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Abstract: Soft robotics is an emerging technology that provides robots with the ability to adapt to
the environment and safely interact with it. Here, the ability of these robots to identify the surface
of interaction is critical for grasping and locomotion tasks. This paper describes the capability of
a four-limb soft robot that can identify background materials through the collection of reflection
coefficients using an embedded antenna and machine learning techniques. The material of a soft-limb
robot was characterized in terms of the relative permittivity and the loss tangent for the design of
an antenna to collect reflection coefficients. A slot antenna was designed and embedded into a soft
limb in order to extract five features in reflection coefficients including the resonant frequency, −3 dB
bandwidth taken from the lowest S11, the value of the lowest S11, −3 dB bandwidth taken from
the highest S11, and the number of resonant frequencies. A soft robot with the embedded antenna
was tested on nine different background materials in an attempt to identify surrounding terrain
information and a better robotic operation. The tested background materials included concrete, fabric,
grass, gravel, metal, mulch, soil, water, and wood. The results showed that the robot was capable of
distinguishing among the nine different materials with an average accuracy of 93.3% for the nine
background materials using a bagged decision-tree-based ensemble method algorithm.

Keywords: background material identification; machine learning; ring resonator; slot antenna; soft
material; soft robot; stripline

1. Introduction

Soft robots have garnered immense interest in recent years due to the highly de-
formable and continuum nature of the soft material [1,2]. They belong to a subset of
robotics that focuses on technologies that more closely resemble the physical characteristics
of living organisms. Soft robots are the perfect candidates for commercial rescue operations
where situations can become too dangerous for direct human involvement [3,4]. They
can also find use in military applications where dangerous scenarios and rough, varied
terrain are common. These extensive abilities are made possible by the characteristics of
soft materials, which are mechanically durable and resistant to extreme heat, chemicals,
and other dangers such as radiation [5–7]. They also exhibit increased durability and adapt-
ability when compared to other materials. Succinctly, soft materials are defined relative to
the environment of interaction—‘a bulk or composite collection of matter that undergoes
deformations of similar or greater magnitude than the deformation of the environment,
either plastically or elastically, within the force regime applied by its environment’ [8].
A robot with soft materials has the potential to vary its Gaussian curvature and surface
profile when designed and actuated appropriately [9]. Additionally, its ability to interact
with the environment can affect locomotion [10]. The surface of locomotion, referred to as
background in this paper, has critical influence on the robot locomotion ability [11].
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Conceptually, locomotion results from difference in forces acting on the robot body [11].
Consequently, terrain identification is critical for developing adaptive locomotion control
and planning strategies over different surfaces [4,12]. Simply put, these adaptations are
executed by humans when walking on asphalt (rigid, high-friction), sand (soft, granular),
and ice (rigid, low-friction). Specifically for soft robots, locomotion gaits are seldom
discovered for a robot or surface—instead, they are obtained by observing animals (bio-
inspired) or through intuition (ad hoc). This is primarily due to their continuum nature and
lack of good models to describe robot–environment interaction. Hence, the identification
of terrain for locomotion will benefit soft roboticists by exploring more surface-specific
gaits through data-driven approaches. Solving this problem will propel soft robots to
be deployed for search and rescue operations as well as exploration applications where
robots are required to maneuver complex terrains. Soft proprioception has been explored by
embedding resistive sensors inside the robot body and using a recurrent neural network [13].
Similarly, optical tactile sensors have been used to detect the deformation of a surface [14].
In one instance, sEMG was integrated to a soft robotic exomusculature glove for hand
rehabilitation [15]. However, these sensors are either bulky, rigid, or complicated for a
robot system.

A flexible, simple, and low-profile sensor can be beneficial to provide the appropriate
locomotion of a soft robot. A thin and planar antenna may be a good candidate to be
incorporated into a soft robot. For instance, an antenna can be embedded in a limb of
a soft robot and may sense surface material to improve the locomotion of a soft robot.
Additionally, the collected environmental data from an antenna can be used to identify the
surroundings of a soft robot using machine learning techniques. Combining the beneficial
attributes of the soft material with machine learning techniques could enable intelligent,
efficient background material identification. This would allow humans to remotely identify
surrounding terrain information and to conduct better robotic operations.

