Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity and Synergistic Efficacy of Free Doxorubicin (DOX) and Shikonin (SKN)
2.2. Preparation and Characterization of NMs
2.3. Drug Loading and Release of NMs
2.4. Cytotoxicity of NMs In Vitro
2.5. NMs Increase the Cellular Uptake In Vitro
2.6. NMs Inhibit Cell Migration In Vitro
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Anti-Tumor Efficacy and Synergy of Drugs In Vitro
4.4. Synthesis of Nanomaterials
4.5. Preparation and Characterization of Nanomicelle
4.6. Detection of Nanomaterials
4.7. Drug Loading and Drug Release In Vitro
4.8. Cell Migration Assay
4.9. In Vitro Intracellular Uptake
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
References
- Yi, J.; Shuang, Z.; Zhong, W.; Wu, H.; Feng, J.; Zouxu, X.; Huang, X.; Li, S.; Wang, X. Identification of immune-related risk characteristics and prognostic value of immunophenotyping in tnbc. Front. Genet. 2021, 12, 730442. [Google Scholar] [CrossRef] [PubMed]
- Deepak, K.G.K.; Vempati, R.; Nagaraju, G.; Dasari, V.; Nagini, S.; Rao, D.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020, 153, 104683. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Dustin, D.; Fuqua, S.A. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr. Opin. Pharmacol. 2016, 31, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Liu, Y.; Gao, Z.; Huang, W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B 2021, 11, 55–70. [Google Scholar] [CrossRef]
- Pan, G.; Liu, Y.; Shang, L.; Zhou, F.; Yang, S. Emt-associated micrornas and their roles in cancer stemness and drug resistance. Cancer Commun. 2021, 41, 199–217. [Google Scholar] [CrossRef]
- Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikonin-a review in recent years. Pharmacol. Res. 2019, 149, 104463. [Google Scholar] [CrossRef]
- Boulos, J.C.; Rahama, M.; Hegazy, M.-E.F.; Efferth, T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019, 459, 248–267. [Google Scholar] [CrossRef]
- Mu, Z.; Guo, J.; Zhang, D.; Xu, Y.; Zhou, M.; Guo, Y.; Hou, Y.; Gao, X.; Han, X.; Geng, L. Therapeutic effects of shikonin on skin diseases: A review. Am. J. Chin. Med. 2021, 49, 1871–1895. [Google Scholar] [CrossRef]
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef]
- Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S.M. Nanoparticles and innate immunity: New perspectives on host defence. Semin. Immunol. 2017, 34, 33–51. [Google Scholar] [CrossRef]
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.; Darwish, G.; Peveler, W.; Xiao, Z.; Tsai, H.-Y.; Gupta, R.; et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Du, S.; Zhong, W.; Liu, K.; Qu, L.; Chu, F.; Yang, J.; Han, X. Accurate delivery of pristimerin and paclitaxel by folic acid-linked nano-micelles for enhancing chemosensitivity in cancer therapy. Nano Converg. 2022, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.K.; Kaddoumi, A.; Nazzal, S. Peg-lipid micelles as drug carriers: Physiochemical attributes, formulation principles and biological implication. J. Drug Target. 2015, 23, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Gao, J.; Kwon, G.S. Peg-b-pla micelles and plga-b-peg-b-plga sol-gels for drug delivery. J. Control. Release Off. J. Control. Release Soc. 2016, 240, 191–201. [Google Scholar] [CrossRef]
- Pasut, G.; Canal, F.; Via, L.D.; Arpicco, S.; Veronese, F.; Schiavon, O. Antitumoral activity of peg-gemcitabine prodrugs targeted by folic acid. J. Control. Release Off. J. Control. Release Soc. 2008, 127, 239–248. [Google Scholar] [CrossRef]
- Brandt, J.V.; Piazza, R.; Santos, C.D.; Vega-Chacón, J.; Amantéa, B.; Pinto, G.; Magnani, M.; Piva, H.; Tedesco, A.; Primo, F.; et al. Synthesis and colloidal characterization of folic acid-modified peg-b-pcl micelles for methotrexate delivery. Colloids Surf. B Biointerfaces 2019, 177, 228–234. [Google Scholar] [CrossRef]
- Canal, F.; Vicent, M.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted peg-epirubicin conjugates. J. Control. Release Off. J. Control. Release Soc. 2010, 146, 388–399. [Google Scholar] [CrossRef]
- Camorani, S.; Fedele, M.; Zannetti, A.; Cerchia, L. Tnbc challenge: Oligonucleotide aptamers for new imaging and therapy modalities. Pharmaceuticals 2018, 11, 123. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Xu, Y.; Chen, L.; Fan, L.; Ma, X.-Y.; Zhao, S.; Song, X.-Q.; Hu, X.; Yang, W.-T.; Chai, W.-J.; et al. Combined angiogenesis and pd–1 inhibition for immunomodulatory tnbc: Concept exploration and biomarker analysis in the future-c-plus trial. Mol. Cancer 2022, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-Z.; Liu, Y.; Xiao, Y.; Hu, X.; Jiang, L.; Zuo, W.-J.; Ma, D.; Ding, J.; Zhu, X.; Zou, J.; et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: The future trial. Cell Res. 2021, 31, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A. Breast cancer immunotherapy: Facts and hopes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Trop2 adc intrigues in nsclc. Cancer Discov. 2021, 11, OF5. [CrossRef]
- Pastushenko, I.; Blanpain, C. Emt transition states during tumor progression and metastasis. Trends Cell Biol. 2019, 29, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F. To exploit the tumor microenvironment: Since the epr effect fails in the clinic, what is the future of nanomedicine? J. Control. Release Off. J. Control. Release Soc. 2016, 244, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K. Peg-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 2008, 130, 6001–6009. [Google Scholar] [CrossRef]
Drugs | IC50 (μg/mL) |
---|---|
DOX | 0.1356 ± 0.0100 |
SKN | 0.3434 ± 0.0203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Shen, Z.; Wang, M.; Wang, H.; Sun, Y.; Tao, X.; Hou, D. Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment. Pharmaceuticals 2023, 16, 374. https://doi.org/10.3390/ph16030374
Zhong W, Shen Z, Wang M, Wang H, Sun Y, Tao X, Hou D. Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment. Pharmaceuticals. 2023; 16(3):374. https://doi.org/10.3390/ph16030374
Chicago/Turabian StyleZhong, Wu, Zhehao Shen, Menglan Wang, Hongyi Wang, Yuting Sun, Xiaojun Tao, and Defu Hou. 2023. "Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment" Pharmaceuticals 16, no. 3: 374. https://doi.org/10.3390/ph16030374
APA StyleZhong, W., Shen, Z., Wang, M., Wang, H., Sun, Y., Tao, X., & Hou, D. (2023). Tumor Microenvironment Responsive Nanomicelle with Folic Acid Modification Co-Delivery of Doxorubicin/Shikonin for Triple Negative Breast Cancer Treatment. Pharmaceuticals, 16(3), 374. https://doi.org/10.3390/ph16030374