Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = slot-ring antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4522 KiB  
Article
A Wideband Circularly Polarized Metasurface Antenna with High Gain Using Characteristic Mode Analysis
by Zijie Li, Yuechen Liu, Mengfei Zhao, Weihua Zong and Shi He
Electronics 2025, 14(14), 2818; https://doi.org/10.3390/electronics14142818 - 13 Jul 2025
Viewed by 424
Abstract
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to [...] Read more.
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to enhance the desired modes and suppress the unwanted modes. Subsequently, a feeding network that merges a ring slot with an L-shaped microstrip line is utilized to excite two orthogonal modes with a 90° phase difference, thereby achieving CP and high-gain radiation. Finally, a prototype with dimensions of 0.9λ0 × 0.9λ0 × 0.05λ0 is fabricated and tested. The measured results demonstrate an impedance bandwidth (IBW) of 39.5% (4.92–7.37 GHz), a 3 dB axial ratio bandwidth (ARBW) of 33.1% (5.25–7.33 GHz), and a peak gain of 9.4 dBic at 6.9 GHz. Full article
Show Figures

Figure 1

14 pages, 2184 KiB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 279
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 7546 KiB  
Article
Differential-Fed Wideband Circularly Polarized SIW Cavity-Backed Slot Antenna Array
by Chao Wang, Xiao-Chun Li and David Keezer
Electronics 2025, 14(12), 2389; https://doi.org/10.3390/electronics14122389 - 11 Jun 2025
Viewed by 399
Abstract
This paper presents a wideband circularly polarized (CP) substrate-integrated waveguide (SIW) cavity-backed slot antenna array arranged in a 2 × 2 configuration with differential feeding structures. The design features arc-shaped microstrips within the SIW cavity to excite the TE011x/ [...] Read more.
This paper presents a wideband circularly polarized (CP) substrate-integrated waveguide (SIW) cavity-backed slot antenna array arranged in a 2 × 2 configuration with differential feeding structures. The design features arc-shaped microstrips within the SIW cavity to excite the TE011x/TE101y and TE211y/TE121x modes. By overlapping the center frequencies of the two modes, wideband CP radiation is achieved. The introduction of four modified ring couplers composes a simple but efficient differential feeding network, eliminating the need for balanced resistors like baluns, making it more suitable for millimeter wave or even higher frequency applications. Experimental results show that the antenna array achieves a −10 dB impedance bandwidth of 32.6% (from 17.28 to 24.00 GHz), a 3 dB axial ratio (AR) bandwidth of 13.8% (from 17.05 to 19.57 GHz), a 3 dB gain bandwidth of 41.8% (from 15.39 to 23.51 GHz) and a peak gain of 10.6 dBi, with results closely matching simulation data. This study enhances the development of differential CP SIW cavity-backed slot antenna arrays, offering a potential solution for creating compact integrated front-end circuits in the millimeter wave or Terahertz frequency range. Full article
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Multi-Band Unmanned Aerial Vehicle Antenna for Integrated 5G and GNSS Connectivity
by Suguna Gunasekaran, Manikandan Chinnusami, Rajesh Anbazhagan, Karunyaa Sureshkumar and Shreela Sridhar
Telecom 2025, 6(2), 38; https://doi.org/10.3390/telecom6020038 - 3 Jun 2025
Viewed by 571
Abstract
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 [...] Read more.
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 degrees) substrate. Then, an L-shaped stub and slot were inserted into the ground to achieve the 5G and GNSS bands. The antenna was then designed as a 1 × 2 multiple-input and multiple-output (MIMO) antenna to increase the directivity. A square ring-shaped frequency selective surface (FSS) was intended on the FR-4 substrate to improve the gain of the MIMO antenna. The FSS MIMO antenna increased the 3D gain from 2.8 to 5.4 dBi for the GNSS band and from 4.9 to 6.43 dBi for the 5G n79 band. The proposed antenna can receive and transmit the frequency bands covering sub-6 GHz 5G band n79 (4400–5000 MHz) and GNSS band E6 (1260–1300 MHz), respectively. A multi-port unmanned aerial vehicle antenna was fabricated, and its performance was characterized in terms of bandwidth, axial ratio, and gain. Full article
Show Figures