In this paper, a novel soft robot with a flexible antenna embedded in its limb is pro-
posed in order for the soft robot to recognize background material using a machine learning
algorithm and in order to improve locomotion. Reflection coefficients of the antenna were
measured and used in machine learning algorithms to identify various background materi-
als. The remaining sections of the paper will proceed as follows. Section 2 discusses the
4-limb soft robot, followed by a description of the antenna design at the soft robot’s limb in
Section 3. Section 4 explains the measurement of reflection coefficients and background
material identification. A thorough discussion of the results is then presented in Section 5,
leading to the conclusion of the proposed design.

2. Four-Limb Soft Robot

The robot used in this experiment was a four-limb motor-tendon-actuated soft robot.
The design was the result of topology optimization in order to allow six identical robots to
reconfigure into a sphere [9]. As such, the limbs were designed for complex geometrical
curling and not optimized for any particular locomotion modes. However, all possible
motions were quasistatic, and all robot configurations were statically stable. The fabrication
of such a robot involved the integration of soft material limbs, control, and actuation
payload (motors, electronics), as well as the routing of the tendons through the limb as
shown in Figure 1.

The modular fabrication process involved mixing two liquid silicone components
(Smooth-On Dragon Skin Part A and B [16]) degassed in vacuo. The molding material for
the soft robot was 3D printed with polylactic acid (PLA). The tendon paths were cast by
threading a thick wire through the rigid 3D printed mold as shown in Figure 2, which
was removed upon curing of the cast. The central hub was 3D printed out of flexible
filament and placed in the mold for casting; the casting was repeated for the other limbs. A
rapid curling and uncurling of the flexible limbs (<0.5 s/transition) was achieved through
motor-tendon actuation. Four DC motors with 3D-printed PLA spools were placed in
the hub and secured using zip ties. Teflon tubing was inserted into the individual fins of
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each limb to prevent tears caused by the difference in stiffness between the silicone and
the fishing line tendon, as shown in Figure 2. Finally, a fishing line attached to the spool
was routed through each fin and anchored at the end with a fishing hook. The design
parameters of the fins of each limb (separation, height, thickness, etc.) were experimentally
determined to maximize curling while still permitting uncurling upon relaxing the motor.
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body) with rigid actuators (motors, electronics, and a fishing line). The disparity of stiff-
ness between soft–hard materials resulted in stress concentration. These challenges were 
solved by introducing stiffness gradient solutions. Primarily, the flexible hub allowed for 
rigid motors and electronics to be integrated inside a soft body with minimum movement 
and disturbance. The flexible hub also housed the common antenna feed. The limbs of the 
robot were designed to ensure the seamless integration of the antenna inside the body. 
Here, the stiffness mismatch was minimal and did not require any intermediary material. 

Figure 1. Configuration of the soft robot. (a) a four-limb soft robot with motor-tendon actuators
where the flexible central ‘hub’ holds the mechatronics. (b,c) The tendon paths are indicated in green.
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Figure 2. (a) The soft robot is cast using a rigid mold and a tendon-path wire. (b) The motors with
spools and mechatronics are placed inside the hub.

