to deliver drugs or to detect physiological conditions in vivo. For example, trans-chalcones (Ct) from 4′-hydroxyflavylium (F1) and 7-hydroxyflavylium (F2) can undergo cis-trans isomerization by photoreaction into many different structures. The isomerization takes place at a slow rate in response to pH change; however, it can be done in seconds by photoreaction. In the investigation, as confirming the previous reports, 3-(2-hydroxy-phenyl)-1-(4-hydroxy-phenyl)-propenone, the trans-chalcone (CtF1) from F1, produces flavylium ions in pH = 1–4.5. Then, we further discovered that the flavylium quickly releases protons to yield the corresponding quinoidal base (A) in a solution of pH = 5.2 during irradiation with 350 nm. Meanwhile, the photolysis of 3-(2,4-dihydroxy-phenyl)-1-phenyl-propenone, the trans-chalcone (CtF2) from F2 at pH = 5.6, induces photoacid behavior by losing a proton from the trans-chalcone to generate Ct2. The different outcomes of these nearly colorless chalcones under similar pH conditions and with the same photochemical conditions can be useful when yielding colored AH+, A, or Ct2 in a mildly acidic pH environment with temporal and spatial control using photochemical means. Full article
(This article belongs to the Special Issue Recent Progress on Functional Dyes and Their Applications)
Show Figures

Graphical abstract

14 pages, 1669 KiB  
Article
Hyaluronic Acid Hydrogel Containing Resveratrol-Loaded Chitosan Nanoparticles as an Adjuvant in Atopic Dermatitis Treatment
by Raffaele Conte, Ilenia De Luca, Anna Valentino, Pierfrancesco Cerruti, Parisa Pedram, Gustavo Cabrera-Barjas, Arash Moeini and Anna Calarco
J. Funct. Biomater. 2023, 14(2), 82; https://doi.org/10.3390/jfb14020082 - 31 Jan 2023
Cited by 39 | Viewed by 5763
Abstract
Atopic dermatitis (AD) is a common disease-causing skin inflammation, redness, and irritation, which can eventually result in infection that drastically impacts patient quality of life. Resveratrol (Res) is a natural phytochemical famed for its excellent anti-inflammatory and antioxidant activities. However, it is poorly [...] Read more.
Atopic dermatitis (AD) is a common disease-causing skin inflammation, redness, and irritation, which can eventually result in infection that drastically impacts patient quality of life. Resveratrol (Res) is a natural phytochemical famed for its excellent anti-inflammatory and antioxidant activities. However, it is poorly bioavailable. Thus, a drug delivery system is needed to enhance in vivo bioactivity. Herein, we report the preparation of hyaluronic acid (HA) hydrogels containing resveratrol-loaded chitosan (CS) nanoparticles, their physicochemical analysis, and their potential therapeutic effects in the treatment of AD. Positively charged CS nanoparticles prepared by tripolyphosphate (TPP) gelation showed sizes ranging from 120 to around 500 nm and Res encapsulation efficiency as high as 80%. Embedding the nanoparticles in HA retarded their hydrolytic degradation and also slowed resveratrol release. Resveratrol released from nanoparticle-loaded hydrogel counteracted the oxidative damage induced by ROS generation in TNF-α/INF-γ-treated human keratinocytes (HaCaT) used as an AD in vitro model. Moreover, pre-treatment with Res@gel reduced secretion and gene expression of proinflammatory cytokines in HaCaT cells. The physicochemical analysis and in vitro assay confirmed that the formulated hydrogel could be considered an efficient and sustained resveratrol delivery vector in AD treatment. Full article
Show Figures