Figure 1

14 pages, 20644 KiB  
Article
A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
by Jun Xiao, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han and Qiubo Ye
Sensors 2025, 25(10), 3046; https://doi.org/10.3390/s25103046 - 12 May 2025
Viewed by 516
Abstract
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) [...] Read more.
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) coupling slot to achieve CP radiation. Through the use of all-metal radiating structures with a height of 3.4 mm, high-gain and high-efficiency radiation performances are achieved. For proof of concept, a 4 × 4 antenna array with a SIW feeding network is designed, fabricated, and measured. The measured impedance bandwidth of the proposed 4 × 4 CP antenna array is 19.2% from 33.9 to 41.1 GHz for |S11| ≤ −10 dB. The measured 3 db AR bandwidth is 10.3% from 37 to 41 GHz. The measured peak gain is 20.3 dBic at 41 GHz. The measured and simulated results are in good agreement. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

9 pages, 2050 KiB  
Article
A Fixed-Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization for mmWave Application
by Xingying Huo, Yuchen Ma, Jiayi Liu and Qinghuai Zhou
Photonics 2025, 12(3), 274; https://doi.org/10.3390/photonics12030274 - 17 Mar 2025
Viewed by 553
Abstract
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch [...] Read more.
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch array on the top layer for radiation, and a slotted ground between them for energy coupling. Each slot is independently and electrically controlled by a pair of PIN diodes under the coupling slot. Thus, the period length of the patches can be manipulated and an LWA with CP and FFBS is achieved with −1th spatial harmonics radiated. The simulation results show that the bean-scanning range from 61° to 63° can be realized during the observation frequency band, with good circular polarization and a peak gain of 17.1 dBi, which is verified by the measurement. Full article
Show Figures

Figure 1

27 pages, 22468 KiB  
Review
The Causal Nexus Between Different Feed Networks and Defected Ground Structures in Multi-Port MIMO Antennas
by Merve Tascioglu Yalcinkaya, Shahanawaz Kamal, Padmanava Sen and Gerhard P. Fettweis
Sensors 2024, 24(22), 7278; https://doi.org/10.3390/s24227278 - 14 Nov 2024
Viewed by 1541
Abstract
Multiple input multiple output (MIMO) antennas have recently received attention for improving wireless communication data rates in rich scattering environments. Despite this, the challenge of isolation persists prominently in compact MIMO-based electronics. Various techniques have recently emerged to address the isolation issues, among [...] Read more.
Multiple input multiple output (MIMO) antennas have recently received attention for improving wireless communication data rates in rich scattering environments. Despite this, the challenge of isolation persists prominently in compact MIMO-based electronics. Various techniques have recently emerged to address the isolation issues, among which the defected ground structure (DGS) stands out as a cost-effective solution. Additionally, selecting the appropriate feed mechanism is crucial for enhancing the key performance indicators of MIMO antennas. However, there has been minimal focus on how different feed methods impact the operation of MIMO antennas integrated with DGS. This paper begins with a comprehensive review of diverse antenna design, feeding strategies, and DGS architectures. Subsequently, the causal relationships between various feed networks and DGSs has been established through modeling, simulation, fabrication, and measurement of MIMO antennas operating within the sub-6 GHz spectrum. Particularly, dual elements of MIMO antennas grounded by a slotted complementary split ring resonator (SCSRR)-based DGS were excited using four standard feed methods: coaxial probe, microstrip line, proximity coupled, and aperture coupled feed. The influence of each feed network on the performance of MIMO antennas integrated with SCSRR-based DGSs has been thoroughly investigated and compared, leading to guidelines for feed network selection. The coaxial probe feed network provided improved isolation performance, ranging from 16.5 dB to 46 dB in experiments.The aperture and proximity-coupled feed network provided improvements in bandwidth of 38.7% and 15.6%, respectively. Furthermore, reasonable values for envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG) have been ascertained. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 11144 KiB  
Article
Millimeter-Wave Choke Ring Antenna with Broad HPBW and Low Cross-Polarization for 28 GHz Dosimetry Studies
by Philip Ayiku Dzagbletey and Jae-Young Chung
Electronics 2024, 13(17), 3531; https://doi.org/10.3390/electronics13173531 - 5 Sep 2024
Viewed by 1350
Abstract
A choke ring horn antenna has been designed for use as an RF applicator in a compact range in vitro 28 GHz bioelectromagnetic exposure system. The 30 mm × 50 mm horn antenna was fabricated and measured to operate from 27.75 GHz to [...] Read more.
A choke ring horn antenna has been designed for use as an RF applicator in a compact range in vitro 28 GHz bioelectromagnetic exposure system. The 30 mm × 50 mm horn antenna was fabricated and measured to operate from 27.75 GHz to 34.5 GHz with a −20 dB measured S11 and a measured antenna gain of more than 10 dBi. A wide sectoral (flat top) and symmetric E- and H-plane pattern with a half-power beamwidth of more than 60 degrees was achieved with a cross-polarization discrimination of better than 28 dB. Electromagnetic slots were introduced in the antenna to suppress excess cavity mode radiation which inherently impacts the cross-polarization levels of choke ring antennas. The proposed antenna was successfully integrated into the compact measurement chamber in partnership with the Korea Telecommunication Research Institute (ETRI) and is currently in use for real-time 5G millimeter-wave dosimetry studies. Full article
Show Figures