The design of such a robot involved the integration of soft material (silicone rubber
body) with rigid actuators (motors, electronics, and a fishing line). The disparity of stiffness
between soft–hard materials resulted in stress concentration. These challenges were solved
by introducing stiffness gradient solutions. Primarily, the flexible hub allowed for rigid
motors and electronics to be integrated inside a soft body with minimum movement and
disturbance. The flexible hub also housed the common antenna feed. The limbs of the robot
were designed to ensure the seamless integration of the antenna inside the body. Here, the
stiffness mismatch was minimal and did not require any intermediary material. As such,
the embedded antennas were able to flex with the soft limbs and conform to background
materials, intelligently identifying them. When considering the stability of the robot, unlike
legged robots, the center of mass for this robot was near the ground where the entire body
touched the surface in its resting position. Additionally, given the distributed mass and the
robot design, the robot demonstrated stability during motion on flat and inclined surfaces.
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3. Antenna Design
3.1. Characterization of Soft Skin

Prior to designing an antenna for identifying background materials, it was necessary
to characterize the dielectric properties of the soft limbs made of Dragon Skin. The dielectric
properties for their characterization included the relative permittivity (εr) and loss tangent
(tanδ). Two striplines and a microstrip ring resonator were fabricated and measured to find
the relative permittivity and loss tangent, respectively. The verification of the results was
conducted through electromagnetic simulation.

First, to determine the relative permittivity, two striplines with different lengths were
fabricated with Dragon Skin material. This physical length difference was used to find
the phase angle difference between the two striplines. A stripline is composed of a single
conductive strip line in the middle of the soft material and two ground planes on the
top and bottom, as shown in Figure 3. This three-conductor configuration can support a
quasi-TEM (Transverse Electromagnetic) mode, which allows for plane wave propagation
along the line inside the unknown dielectric.
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Figure 3. Stripline to extract the relative permittivity.

Table 1 indicates the parameters and values for the two different lengths of the
striplines. Note that L3 was set to be 20 mm for the short stripline and 30 mm for the
long stripline, while the other parameters remained the same. SMA connectors were con-
nected at both sides of the lines, as depicted in Figure 3. A full two-port measurement
was conducted with the vector network analyzer (Keysight, Santa Rosa, CA, USA, E8364).
The transmission coefficient (S21) was obtained from 800 MHz to 8 GHz. The phase angle
difference was calculated by subtracting the phase angle of S21, long_stripline from that of
S21, short_stripline. Then, the relative permittivity was calculated based on the phase angle
difference of the transmitted waves, as shown in Equation (1) below.

εr =

(
∆ϕ·c

∆L·2π f

)2
(1)

where f is the operation frequency, c is the speed of light, ∆ϕ is the difference in phase
angles between the two striplines, and ∆L is the physical length difference of the striplines.
Both the calculated and measured results were in good agreement and showed that the
relative permittivity of the Dragon Skin material varied from 2.27 to 2.31 from 800 MHz to
8 GHz, as shown in Figure 4.
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Table 1. Dimensions of the striplines and the ring resonator (unit in mm).

Striplines Ring Resonator

W1 13 L1 17.27
W2 4.25 L2 10
H1 6.7 D1 70.3
H2 3.35 T1 2.18
L3 20 for long and 30 for short lines G1 0.4
L4 3.5 H1 2
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Now, in order to find the loss tangent, a microstrip ring resonator was fabricated on
2 mm thick Dragon Skin material. This configuration is shown in Figure 5. The dimensions
of the design parameters are summarized in Table 1. The gap (G1) between the T-shape
microstrip input and output lines and the ring structure was established to introduce
capacitive coupling between them. The diameter (D1) of the ring was chosen to resonate at
915 MHz and at its harmonic resonant frequencies. The −3 dB bandwidth was obtained by
subtracting the upper frequency and the lower frequency at the half-power points. The
tangent loss of the soft material was then computed using the quality factor (Q) in the
following equation [17].

Tanδ =
1
Q

=
BW

fc
(2)

where fc is the center frequency of the ring resonator, and BW is the −3 dB frequency
bandwidth. The measured results indicated that the loss tangent varied from 0.019 to 0.031
from 800 MHz to 6.8 GHz.

To validate the measurement results, electromagnetic simulation was conducted with
Ansys HFSS (High-Frequency Structure Simulator) [18]. This addition process also allowed
us to design an antenna inside the dielectric in a simulation. Wave ports were used to excite
electromagnetic waves at the input and output of the lines. The simulated results showed
that the relative permittivity and loss tangent were well aligned with the measurement
result, as shown in Figures 5 and 6. These resultant values for the relative permittivity and
loss tangent were used to design the antenna, which would be embedded in the soft limbs
in order to identify background materials.



