Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = sinkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 15042 KiB  
Article
Improved Design of Electroforming Equipment for the Manufacture of Sinker Electrical Discharge Machining Electrodes with Microtextured Surfaces
by Mariana Hernández-Pérez, Pedro M. Hernández-Castellano, Jorge Salguero-Gómez and Carlos J. Sánchez-Morales
Materials 2025, 18(9), 1972; https://doi.org/10.3390/ma18091972 - 26 Apr 2025
Viewed by 416
Abstract
The development of microtextures has had a transformative impact on surface design in engineering, leading to substantial advancements in the performance, efficiency, and functionality of components and tools. This study presents an innovative methodology for fabricating SEDM electrodes. The methodology combines additive manufacturing [...] Read more.
The development of microtextures has had a transformative impact on surface design in engineering, leading to substantial advancements in the performance, efficiency, and functionality of components and tools. This study presents an innovative methodology for fabricating SEDM electrodes. The methodology combines additive manufacturing by mask stereolithography with an optimized electroforming process to obtain high-precision copper shells. A key aspect of the study involved redesigning the electroforming equipment, enabling the independent examination of critical variables such as anode–cathode distance and electrolyte recirculation. This approach allowed precise analysis of their impact on metal deposition. This redesign enabled the assessment of the impact of electrolyte recirculation on the quality of the shells obtained. The findings indicate that continuous recirculation at 60% power effectively reduced thickness deviation by up to 32.5% compared to the worst-case scenario, achieving average thicknesses within the functional zone of approximately 110 µm. In contrast, the absence of flow or excessive turbulence did not generate defects such as unfilled zones or non-uniform thicknesses. The shells obtained were validated as functional tools in SEDM, demonstrating their viability for the generation of textures with high geometric fidelity. This approach optimizes the manufacturing of textured electrodes and opens new opportunities for their application in advanced industrial processes, providing a more efficient and sustainable alternative to conventional methods. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Graphical abstract

19 pages, 404 KiB  
Article
Modeling of (n,m)-Type Minkowski Pythagorean Hodograph Curves with Hopf Map and Applications
by Muhammed Talat Sariaydin and Aziz Yazla
Fractal Fract. 2024, 8(12), 705; https://doi.org/10.3390/fractalfract8120705 - 28 Nov 2024
Viewed by 935
Abstract
In the present paper, regular spacelike spatial Minkowski Pythagorean hodograph (MPH) curves are characterized with rational rotation-minimizing frames (RRMFs). We define an Euler–Rodrigues frame (ERF) for MPH curves and by means of this concept, we reach the definition of MPH curves of type [...] Read more.
In the present paper, regular spacelike spatial Minkowski Pythagorean hodograph (MPH) curves are characterized with rational rotation-minimizing frames (RRMFs). We define an Euler–Rodrigues frame (ERF) for MPH curves and by means of this concept, we reach the definition of MPH curves of type (n,m). Expressing the conditions provided by these curves in the form of a Minkowski–Hopf map that we define; it is aimed to establish a connection with the Lorentz force that occurs during the process of computer numerical control (CNC)-type sinker electronic discharge machines (EDMs). This approach is reinforced by split quaternion polynomials. We give conditions satisfied by MPH curves of low degree to be type (n,m) and construct illustrative examples. In five-axis CNC machines, rotation-minimizing frames are used for tool path planning, and in this way, unnecessary rotations in the tool frame are prevented and tool orientation is provided. Since we obtain MPH curves with RRMF using the ERF, finally we define the Fermi–Walker derivative and parallelism along MPH curves with respect to the ERF and give applications. Full article
Show Figures