Figure 1

27 pages, 11381 KiB  
Article
Green Wearable Sensors and Antennas for Bio-Medicine, Green Internet of Things, Energy Harvesting, and Communication Systems
by Albert Sabban
Sensors 2024, 24(17), 5459; https://doi.org/10.3390/s24175459 - 23 Aug 2024
Viewed by 2181
Abstract
This paper presents innovations in green electronic and computing technologies. The importance and the status of the main subjects in green electronic and computing technologies are presented in this paper. In the last semicentennial, the planet suffered from rapid changes in climate. The [...] Read more.
This paper presents innovations in green electronic and computing technologies. The importance and the status of the main subjects in green electronic and computing technologies are presented in this paper. In the last semicentennial, the planet suffered from rapid changes in climate. The planet is suffering from increasingly wild storms, hurricanes, typhoons, hard droughts, increases in seawater height, floods, seawater acidification, decreases in groundwater reserves, and increases in global temperatures. These climate changes may be irreversible if companies, organizations, governments, and individuals do not act daily and rapidly to save the planet. Unfortunately, the continuous growth in the number of computing devices, cellular devices, smartphones, and other smart devices over the last fifty years has resulted in a rapid increase in climate change. It is severely crucial to design energy-efficient “green” technologies and devices. Toxic waste from computing and cellular devices is rapidly filling up landfills and increasing air and water pollution. This electronic waste contains hazardous and toxic materials that pollute the environment and affect our health. Green computing and electronic engineering are employed to address this climate disaster. The development of green materials, green energy, waste, and recycling are the major objectives in innovation and research in green computing and electronics technologies. Energy-harvesting technologies can be used to produce and store green energy. Wearable active sensors and metamaterial antennas with circular split ring resonators (CSSRs) containing energy-harvesting units are presented in this paper. The measured bandwidth of the matched sensor is around 65% for VSWR, which is better than 3:1. The sensor gain is 14.1 dB at 2.62 GHz. A wideband 0.4 GHz to 6.4 GHz slot antenna with an RF energy-harvesting unit is presented in this paper. The Skyworks Schottky diode, SMS-7630, was used as the rectifier diode in the harvesting unit. If we transmit 20 dBm of RF power from a transmitting antenna that is located 0.2 m from the harvesting slot antenna at 2.4 GHz, the output voltage at the output port of the harvesting unit will be around 1 V. The power conversion efficiency of the metamaterial antenna dipole with metallic strips is around 75%. Wearable sensors with energy-harvesting units provide efficient, low-cost healthcare services that contribute to a green environment and minimize energy consumption. The measurement process and setups of wearable sensors are presented in this paper. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 2679 KiB  
Article
Dual Features, Compact Dimensions and X-Band Applications for the Design and Fabrication of Annular Circular Ring-Based Crescent-Moon-Shaped Microstrip Patch Antenna
by Unal Aras, Tahesin Samira Delwar, P. Durgaprasadarao, P. Syam Sundar, Shaik Hasane Ahammad, Mahmoud M. A. Eid, Yangwon Lee, Ahmed Nabih Zaki Rashed and Jee-Youl Ryu
Micromachines 2024, 15(7), 809; https://doi.org/10.3390/mi15070809 - 21 Jun 2024
Cited by 10 | Viewed by 1940
Abstract
This study uses annular circular rings to create multi-band applications using crescent-shaped patch antennas. It is designed to be made up of five circular, annular rings nested inside of each other. Three annular rings are positioned and merged on top of the larger [...] Read more.
This study uses annular circular rings to create multi-band applications using crescent-shaped patch antennas. It is designed to be made up of five circular, annular rings nested inside of each other. Three annular rings are positioned and merged on top of the larger rings, with two annular rings set along the bottom of the feed line. The factors that set them apart, such as bandwidths, radiation patterns, gain, impedance, and return loss (RL), are analysed. The outcomes show how compact the multi-band annular ring antenna is. The proposed circular annular ring antenna has return losses of −33 dB and operates at two frequencies: 3.1 GHz and 9.3 GHz. This design is modelled and simulated using ANSYS HFSS. The outcomes of the simulation and the tests agree quite well. The X band and WLAN resonant bands have bandwidth capacities of 500 and 4300 MHz, respectively. Additionally, the circular annular ring antenna design is advantageous for most services at these operating bands. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Figure 1

16 pages, 6123 KiB  
Article
High Isolation MIMO Antenna System for 5G N77/N78/N79 Bands
by Xuanhe Wei, Jiaping Lu, Youming Miao, Jianlin Huang, Zhizhou Chen and Gui Liu
Micromachines 2024, 15(6), 721; https://doi.org/10.3390/mi15060721 - 29 May 2024
Cited by 3 | Viewed by 2974
Abstract
This paper presents a symmetric dual-band multiple-input multiple-output (MIMO) antenna system tailored for fifth-generation (5G) mobile terminals. Operating within the 5G frequency bands N77/N78 (3.4–3.6 GHz) and N79 (4.8–5.0 GHz), the proposed MIMO system achieves high isolation between adjacent antenna elements through slotting [...] Read more.
This paper presents a symmetric dual-band multiple-input multiple-output (MIMO) antenna system tailored for fifth-generation (5G) mobile terminals. Operating within the 5G frequency bands N77/N78 (3.4–3.6 GHz) and N79 (4.8–5.0 GHz), the proposed MIMO system achieves high isolation between adjacent antenna elements through slotting and self-decoupling technologies. Antenna elements are strategically positioned on two frames perpendicular to the smartphone’s main board. Each antenna element integrates a rectangular microstrip radiator on the inner frame surface, accompanied by a grounded rectangular ring on the outer frame surface. The feed line, situated atop the main board, connects to an external SMA connector located at the main board’s bottom. Measurement results reveal isolations exceeding 20 dB for the lower band and 24 dB for the higher band. The fabricated and tested MIMO antenna system demonstrates excellent agreement between simulation and measurement outcomes. Full article
Show Figures

Figure 1

18 pages, 8167 KiB  
Article
Designing a Novel Hybrid Technique Based on Enhanced Performance Wideband Millimeter-Wave Antenna for Short-Range Communication
by Tanvir Islam, Dildar Hussain, Fahad N. Alsunaydih, Fahd Alsaleem and Khaled Alhassoon
Sensors 2024, 24(10), 3219; https://doi.org/10.3390/s24103219 - 18 May 2024
Cited by 2 | Viewed by 3888
Abstract
This paper presents the design of a performance-improved 4-port multiple-input–multiple-output (MIMO) antenna proposed for millimeter-wave applications, especially for short-range communication systems. The antenna exhibits compact size, simplified geometry, and low profile along with wide bandwidth, high gain, low coupling, and a low Envelope [...] Read more.
This paper presents the design of a performance-improved 4-port multiple-input–multiple-output (MIMO) antenna proposed for millimeter-wave applications, especially for short-range communication systems. The antenna exhibits compact size, simplified geometry, and low profile along with wide bandwidth, high gain, low coupling, and a low Envelope Correlation Coefficient (ECC). Initially, a single-element antenna was designed by the integration of rectangular and circular patch antennas with slots. The antenna is superimposed on a Roger RT/Duroid 6002 with total dimensions of 17 × 12 × 1.52 mm3. Afterward, a MIMO configuration is formed along with a novel decoupling structure comprising a parasitic patch and a Defected Ground Structure (DGS). The parasitic patch is made up of strip lines with a rectangular box in the center, which is filled with circular rings. On the other side, the DGS is made by a combination of etched slots, resulting in separate ground areas behind each MIMO element. The proposed structure not only reduces coupling from −17.25 to −44 dB but also improves gain from 9.25 to 11.9 dBi while improving the bandwidth from 26.5–30.5 GHz to 25.5–30.5 GHz. Moreover, the MIMO antenna offers good performance while offering strong MIMO performance parameters, including ECC, diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG). Furthermore, a state-of-the-art comparison is provided that results in the overperforming results of the proposed antenna system as compared to already published work. The antenna prototype is also fabricated and tested to verify software-generated results obtained from the electromagnetic (EM) tool HFSS. Full article
(This article belongs to the Special Issue Antenna Design and Sensors for Internet of Things - 2nd Edition)
Show Figures