Electronics 2024, 13, 78 6 of 14
Electronics 2024, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 5. Ring resonator to extract loss tangent. 

 
Figure 6. Simulated and measured loss tangents. 

3.2. Slot Antenna 
The locomotion of soft robots requires conformity to various surfaces for movement 

and effective material identification. Thus, an antenna inside the robot limbs needed to be 
able to be flexible, compact, and efficient in electromagnetic radiation. Considering these 
requirements, a slot antenna was chosen and embedded into the soft limbs, as depicted in 
Figure 7. The slot length (𝑺𝑳) was calculated to be 112 mm to generate a resonance at 915 
MHz, and the slot width (𝑺𝑾) was determined to be 4 mm for better impedance matching 
to cover from 902 to 918 MHz of the ISM (Industrial, Scientific, and Medical) band. A 32 
µm thick copper film was used to configure the slot antenna. The antenna feeding point 
was off centered in the slot to match to 50 Ω and located 4 mm from the end of the slot. 
To embed the slot antenna into each limb, a thin slit was cut in the upper part of the limb. 
Then, the thin copper film was inserted. A semi-rigid coaxial cable was used to excite the 
slot, as illustrated in Figure 8. Then, the coaxial cable was connected to the NanoVNA [19] 
to measure the reflection coefficient (i.e., S11) of the slot antenna embedded in the robot 
limb. Both the simulated and measured reflection coefficients are shown in Figure 9. The 
proposed slot antenna in the soft limb resonated at 915 MHz with 16 MHz bandwidth. 
The slight difference in the resonance frequency was due to fabrication imperfection. 

Figure 5. Ring resonator to extract loss tangent.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 5. Ring resonator to extract loss tangent. 

 
Figure 6. Simulated and measured loss tangents. 

3.2. Slot Antenna 
The locomotion of soft robots requires conformity to various surfaces for movement 

and effective material identification. Thus, an antenna inside the robot limbs needed to be 
able to be flexible, compact, and efficient in electromagnetic radiation. Considering these 
requirements, a slot antenna was chosen and embedded into the soft limbs, as depicted in 
Figure 7. The slot length (𝑺𝑳) was calculated to be 112 mm to generate a resonance at 915 
MHz, and the slot width (𝑺𝑾) was determined to be 4 mm for better impedance matching 
to cover from 902 to 918 MHz of the ISM (Industrial, Scientific, and Medical) band. A 32 
µm thick copper film was used to configure the slot antenna. The antenna feeding point 
was off centered in the slot to match to 50 Ω and located 4 mm from the end of the slot. 
To embed the slot antenna into each limb, a thin slit was cut in the upper part of the limb. 
Then, the thin copper film was inserted. A semi-rigid coaxial cable was used to excite the 
slot, as illustrated in Figure 8. Then, the coaxial cable was connected to the NanoVNA [19] 
to measure the reflection coefficient (i.e., S11) of the slot antenna embedded in the robot 
limb. Both the simulated and measured reflection coefficients are shown in Figure 9. The 
proposed slot antenna in the soft limb resonated at 915 MHz with 16 MHz bandwidth. 
The slight difference in the resonance frequency was due to fabrication imperfection. 

Figure 6. Simulated and measured loss tangents.