Graphical abstract

15 pages, 4580 KiB  
Article
Sustainable Restoration of Depleted Quarries by the Utilization of Biomass Energy By-Products: The Case of Olive Kernel Residuals
by Charalampos Vasilatos, Zacharenia Kypritidou, Marianthi Anastasatou and Konstantinos Aspiotis
Sustainability 2023, 15(2), 1642; https://doi.org/10.3390/su15021642 - 14 Jan 2023
Cited by 5 | Viewed by 2334
Abstract
The combustion of biomass has a neutral atmospheric CO2 fingerprint, because the overall produced CO2 emissions are balanced by the CO2 uptake from the plants during their growth. The current study evaluates the environmental impact of the biomass ash wastes [...] Read more.
The combustion of biomass has a neutral atmospheric CO2 fingerprint, because the overall produced CO2 emissions are balanced by the CO2 uptake from the plants during their growth. The current study evaluates the environmental impact of the biomass ash wastes originating from the combustion of olive-kernel residuals for electricity production in accordance with Directive EE/2003. Additionally, the study investigates the potential use of such waste in the restoration of depleted calcareous aggregate quarries in the frame of the circular economy, as a substrate or as a soil amendment. Olive-kernel residual ash, obtained from a 5 MW operating electricity power plant, was mixed with soil and tested for its adequacy for use as a substrate or soil amendment in a depleted calcareous aggregate quarry. The positive effects of the olive-kernel residual bottom ashes in the availability and the mobility of major and trace elements were assessed in both batch and column experiments. The effect of biomass ash in soil amelioration was assessed via pot experiments, by examining the growth of two plant species Cupressus sempervirens (cypress) and Dichondra repens (alfalfa). The environmental characterization of the olive-kernel residual bottom ash indicates that the water-leachable concentrations of controlled elements are, generally, within the acceptable limits for disposal as inert waste in landfills. However, the bottom ash was found to contain significant amounts of K, Ca and Mg, which are macro-nutrients for the growth of plants, serving as a slow-release fertilizer by adding nutrients in the soil. The application of bottom ash in the alkaline soil had a minor positive effect in plant growth while the addition of the ash in the acidic soil exhibited considerable effect in the growth of Dichondra repens and Cupressus sempervirens due to the release of nutrients and to the pH conditioning. Olive-kernel residual bottom ash has been proved to be appropriate as a soil amendment, and as a soil substrate for the restoration of depleted quarries, decreasing the requirement for commercial inorganic fertilizers. Full article
Show Figures

Figure 1

17 pages, 2581 KiB  
Article
Hybrid Silica-Coated PLGA Nanoparticles for Enhanced Enzyme-Based Therapeutics
by Kyle T. Gustafson, Negin Mokhtari, Elise C. Manalo, Jose Montoya Mira, Austin Gower, Ya-San Yeh, Mukanth Vaidyanathan, Sadik C. Esener and Jared M. Fischer
Pharmaceutics 2023, 15(1), 143; https://doi.org/10.3390/pharmaceutics15010143 - 31 Dec 2022
Cited by 2 | Viewed by 2627
Abstract
Some cancer cells rely heavily on non-essential biomolecules for survival, growth, and proliferation. Enzyme based therapeutics can eliminate these biomolecules, thus specifically targeting neoplastic cells; however, enzyme therapeutics are susceptible to immune clearance, exhibit short half-lives, and require frequent administration. Encapsulation of therapeutic [...] Read more.
Some cancer cells rely heavily on non-essential biomolecules for survival, growth, and proliferation. Enzyme based therapeutics can eliminate these biomolecules, thus specifically targeting neoplastic cells; however, enzyme therapeutics are susceptible to immune clearance, exhibit short half-lives, and require frequent administration. Encapsulation of therapeutic cargo within biocompatible and biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) is a strategy for controlled release. Unfortunately, PLGA NPs exhibit burst release of cargo shortly after delivery or upon introduction to aqueous environments where they decompose via hydrolysis. Here, we show the generation of hybrid silica-coated PLGA (SiLGA) NPs as viable drug delivery vehicles exhibiting sub-200 nm diameters, a metastable Zeta potential, and high loading efficiency and content. Compared to uncoated PLGA NPs, SiLGA NPs offer greater retention of enzymatic activity and slow the burst release of cargo. Thus, SiLGA encapsulation of therapeutic enzymes, such as asparaginase, could reduce frequency of administration, increase half-life, and improve efficacy for patients with a range of diseases. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop