Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = single-walled carbon nanotube (SWCNT) network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 9659 KiB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 443
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

22 pages, 7142 KiB  
Article
Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors
by Yingying Li, Qin Zhou and Yongfu Lian
Nanomaterials 2025, 15(7), 481; https://doi.org/10.3390/nano15070481 - 23 Mar 2025
Viewed by 643
Abstract
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by [...] Read more.
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g−1 at 1 A g−1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g−1 at 1.0 A g−1, an excellent energy density of 45.7 Wh kg−1 with a power density of 700 W kg−1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g−1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors. Full article
Show Figures

Graphical abstract

15 pages, 6513 KiB  
Article
A Wide-Range, Highly Stable Intelligent Flexible Pressure Sensor Based on Micro-Wrinkled SWCNT/rGO-PDMS with Efficient Thermal Shrinkage
by Lei Fan, Zhaoxin Wang, Tao Yang, Qiang Zhao, Zhixin Wu, Yijie Wang, Xue Qi and Lei Zhang
Biosensors 2025, 15(2), 122; https://doi.org/10.3390/bios15020122 - 19 Feb 2025
Cited by 1 | Viewed by 1351
Abstract
Flexible pressure sensors have drawn growing attention in areas like human physiological signal monitoring and human–computer interaction. Nevertheless, it still remains a significant challenge to guarantee their long-term stability while attaining a wide detection range, a minute pressure testing limit, and high sensitivity. [...] Read more.
Flexible pressure sensors have drawn growing attention in areas like human physiological signal monitoring and human–computer interaction. Nevertheless, it still remains a significant challenge to guarantee their long-term stability while attaining a wide detection range, a minute pressure testing limit, and high sensitivity. Inspired by the wrinkles on animal skins, this paper introduces a flexible pressure sensor with wrinkled microstructures. This sensor is composed of a composite of reduced graphene oxide (rGO), single-walled carbon nanotubes (SWCNTs), and polydimethylsiloxane (PDMS). After optimizing the proportion of the composite materials, the flexible pressure sensor was manufactured using highly efficient heat-shrinkable films. It has a sensitivity as high as 15.364 kPa−1. Owing to the wrinkled microstructures, the sensor can achieve an ultra-wide pressure detection range, with the maximum reaching 1150 kPa, and is capable of detecting water wave vibrations at the minimum level. Moreover, the wrinkled microstructures were locked by PDMS. The sensor acquired waterproof performance and its mechanical stability was enhanced. Even after 18,000 cycles of repeated loading and unloading, its performance remained unchanged. By combining with an artificial neural network, high-precision recognition of different sounds and postures when grasping different objects was realized, with the accuracies reaching 98.3333% and 99.1111%, respectively. Through the integration of flexible WIFI, real-time wireless transmission of sensing data was made possible. In general, the studied sensor can facilitate the application of flexible pressure sensors in fields such as drowning monitoring, remote traditional Chinese medicine, and intelligent voice. Full article
(This article belongs to the Special Issue Microelectronics and MEMS-Based Biosensors for Healthcare Application)
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Evaluation of Electrical Properties and Uniformity of Single Wall Carbon Nanotube Dip-Coated Conductive Fabrics Using Convolutional Neural Network-Based Image Analysis
by Erin Kim, SangUn Kim and Jooyong Kim
Processes 2024, 12(11), 2534; https://doi.org/10.3390/pr12112534 - 13 Nov 2024
Viewed by 926
Abstract
This study proposes a convolutional neural network (CNN)-based image analysis method to evaluate the electrical properties and uniformity of conductive fabrics treated with single-walled carbon nanotube (SWCNT) dip-coating. The conductive fabric was produced by dip-coating cotton-blended spandex with SWCNT, and the surface images [...] Read more.
This study proposes a convolutional neural network (CNN)-based image analysis method to evaluate the electrical properties and uniformity of conductive fabrics treated with single-walled carbon nanotube (SWCNT) dip-coating. The conductive fabric was produced by dip-coating cotton-blended spandex with SWCNT, and the surface images were scanned and preprocessed to obtain image data, while resistance measurements were conducted to obtain labels and build the dataset. SEM analysis revealed that as the number of dip-coating cycles increased, particle density and path formation improved. The CNN model learned the relationship between surface images and resistance values, achieving a high predictive performance, with an R-squared (R²) value of 0.9422. The model demonstrated prediction accuracies of 99.1792% for the coefficient of variation (CV) of uniformly coated fabrics and 96.8877% for non-uniformly coated fabrics. Additionally, p-value analysis of all fabric samples yielded a result of 0.96044, indicating no statistically significant difference between the predicted and actual values. The proposed CNN-based model can accurately evaluate the electrical uniformity of conductive fabrics, showing potential for contributing to quality control and process optimization in production. Full article
(This article belongs to the Special Issue Research on Intelligent Fault Diagnosis Based on Neural Network)
Show Figures

Figure 1

17 pages, 6630 KiB  
Article
Conductive Biocomposite Made by Two-Photon Polymerization of Hydrogels Based on BSA and Carbon Nanotubes with Eosin-Y
by Mikhail S. Savelyev, Artem V. Kuksin, Denis T. Murashko, Ekaterina P. Otsupko, Ulyana E. Kurilova, Sergey V. Selishchev and Alexander Yu. Gerasimenko
Gels 2024, 10(11), 711; https://doi.org/10.3390/gels10110711 - 3 Nov 2024
Cited by 3 | Viewed by 1782
Abstract
Currently, tissue engineering technologies are promising for the restoration of damaged organs and tissues. For regeneration of electrically conductive tissues or neural interfaces, it is necessary to provide electrical conductivity for the transmission of electrophysiological signals. The developed biocomposite structures presented in this [...] Read more.
Currently, tissue engineering technologies are promising for the restoration of damaged organs and tissues. For regeneration of electrically conductive tissues or neural interfaces, it is necessary to provide electrical conductivity for the transmission of electrophysiological signals. The developed biocomposite structures presented in this article possess such properties. Their composition includes bovine serum albumin (BSA), gelatin, eosin-Y and single-walled carbon nanotubes (SWCNTs). For the first time, a biocomposite structure was formed from the proposed hydrogel using a nanosecond laser, and a two-photon absorption cross section value of 580 GM was achieved. Increased viscosity over 3 mPa∙s and self-focusing with a nonlinear refractive index of 42 × 10−12 cm2/W make it possible to create a biocomposite structure over the entire specified area. The obtained electrical conductivity value was 19 mS∙cm−1, due to the formation of effective electrically conductive networks. For a biocomposite with a concentration of gelatin 3 wt. %, formed by low-energy near-IR pulses, the survival of Neuro 2A nerve tissue cells was confirmed. The obtained results are important for the creation of new tissue engineering structures and neural interfaces from a biopolymer hydrogel based on the organic dye eosin-Y and carbon nanotubes by two-photon polymerization. Full article
Show Figures

Figure 1

19 pages, 6142 KiB  
Article
Optimizing Mechanical and Electrical Performance of SWCNTs/Fe3O4 Epoxy Nanocomposites: The Role of Filler Concentration and Alignment
by Zulfiqar Ali, Saba Yaqoob, Alessandro Lo Schiavo and Alberto D’Amore
Polymers 2024, 16(18), 2595; https://doi.org/10.3390/polym16182595 - 13 Sep 2024
Viewed by 1138
Abstract
The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges [...] Read more.
The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges like orientation, uniform dispersion, and agglomeration must be addressed to realize their full potential. This study focuses on developing SWCNTs/Fe3O4 epoxy composites by keeping the SWCNT concentration constant at 0.03 Vol.% and varying with Fe3O4 concentrations at 0.1, 0.5, and 1 Vol.% for two different configurations: randomly orientated (R-) and magnetic field-assisted horizontally aligned (A-) SWCNTs/Fe3O4 epoxy composites, and investigates the effects of filler concentration, dispersion, and magnetic alignment on the mechanical and electrical properties. The research reveals that both composite configurations achieve an optimal mechanical performance at 0.5 Vol.% Fe3O4, while A- SWCNTs/Fe3O4 epoxy composites outperformed at all concentrations. However, at 1 Vol.% Fe3O4, mechanical properties decline due to nanoparticle agglomeration, which disrupts stress distribution. In contrast, electrical conductivity peaks at 1 Vol.% Fe3O4, indicating that the higher density of Fe3O4 nanoparticles enhances the conductive network despite the mechanical losses. This study highlights the need for precise control over filler content and alignment to optimize mechanical strength and electrical conductivity in SWCNTs/Fe3O4 epoxy nanocomposites. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

10 pages, 2127 KiB  
Article
Polymer Coating Enabled Carrier Modulation for Single-Walled Carbon Nanotube Network Inverters and Antiambipolar Transistors
by Zhao Li, Jenner H. L. Ngai and Jianfu Ding
Nanomaterials 2024, 14(18), 1477; https://doi.org/10.3390/nano14181477 - 11 Sep 2024
Viewed by 1168
Abstract
The control of the performance of single-walled carbon nanotube (SWCNT) random network-based transistors is of critical importance for their applications in electronic devices, such as complementary metal oxide semiconducting (CMOS)-based logics. In ambient conditions, SWCNTs are heavily p-doped by the H2O/O [...] Read more.
The control of the performance of single-walled carbon nanotube (SWCNT) random network-based transistors is of critical importance for their applications in electronic devices, such as complementary metal oxide semiconducting (CMOS)-based logics. In ambient conditions, SWCNTs are heavily p-doped by the H2O/O2 redox couple, and most doping processes have to counteract this effect, which usually leads to broadened hysteresis and poor stability. In this work, we coated an SWCNT network with various common polymers and compared their thin-film transistors’ (TFTs’) performance in a nitrogen-filled glove box. It was found that all polymer coatings will decrease the hysteresis of these transistors due to the partial removal of charge trapping sites and also provide the stable control of the doping level of the SWCNT network. Counter-intuitively, polymers with electron-withdrawing functional groups lead to a dramatically enhanced n-branch in their transfer curve. Specifically, SWCNT TFTs with poly (vinylidene fluoride) coating show an n-type mobility up to 61 cm2/Vs, with a decent on/off ratio and small hysteresis. The inverters constructed by connecting two ambipolar TFTs demonstrate high gain but with certain voltage loss. P-type or n-type doping from polymer coating layers could suppress unnecessary n- or p-branches, shift the threshold voltage and optimize the performance of these inverters to realize rail-to-rail switching. Similar devices also demonstrate interesting antiambipolar performance with tunable on and off voltage when tested in a different configuration. Full article
Show Figures

Figure 1

13 pages, 4110 KiB  
Article
The Influence of Molecular Weights on Dispersion and Thermoelectric Performance of Alkoxy Side-Chain Polythiophene/Carbon Nanotube Composite Materials
by Xiaogang Chen, Shihong Chen, Dagang Wang, Yongfu Qiu, Zhongming Chen, Haixin Yang, Qing Yang, Zijian Yin and Chengjun Pan
Polymers 2024, 16(17), 2444; https://doi.org/10.3390/polym16172444 - 29 Aug 2024
Cited by 1 | Viewed by 1279
Abstract
In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight [...] Read more.
In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight variants of P3(TEG)T (P1–P4) were prepared and combined with SWCNTs to form composite materials. Density functional theory (DFT) calculations revealed a reduced bandgap for P3(TEG)T. Raman spectroscopy demonstrated π-π interactions between P3(TEG)T and SWCNTs, facilitating the dispersion of single-walled carbon nanotubes and the formation of a continuous conductive network. Among the composite films, P4/SWCNTs-0.9 exhibited the highest thermoelectric performance, with a power factor (PF) value of 449.50 μW m−1 K−2. The fabricated flexible thermoelectric device achieved an output power of 3976.92 nW at 50 K, with a tensile strength of 59.34 MPa for P4/SWCNTs. Our findings highlight the strong interfacial interactions between P3(TEG)T and SWCNTs in the composite material, providing an effective charge transfer pathway. Furthermore, an improvement in the tensile performance was observed with an increase in the molecular weight of the polymer used in the composite, offering a viable platform for the development of high-performance flexible organic thermoelectric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