3.2. Slot Antenna

The locomotion of soft robots requires conformity to various surfaces for movement
and effective material identification. Thus, an antenna inside the robot limbs needed to be
able to be flexible, compact, and efficient in electromagnetic radiation. Considering these
requirements, a slot antenna was chosen and embedded into the soft limbs, as depicted
in Figure 7. The slot length (SL) was calculated to be 112 mm to generate a resonance
at 915 MHz, and the slot width (SW) was determined to be 4 mm for better impedance
matching to cover from 902 to 918 MHz of the ISM (Industrial, Scientific, and Medical) band.
A 32 µm thick copper film was used to configure the slot antenna. The antenna feeding
point was off centered in the slot to match to 50 Ω and located 4 mm from the end of the slot.
To embed the slot antenna into each limb, a thin slit was cut in the upper part of the limb.
Then, the thin copper film was inserted. A semi-rigid coaxial cable was used to excite the
slot, as illustrated in Figure 8. Then, the coaxial cable was connected to the NanoVNA [19]
to measure the reflection coefficient (i.e., S11) of the slot antenna embedded in the robot
limb. Both the simulated and measured reflection coefficients are shown in Figure 9. The
proposed slot antenna in the soft limb resonated at 915 MHz with 16 MHz bandwidth. The
slight difference in the resonance frequency was due to fabrication imperfection.
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4. Background Material Identification

With the slot antenna operating, resonating at the 915 MHz ISM band and embedded in
the soft robot, reflection coefficients were measured on nine different background materials.
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A two-port portable NanoVNA [19] was used to measure the reflection coefficient (i.e., S11)
of the soft robot antenna from 0.2 to 1.4 GHz. Fifteen measurements were conducted for each
material, as shown in different colors at Figure 10, resulting in a total of 150 datasets. For
each of the nine background materials, the same kind of (but slightly different) configuration
of the materials was measured to represent various material compositions. For example,
for grass, we measured S11 in thin, thick, weedy, mossy, and dense grass with different
heights, varying from 1 cm to 5 cm. Table 2 lists all the background materials used in this
study, as well as their descriptions and thickness.

Table 2. Name, description, and thickness of background materials tested.

Material Description Thickness (cm)

Concrete Various Exterior Locations 6, 13, 28, 30, 45
Fabric Cotton, Polyester, Blend (Cotton, Polyester, and Nylon) 4, 8
Grass Thin, Weedy, Mossy, Thick, Dense 1, 2, 3, 4, 5
Gravel Vigoro Pea [20], River [21], Pond Pebbles [22] 8, 10
Metal Rogers AD1000, RO3006, Microwave Oven, Shelf, Manhole Cover 0.05, 0.06, 0.3, 2.54, 3.4
Mulch Vigoro Black [23], Red Mulch [24], Evergreen Cypress Mulch Blend [25] 12

Soil Miracle-Gro [26], Vigoro [27], Kellogg Garden Soils [28] 8, 12
Water Various Depths atop Styrofoam Base 0.5, 0.7, 0.9, 1.1, 1.3
Wood Shelf, Desk, Thick Condensed Wood 1.8, 3.8, 3.9, 10.1, 11.5

After importing all 150 reflection coefficient files, the fifteen measurements for each
background material were plotted together, as shown in Figure 10. The results show that
the S11 curves varied for different materials as a function of the frequency. According to the
theory of antenna engineering, the features for machine learning algorithms were chosen
based on the characteristics of the reflection coefficient curves of the slot antenna. We
extracted five features—(1) resonant frequency, (2) −3 dB bandwidth referring from the
lowest S11, (3) the lowest value of S11, (4) −3 dB bandwidth referring from the highest S11,
and (5) the number of resonances. Therefore, these five features were extracted from the
S11 plots and inputted to machine learning algorithms to classify the background materials.
The mean and standard deviation (SD) of the five features for the nine background ma-
terials are summarized in Table 3. Concrete, metal, water, and wood demonstrated high
standard deviation in general. MATLAB’s Classification Algorithms, including decision
trees, discriminant analysis, Bayesian methods, support-vector machine (SVM) algorithms,
k-nearest neighbor (kNN) algorithms, and ensemble methods, were used for classification.
The purpose of training the various machine learning (ML) models was to find the best
ML algorithm for this study. Hyper parameters for each model were tuned to achieve
higher accuracy.

Table 3. Mean and standard deviation of five features from reflection coefficients for nine different
background materials.