Figure 1

18 pages, 9790 KiB  
Article
Exploring Hidden Connections: Endophytic System and Flower Meristem Development of Pilostyles berteroi (Apodanthaceae) and Interaction with Its Host Adesmia trijuga (Fabaceae)
by Ana Maria Gonzalez, María Florencia Romero and Héctor A. Sato
Plants 2024, 13(21), 3010; https://doi.org/10.3390/plants13213010 - 28 Oct 2024
Cited by 2 | Viewed by 1235
Abstract
Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of flowers [...] Read more.
Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of flowers and sinker structure. This study, using classical methods of optical microscopy applied to the analysis with scanning electron microscopy and confocal laser scanning microscopy, expands the understanding of the P. berteroi/A. trijuga complex. We find that P. berteroi develops isophasically with its host, forming endophytic patches between the host’s secondary phloem cells. The parasitized Adesmia stem’s cambium primarily produces xylem parenchyma, with limited vessel production and halting fiber formation. The radial polarization of endophytic patches led to the formation of floral meristems. Flowers develop endogenously and emerge by the breakthrough of the host stem. Flowers are connected to the host cambium via chimeric sinkers, combining P. berteroi parenchyma and tracheoids with Adesmia vessels. Unlike previous studies that show uniformity among Pilostyles species, our analysis reveals new insights into the structural interaction between P. berteroi and A. trijuga. Full article
(This article belongs to the Special Issue Advances in Plant Anatomy and Cell Biology)
Show Figures

Graphical abstract

15 pages, 9046 KiB  
Article
Numerical Modelling of the Hydrodynamic Performance of Biodegradable Drifting Fish Aggregating Devices in Currents
by Tongzheng Zhang, Junbo Zhang, Qinglian Hou, Gangyi Yu, Ao Chen, Zhiqiang Liu and Rong Wan
J. Mar. Sci. Eng. 2024, 12(7), 1059; https://doi.org/10.3390/jmse12071059 - 24 Jun 2024
Cited by 4 | Viewed by 1329
Abstract
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the [...] Read more.
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the harsh marine environment. Conventional FADs are composed of materials that do not break down naturally, leading to the accumulation of waste in the ocean and potential negative effects on marine ecosystems. Therefore, this work aimed to examine the hydrodynamic performance of biodegradable drifting FADs (Bio-DFADs) in oceanic currents by numerical modelling. The Reynolds-averaged Navier–Stokes equation was used to solve the flow field and discretized based on the realizable k-ε turbulence model, employing the finite volume method. A set of Bio-DFADs was developed to assess the hydrodynamic performance under varying current velocities and attack angles, as well as different balsa wood diameters and sinker weights. The results indicated that the relative current velocity significantly affected the relative velocity of Bio-DFADs. The relative length of the raft significantly affected both the relative velocity and the relative wetted area in a pure stream. Finally, the diameter of the balsa wood affected the drift velocity, and the sinker’s relative weight affected the hydrodynamic performance of the Bio-DFADs. Full article
(This article belongs to the Special Issue Advanced Analysis of Marine Structures—Edition II)
Show Figures

Figure 1

25 pages, 12683 KiB  
Article
Hydrodynamic Characteristics Analysis and Mooring System Optimization of an Innovative Deep-Sea Aquaculture Platform
by Lixin Zhang, Xingwei Zhen, Qiuyang Duan, Yi Huang, Chao Chen and Yangyang Li
J. Mar. Sci. Eng. 2024, 12(6), 972; https://doi.org/10.3390/jmse12060972 - 9 Jun 2024
Cited by 4 | Viewed by 1958
Abstract
As nearshore aquaculture spaces become saturated, the development of fisheries aquaculture for deep sea has become an inevitable trend. This paper proposes an innovative deep-sea aquaculture platform that incorporates a vessel-shaped main structure and a single-point mooring system. The potential flow theory and [...] Read more.
As nearshore aquaculture spaces become saturated, the development of fisheries aquaculture for deep sea has become an inevitable trend. This paper proposes an innovative deep-sea aquaculture platform that incorporates a vessel-shaped main structure and a single-point mooring system. The potential flow theory and the Morison equation are utilized to calculate the hydrodynamic loads on the main structure and the netting and mooring systems, respectively. The deformation and force of the netting in current are simulated, and the accuracy of the analytical methods used is validated based on experimental results. The influences of the netting system on the hydrodynamic characteristics of the platform are analyzed. Optimization on the single-point mooring system is conducted under static and dynamic conditions, considering the influences of various mooring parameters, including mooring line length, buoyancy of buoys, and mass of sinkers. The patterns of changes in motion response, mooring line tension, and minimum touchdown length under different mooring parameters are calculated and analyzed. The results indicate that changes in mooring line length have minimal impact on the dynamic response of the platform and mooring system. The addition of appropriate buoys or sinkers can reduce the motion response of the platform and the tension in the mooring lines. Moreover, compared to adding buoys, incorporating sinkers more effectively enhances the overall safety and stability of the platform system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 6673 KiB  
Article
Development of a Discriminative Dissolution Method, Using In-Silico Tool for Hydrochlorothiazide and Valsartan Tablets
by Rosmery Merma Leon, Michele Georges Issa, Marcelo Dutra Duque, Josiane Souza Pereira Daniel and Humberto Gomes Ferraz
Pharmaceutics 2023, 15(6), 1735; https://doi.org/10.3390/pharmaceutics15061735 - 14 Jun 2023
Cited by 2 | Viewed by 3630
Abstract
Hydrochlorothiazide (HTZ) and Valsartan (VAL) are poorly soluble drugs in BCS classes IV and II. This study aimed to develop a method to assess the dissolution profile of tablets containing HTZ (12.5 mg) and VAL (160 mg) as a fixed-dose combination, using in [...] Read more.
Hydrochlorothiazide (HTZ) and Valsartan (VAL) are poorly soluble drugs in BCS classes IV and II. This study aimed to develop a method to assess the dissolution profile of tablets containing HTZ (12.5 mg) and VAL (160 mg) as a fixed-dose combination, using in silico tools to evaluate products marketed in Brazil and Peru. Firstly, in vitro dissolution tests were performed using a fractional factorial design 33−1. Then, DDDPlus™ was used to carry out experimental design assays of a complete factorial design 33. Data from the first stage were used to obtain calibration constants for in silico simulations. The factors used in both designs were formulation, sinker use, and rotation speed. Finally, effects and factor interaction assessment was evaluated based on a statistical analysis of the dissolution efficiency (DE) obtained from simulations. Thus, the established final conditions of the dissolution method were 900 mL of phosphate buffer pH 6.8, 75 rpm of rotation speed, and sinker use to prevent formulation floating. The reference product stood out because of its higher DE than other formulations. It was concluded that the proposed method, in addition to ensuring total HTZ and VAL release from formulations, has adequate discriminative power. Full article
(This article belongs to the Special Issue Dissolution and Disintegration of Oral Solid Dosage Forms)
Show Figures

Graphical abstract

16 pages, 6115 KiB  
Article
Ultimate Strength Study of Structural Bionic CFRP-Sinker Bolt Assemblies Subjected to Preload under Three-Point Bending
by Zhengqi Qin, Ying He, Shengwu Wang and Cunying Meng
Biomimetics 2023, 8(2), 215; https://doi.org/10.3390/biomimetics8020215 - 23 May 2023
Cited by 4 | Viewed by 1796
Abstract
Countersunk head bolted joints are one of the main approaches to joining carbon fiber-reinforced plastics, or CFRP. In this paper, the failure mode and damage evolution of CFRP countersunk bolt components under bending load are studied by imitating water bears, which are born [...] Read more.
Countersunk head bolted joints are one of the main approaches to joining carbon fiber-reinforced plastics, or CFRP. In this paper, the failure mode and damage evolution of CFRP countersunk bolt components under bending load are studied by imitating water bears, which are born as adult animals and have strong adaptability to life. Based on the Hashin failure criterion, we establish a 3D finite element failure prediction model of a CFRP-countersunk bolted assembly, benchmarked with the experiment. The analysis shows that the simulation results under specified parameters have a good correlation with the experimental results, and can better reflect the three-point bending failure and fracture of the CFRP-countersunk bolted assembly. Based on the specified parameter of the carbon lamina material change, we used the countersunk bolt preload to investigate the stress distribution near the counterbore zone, and to investigate the effect of bolt load on the three-point bending limit load. The results obtained using FEA calculations indicate that the stress distribution around the countersunk hole is related to the laminate direction. The bolt preloading force increasing reduces the load value at the initial damage, and the appropriate preload force will increase the ultimate load of the joint. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration)
Show Figures

Figure 1

14 pages, 5871 KiB  
Article
Development of Biopredictive Dissolution Method for Extended-Release Desvenlafaxine Tablets
by Gustavo Vaiano Carapeto, Marcelo Dutra Duque, Michele Georges Issa and Humberto Gomes Ferraz
Pharmaceutics 2023, 15(5), 1544; https://doi.org/10.3390/pharmaceutics15051544 - 19 May 2023
Cited by 8 | Viewed by 3204
Abstract
This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence [...] Read more.
This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence studies. For this purpose, a PBBM was developed in GastroPlus® and combined with a Taguchi L9 design, to evaluate the impact of different drug products (Reference, Generic #1 and Generic #2) and dissolution test conditions on desvenlafaxine release. The influence of the superficial area/volume ratio (SA/V) of the tablets was observed, mainly for Generic #1, which presented higher SA/V than the others, and a high amount of drug dissolved under similar test conditions. The dissolution test conditions of 900 mL of 0.9% NaCl and paddle at 50 rpm with sinker showed to be biopredictive, as it was possible to demonstrate virtual bioequivalence for all products, despite their release-pattern differences, including Generic #3 as an external validation. This approach led to a rational development of a biopredictive dissolution method for desvenlafaxine ER tablets, providing knowledge that may help the process of drug product and dissolution method development. Full article
(This article belongs to the Special Issue Dissolution and Disintegration of Oral Solid Dosage Forms)
Show Figures

Figure 1

26 pages, 4904 KiB  
Review
Parameters Optimization of Electrical Discharge Machining Process Using Swarm Intelligence: A Review
by Yanyan Chen, Shunchang Hu, Ansheng Li, Yang Cao, Yangjing Zhao and Wuyi Ming
Metals 2023, 13(5), 839; https://doi.org/10.3390/met13050839 - 24 Apr 2023
Cited by 20 | Viewed by 4825
Abstract
Electrical discharge machining (EDM) can use soft tool electrodes to process hard workpieces to achieve “soft against hard”, because it directly uses electrical energy and thermal energy to remove metal materials. Then, it can generate complex features on harder materials and meet the [...] Read more.
Electrical discharge machining (EDM) can use soft tool electrodes to process hard workpieces to achieve “soft against hard”, because it directly uses electrical energy and thermal energy to remove metal materials. Then, it can generate complex features on harder materials and meet the requirements of excellent surface quality. Since EDM involves many process parameters, including electrical parameters, non-electrical parameters, and materials properties, it is essential to optimize its process parameters to obtain good performance. In this direction, the application of the swarm intelligence (SI) technique has become popular. In this paper, the existing literature is comprehensively reviewed, and the application of the SI technique in the optimization of EDM process parameters is summarized. Sinker-EDM (SEDM), wire-EDM (WEDM), and micro-EDM (MEDM) with various hybrid techniques are among the EDM methods considered in this study because of their broad adoption in industrial sections. The fundamental nature of all review articles will assist engineers/workers in determining the process parameters and processing performance, the SI algorithm, and the optimal technique by which to obtain the desired process parameters. In addition, discussions from the perspectives of the similarity, individuality, and complementarity of various SI algorithms are proposed, and necessary outlooks are predicted, which provides references for the high performance of the EDM processes in the future. Full article
Show Figures

Figure 1

12 pages, 2548 KiB  
Article
Environmental Pollution by Lost Fishing Tackle: A Systematic Assessment in Lake Eixendorf
by Joachim Pander, Andreas H. Dobler, Philipp Hoos and Juergen Geist
Environments 2022, 9(11), 144; https://doi.org/10.3390/environments9110144 - 14 Nov 2022
Cited by 6 | Viewed by 6451
Abstract
Environmental pollution by lost fishing tackle is hardly considered in freshwater management. We collected and classified lost angling tackle during the dewatering of Lake Eixendorf, Germany. Based on the results, 1 item per 100 m2 lake area was found, resulting in 5442 [...] Read more.
Environmental pollution by lost fishing tackle is hardly considered in freshwater management. We collected and classified lost angling tackle during the dewatering of Lake Eixendorf, Germany. Based on the results, 1 item per 100 m2 lake area was found, resulting in 5442 items, with an overall weight of more than 65 kg. This included more than 5 km of braided and monofilament fishing lines of various diameters. Lures used for active fishing methods such as stickbaits (shads and twister), metal spoons, spinners, and hard plastic baits had the greatest weight contribution (53.4%). Tackle lost from passive fishing methods (45.1%) mostly comprised groundbaiting feeder baskets and classical lead sinkers. Concerning the chemical composition, most lost items contained a composite mix of different materials. Lead was most abundant (45 kg), followed by plastics (13 kg) and steel (6 kg). Other materials such as copper, aluminum, brass (altogether 376 g), and chemicals from glow sticks (25 g) were less frequently found. Environmental pollution by lost fishing tackle deserves attention and, due to its potential environmental consequences, needs to be integrated into the pollution management of aquatic ecosystems, e.g., by identifying the most problematic items and by regulating the production and use of gear containing hazardous substances. Full article
Show Figures