Figure 1

15 pages, 3797 KiB  
Article
Three-Dimensional Printed Annular Ring Aperture-Fed Antenna for Telecommunication and Biomedical Applications
by Khaled Alhassoon, Yaaqoub Malallah, Fahad N. Alsunaydih and Fahd Alsaleem
Sensors 2024, 24(3), 949; https://doi.org/10.3390/s24030949 - 1 Feb 2024
Cited by 4 | Viewed by 1768
Abstract
The design of the aperture-fed annular ring (AFAR) microstrip antenna is presented. This proposed design will ease the fabrication and usability of the 3D-printed and solderless 2D materials. This antenna consists of three layers: the patch, the slot within the ground plane as [...] Read more.
The design of the aperture-fed annular ring (AFAR) microstrip antenna is presented. This proposed design will ease the fabrication and usability of the 3D-printed and solderless 2D materials. This antenna consists of three layers: the patch, the slot within the ground plane as the power transfer medium, and the microstrip line as the feeding. The parameters of the proposed design are investigated using the finite element method FEM to achieve the 50 Ω impedance with the maximum front-to-back ratio of the radiation pattern. This study was performed based on four steps, each investigating one parameter at a time. These parameters were evaluated based on an initial design and prototype. The optimized design of 3D AFAR attained S11 around 17 dB with a front-to-back ratio of more than 30 dB and a gain of around 3.3 dBi. This design eases the process of using a manufacturing process that involves 3D-printed and 2D metallic materials for antenna applications. Full article
(This article belongs to the Special Issue Wearable Antennas and Sensors for Microwave Applications)
Show Figures

Figure 1

8 pages, 14144 KiB  
Communication
A Quad-Band Highly Selective Frequency Selective Surface with Ultra-Wideband Rejection
by Minrui Wang, Zheng Xiang, Yi Li, Baoyi Xu and Long Yang
Micromachines 2024, 15(1), 126; https://doi.org/10.3390/mi15010126 - 11 Jan 2024
Cited by 3 | Viewed by 1869
Abstract
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, [...] Read more.
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, two metallic square rings, and a metal patch. The dimensions of the unit cell are 0.13λ0× 0.13λ0× 0.18λ0 (λ0 is the free-space wavelength at the first operating frequency). The proposed structure achieves four transmission bands and has two wide stop-bands located at 1 to 5.5 GHz and 14 to 40 GHz, with a suppressed transmission coefficient below −20 dB. In order to verify the simulation results, an FSS prototype was fabricated and measured. It can be observed that the measured results are in favorable agreement with the simulation results. Its multiple narrow passbands and highly selective and ultra-wideband rejection properties ensure that our design can play a significant role in narrowband antennas, spatial filters, and many other fields. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

14 pages, 8523 KiB  
Article
Background Material Identification Using a Soft Robot
by Nathan Jeong, Wooseop Lee, Seongcheol Jeong, Arun Niddish Mahendran and Vishesh Vikas
Electronics 2024, 13(1), 78; https://doi.org/10.3390/electronics13010078 - 23 Dec 2023
Viewed by 2291
Abstract
Soft robotics is an emerging technology that provides robots with the ability to adapt to the environment and safely interact with it. Here, the ability of these robots to identify the surface of interaction is critical for grasping and locomotion tasks. This paper [...] Read more.
Soft robotics is an emerging technology that provides robots with the ability to adapt to the environment and safely interact with it. Here, the ability of these robots to identify the surface of interaction is critical for grasping and locomotion tasks. This paper describes the capability of a four-limb soft robot that can identify background materials through the collection of reflection coefficients using an embedded antenna and machine learning techniques. The material of a soft-limb robot was characterized in terms of the relative permittivity and the loss tangent for the design of an antenna to collect reflection coefficients. A slot antenna was designed and embedded into a soft limb in order to extract five features in reflection coefficients including the resonant frequency, −3 dB bandwidth taken from the lowest S11, the value of the lowest S11, −3 dB bandwidth taken from the highest S11, and the number of resonant frequencies. A soft robot with the embedded antenna was tested on nine different background materials in an attempt to identify surrounding terrain information and a better robotic operation. The tested background materials included concrete, fabric, grass, gravel, metal, mulch, soil, water, and wood. The results showed that the robot was capable of distinguishing among the nine different materials with an average accuracy of 93.3% for the nine background materials using a bagged decision-tree-based ensemble method algorithm. Full article
Show Figures

Figure 1

Back to TopTop