Material Center
Frequency (MHz)

−3 dB
Bandwidth, Lowest

(MHz)

Depth of S11
(dB)

−3 dB
Bandwidth,

Highest (MHz)

Number of
Resonances

Mean SD Mean SD Mean SD Mean SD Mean SD

Concrete 902.1 16.3 16.9 5.2 −17.2 2.23 96.9 2.12 1 0
Fabric 910.1 7.1 27.2 3.2 −11.4 1.25 91.4 1.02 1 0
Grass 900.1 9.7 21.1 4.0 −15.7 2.12 112.4 3.05 1 0
Gravel 904.7 8.7 21.6 5.4 −12.9 1.92 96.9 1.95 1 0
Metal 769.0 33.5 41.1 13.6 −8.2 2.83 163.2 19.2 2.7 0.57
Mulch 912.6 6.5 38.4 9.4 −10.9 1.05 96.8 1.94 1 0

Soil 897.9 8.1 35.7 8.3 −10.3 1.39 97.0 1.93 1 0
Water 867.3 16.6 28.6 12.7 −15.9 4.01 96.7 1.91 1.7 0.44
Wood 837.8 26.9 33.6 11.3 −12.1 1.61 140.9 9.3 1 0
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Among the machine learning models trained, the bag-based ensemble method with
q decision tree as a learner provided the highest accuracy of 93.3%. The maximum number
of splits was 133, and the number of learners was 30. The deep and wide neural network-
based algorithm was not appropriate, due to the fact that the soft robot had limited space
and power to run a higher performance computing unit. Table 4 shows the accuracies
for decision trees, linear discriminant, naïve Bayes, SVM, k-nearest neighbor, ensemble
method, and neural network. Both ensemble method and SVM resulted in more than
90% accuracy. The number of cross-validation folds were also set to 5. These cross-
validation folds protected against overfitting by partitioning the dataset into folds and
estimating the accuracy of each fold. To find which feature was more critical than the others,
we conducted an ablation study by excluding a feature out of five features at a time, and
we found that the most influential features were −3 dB bandwidth taken from the highest
S11 and resonant frequency, followed by the number of resonant frequencies, value of the
lowest S11, and −3 dB bandwidth taken from the lowest S11. The detailed results of the
ablation study are shown in Table 5. All the machine learning algorithms used indicated
that −3 dB bandwidth taken from the lowest S11 was the most critical feature. The next
important features were the center frequency and the number of resonances in order. The
features of −3 dB bandwidth taken from the lowest S11 and the lowest S11 value did not
provide significant contributions to the accuracy. Given the small standard deviation in
the most influencing features, the number of experimental samples (15 per material) was
deemed to be sufficient to investigate the use of machine learning methods. Figure 11
shows the confusion matrix. Generally, the predictions were fairly accurate, indicating that
the proposed soft robot antenna was effective at identifying various background materials
based on the extracted features. A comparison to other background material identification
techniques is provided in Table 6. The proposed design identified more materials with
better accuracy than other comparable works incorporating the antenna into a capable soft
robot. Note that reference [29] used a commercial WiFi device, such as a router, to identify
a material.
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Table 4. Background identification accuracy of various machine learning algorithms.

Machine Learning Model Accuracy (%)

Decision Trees 89.6
Linear Discriminant 78.4

Naive Bayes 87.3
Support-Vector Machine 90.3

K-Nearest Neighbor 79.1
Ensemble Method 92.5
Neural Network 83.6

Table 5. Accuracy results of the ablation study. The listed feature was excluded during machine
learning, while the other remaining features were the same.

Machine Learning Model Center Freq. −3 dB, Lowest −3 dB, Highest S11 Depth No. of Res.

Decision Trees 79.1 91.0 62.7 88.8 87.3
Linear Discriminant 75.4 76.1 64.9 79.9 76.9

Naive Bayes 63.4 88.8 62.7 88.1 88.1
Support-Vector Machine 75.4 90.3 71.6 87.3 87.3

K-Nearest Neighbor 72.4 76.1 62.7 83.6 79.1
Ensemble Method 76.1 90.3 70.1 91.0 89.6
Neural Network 71.6 85.1 66.4 85.8 82.1

Table 6. Comparison of background material identification techniques.