Graphical abstract

22 pages, 2929 KiB  
Article
Challenges to and Strategies for the Climate Village Program Plus: A Lesson Learned from Indonesia
by Catur Budi Wiati, I Wayan Susi Dharmawan, Niken Sakuntaladewi, Sulistya Ekawati, Tien Wahyuni, Rizki Maharani, Yayan Hadiyan, Yosua Naibaho, Wahyudi Iman Satria, Ngatiman Ngatiman, Abdurachman Abdurachman, Karmilasanti Karmilasanti, Aulia Nur Laksmita, Eddy Mangopo Angi and Chiranjeewee Khadka
Sustainability 2022, 14(9), 5530; https://doi.org/10.3390/su14095530 - 5 May 2022
Cited by 9 | Viewed by 4711
Abstract
The Climate Village Program (CVP) is one of the national flagship programs of the Ministry of Environment and Forestry of the Republic of Indonesia to support emission reduction and climate resilience. This paper examines the challenges and strategies for implementing the climate village [...] Read more.
The Climate Village Program (CVP) is one of the national flagship programs of the Ministry of Environment and Forestry of the Republic of Indonesia to support emission reduction and climate resilience. This paper examines the challenges and strategies for implementing the climate village program in the national and sub-national contexts. Data and information derived from discussions, seminars, focus group discussions, and interviews with local government officials in East Kalimantan were used to analyze the social learning of the CVP plus, including those on the policy process and its concept, integration program, and implementation. Sustainable strategies need to be addressed by integrating the CVP plus into the medium-term development plan of the region. The challenges and way forward of the CVP plus could be an excellent lesson for implementation in all provinces of Indonesia to support FOLU (Forest Other Land Use) Net Sinker 2030 and LTS-LCCR (Long-Term Strategy on Low Carbon and Climate Resilience) 2050. Key challenges and strategies for the CVP plus are highlighted in the planning and implementation phases, especially in improving climate resilience. This study also points out the steps of implementation of the CVP, development partners and their roles in relation to climate change and other socio-economic facts that make it difficult to engage real stakeholders in the implementation of the CVP plus. Full article
(This article belongs to the Special Issue Adaptation Strategies for Climate Change)
Show Figures

Figure 1

8 pages, 1626 KiB  
Article
Introducing a Novel Biorelevant In Vitro Dissolution Method for the Assessment of Nicotine Release from Oral Tobacco-Derived Nicotine (OTDN) and Snus Products
by Matthias M. Knopp, Nikolai K. Kiil-Nielsen, Anna E. Masser and Mikael Staaf
Separations 2022, 9(2), 52; https://doi.org/10.3390/separations9020052 - 15 Feb 2022
Cited by 6 | Viewed by 5504
Abstract
The rate at which oral tobacco-derived nicotine (OTDN) and snus pouches release nicotine into saliva is crucial to determine product performance. As no standardized method is available for this purpose, this study sought to develop a biorelevant dissolution method that could both discriminate [...] Read more.
The rate at which oral tobacco-derived nicotine (OTDN) and snus pouches release nicotine into saliva is crucial to determine product performance. As no standardized method is available for this purpose, this study sought to develop a biorelevant dissolution method that could both discriminate between different products and predict in vivo behavior. Using a μDISS Profiler™ as a surrogate for the US Pharmacopoeia standard apparatuses and a custom-made sinker, nicotine release from an OTDN pouch product (ZYN® Dry Smooth) and a snus product (General® Pouched Snus White Portion Large) was determined in biorelevant volumes (10 mL) of artificial saliva. In addition, nicotine extraction in vivo was measured for both products. Strikingly, the method showed distinct dissolution curves for OTDN and snus pouches, and the nicotine release observed in vitro did not significantly differ from the nicotine extracted in vivo. The custom-made sinker was designed to accommodate both loose and pouched oral tobacco/nicotine products, and thus the proposed in vitro dissolution method is suitable to assess nicotine release from OTDN and snus pouches. Apart from providing individual dissolution curves, the method was also able to predict in vivo nicotine extraction. Thus, this method could serve as a (biorelevant) monograph for product equivalence studies. Full article
Show Figures