Technology Robot Based Frequency Number of Materials Accuracy (%)

WiFi-based material identification [29] No 5.15–5.85 GHz 10 95.0

Origami boat sensing antenna [30] Yes 1–6 GHz 3 N/A

Inertia-based surface identification
system [31] Yes N/A 5 85.0

Robot tactile sensor [32] Yes N/A 11 73.0

UWB antenna for oil industry [33] No 650, 866, 1372,
2500 MHz 4 90.0

Automatic sorting robot [34] Yes N/A 4 94.3

Tagscan material identification [35] No 920–924 MHz 16 93.0

Mobile robot with wheel-terrain
Interaction [36] Yes N/A 3 80.1

Inverted-F antenna for RF
Identification [37] No 916 MHz 3 98.5

This work Yes 902–928 MHz 9 93.3

5. Discussion

The enhancement of the perception ability of soft robots includes the identification of
the surface of contact to alter robot control strategies for applications relating to terrestrial
locomotion and gripping where the robot–environment interaction is critical. In this context,
this research explores a new approach regarding embedding a radiating antenna inside
a soft robot body to identify background materials. Here, a slot antenna was designed
at a 915 MHz ISM band and embedded inside a limb that was fabricated using silicone
elastomer. The fabrication methodology discussed was agnostic to the soft polymer used for
the antenna design—e.g., dipole, patch, or an array antenna—as well as the ISM frequency
band, e.g., 13.35 MHz, 400 MHz, or 2.4 GHz. This was due to the data-driven approach
that is utilized for training and classification. The reflection coefficients were measured,
and the feature vector comprised the resonant frequency, −3 dB bandwidth taken from



Electronics 2024, 13, 78 12 of 14

the lowest S11, the value of the lowest S11, −3 dB bandwidth taken from the highest S11,
and the number of resonances. An ensemble method-based classification approach was
utilized over 9 materials, with 15 experiments per material and with a 93.3% accuracy. The
experimental results indicated effectiveness and ability to identify a wide range of materials
with different thicknesses, including concrete, grass, gravel, mulch, soil, wood, fabric, and
water. When compared with other systems where the sensor is embedded inside the robot,
the proposed approach was seen to be the most promising. This research work can be useful
for many areas, such as soft rehabilitation devices [38–40], soft underwater robots [41,42],
and soft surgical tools [43]. The limitation of this work is that the measurement was made
using the external coaxial cable and NanoVNA. Their actual implementation in an active
robot will require a measurement method to obtain the reflection coefficient. This work
explored the ability of antenna-based soft robots for the identification of single surfaces
using an ensemble method classifier. Given the promise of this approach, more complex
deep learning methods will be considered in the future, and tests will be conducted on more
complex surfaces. Moreover, composite surfaces comprising layers of multiple materials
will be examined for their reflection coefficients. This will be beneficial to identify below-
surface materials as well using a minimally invasive approach in applications like search
and rescue. Additionally, a dual band or triple band antenna may be used to extract more
distinctive features from the reflection coefficients. This may increase detection accuracy
and the number of background materials to be identified.

6. Conclusions

A novel approach for soft robot identification of background materials is presented
in this work. This approach measures the reflection coefficient using an embedded slot
antenna and utilizes an ensemble-based ML algorithm to classify the nine common ma-
terials, with an accuracy of 93.3%. The base material of the soft limbs was characterized
to find the relative permittivity and loss tangent, which were required in order to design
the slot antenna. The simulation results were in good agreement with the measurement
results of the resonance frequency of the antenna. The frequency band used to identify the
background material was an ISM band centered around 915 MHz. This soft-material and
antenna-design agnostic data-driven approach provides an extremely promising solution
to surface identification for soft robots interacting with their environment.
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