Figure 1

18 pages, 8347 KiB  
Article
Combined Manufacturing Process of Copper Electrodes for Micro Texturing Applications (AMSME)
by Carlos J. Sánchez, Pedro M. Hernández, María D. Martínez, María D. Marrero and Jorge Salguero
Materials 2021, 14(10), 2497; https://doi.org/10.3390/ma14102497 - 12 May 2021
Cited by 4 | Viewed by 2610
Abstract
Surface texturing has brought significant improvements in the functional properties of parts and components. Sinker electro discharge machining (SEDM) is one of the processes which generates great texturing results at different scale. An electrode is needed to reproduce the geometry to be textured. [...] Read more.
Surface texturing has brought significant improvements in the functional properties of parts and components. Sinker electro discharge machining (SEDM) is one of the processes which generates great texturing results at different scale. An electrode is needed to reproduce the geometry to be textured. Some geometries are difficult or impossible to achieve on an electrode using conventional and even unconventional machining methods. This work sets out the advances made in the manufacturing of copper electrodes for electro erosion by additive manufacturing, and their subsequent application to the functional texturing of Al-Cu UNS A92024-T3 alloy. A combined procedure of digital light processing (DLP) additive manufacturing, sputtering and micro-electroforming (AMSME), has been used to produce electrodes. Also, a specific laboratory equipment has been developed to reproduce details on a microscopic scale. Shells with outgoing spherical geometries pattern have been manufactured. AMSME process has shown ability to copper electrodes manufacturing. A highly detailed surface on a micrometric scale have been achieved. Copper shells with minimum thickness close to 300 µm have been tested in sinker electro discharge machining (SEDM) and have been shown very good performance in surface finishing operations. The method has shown great potential for use in surfaces texturing. Full article
Show Figures

Figure 1

19 pages, 12385 KiB  
Article
Numerical Study on Hydrodynamic Responses of Floating Rope Enclosure in Waves and Currents
by Hui Yang, Yun-Peng Zhao, Chun-Wei Bi and Yong Cui
J. Mar. Sci. Eng. 2020, 8(2), 82; https://doi.org/10.3390/jmse8020082 - 26 Jan 2020
Cited by 7 | Viewed by 3536
Abstract
Enclosure aquaculture is a healthy and ecological aquaculture pattern developed in recent years to relieve the pressure due to the wild fish stock decline and water pollution. The object of this paper was a floating rope enclosure, which mainly consisted of floaters, mooring [...] Read more.
Enclosure aquaculture is a healthy and ecological aquaculture pattern developed in recent years to relieve the pressure due to the wild fish stock decline and water pollution. The object of this paper was a floating rope enclosure, which mainly consisted of floaters, mooring lines, sinkers and a net. In order to optimize mooring design factors, the hydrodynamic responses of the floating rope enclosure with different mooring systems in combined wave-current were investigated by experimental and numerical methods. Physical model experiments with a model scale of 1:50 were performed to investigate the hydrodynamic characteristics of a floating rope enclosure with 12 mooring lines. Based on the lumped mass method, the numerical model was established to investigate the effects of mooring design factors on the mooring line tension, force acting on the bottom, and the volume retention of the floating rope enclosure. Through the analysis of numerical and experimental results, it was found that the maximum mooring line tension of the floating rope enclosure occurs on both sides of the windward. Increasing the number of mooring lines on the windward side is helpful to reduce the maximum mooring line tension. Waves and current both have an influence on the mooring line tension; in contrast, currents have a more obvious effect on the mooring line tension than waves. However, the influence of the wave period on the maximum mooring line tension is small. The force endured by the bottom of the floating rope enclosure also changes periodically with the wave period. Yet, the maximum force endured by the bottom of floating rope enclosure occurred at the windward and leeward of the structure. The volume retention of the floating rope enclosure increased with the increasing amount of mooring lines. Full article
(This article belongs to the Special Issue Computer-Aided Marine Structures’ Design)
Show Figures

Figure 1

19 pages, 6584 KiB  
Article
Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining
by M. Ramulu and Mathew Spaulding
Materials 2016, 9(9), 746; https://doi.org/10.3390/ma9090746 - 1 Sep 2016
Cited by 29 | Viewed by 5850
Abstract
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and [...] Read more.
An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application. Full article
(This article belongs to the Special Issue Machining of Composites and Multi-Stacks of Aerospace Materials)
Show Figures

Figure 1

Back to TopTop