10 pages, 2206 KiB  
Article
Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-Ideal p-n Diodes
by Gideon Oyibo, Thomas Barrett, Sharadh Jois, Jeffrey L. Blackburn and Ji Ung Lee
Materials 2024, 17(15), 3676; https://doi.org/10.3390/ma17153676 - 25 Jul 2024
Cited by 3 | Viewed by 1125
Abstract
The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron–electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors [...] Read more.
The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron–electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal p-n diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries. Full article
(This article belongs to the Special Issue Fabrication and Application of Carbon Nanotube Films and Fibers)
Show Figures

Figure 1

14 pages, 27807 KiB  
Article
Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique
by Athanasios Kotrotsos, Nikolaos Syrmpopoulos, Prokopios Gavathas, Sorina Moica and Vassilis Kostopoulos
J. Compos. Sci. 2024, 8(6), 213; https://doi.org/10.3390/jcs8060213 - 6 Jun 2024
Cited by 3 | Viewed by 2540
Abstract
In this study, nanofibers obtained through the electrospinning process are explored for strain-sensing applications. Thermoplastic polyurethane (TPU) flexible structures were fabricated using the solution electrospinning process (SEP) technique. Subsequently, these structures were nanomodified with single-walled carbon nanotubes (SWCNTs) through immersion into an ultrasonicated [...] Read more.
In this study, nanofibers obtained through the electrospinning process are explored for strain-sensing applications. Thermoplastic polyurethane (TPU) flexible structures were fabricated using the solution electrospinning process (SEP) technique. Subsequently, these structures were nanomodified with single-walled carbon nanotubes (SWCNTs) through immersion into an ultrasonicated suspension containing 0.3 wt% SWCNTs. The nanomodification aimed to impart an electrically conductive network to the structures. Micro-tensile tests and electrical resistance measurements were conducted to characterize the apparent mechanical and electrical properties, respectively. The fabricated structures demonstrated potential as wearable strain sensors for monitoring changes in strain across various applications. The samples exhibited excellent performance, high sensitivity, outstanding mechanical properties, and a broad stretching range. Scanning electron microscopy (SEM) observations provided qualitative insights into the activated conductive pathways during operation. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

5 pages, 508 KiB  
Proceeding Paper
Unbundling SWCNT Mechanically via Nanomanipulation Using AFM
by Ahmed Kreta, Mohamed A. Swillam, Albert Guirguis and Abdou Hassanien
Eng. Proc. 2023, 56(1), 83; https://doi.org/10.3390/ASEC2023-15346 - 26 Oct 2023
Cited by 3 | Viewed by 1084
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures fabricated from carbon atoms that seem like seamless cylinders composed of rolled sheets of graphite. Owing to the unique properties of single-walled carbon nanotubes (SWCNTs), they are a promising candidate in various fields such as chemical sensing, [...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures fabricated from carbon atoms that seem like seamless cylinders composed of rolled sheets of graphite. Owing to the unique properties of single-walled carbon nanotubes (SWCNTs), they are a promising candidate in various fields such as chemical sensing, hydrogen storage, catalyst support, electronics, nanobalances, and nanotubes. Because of their small size, large surface area, high sensitivity, and reversible behavior at room temperature, CNTs are ideal for measuring gas. They also show improved electron transfer when used as electrodes in electrochemical reactions and serve as solid media for protein immobilization on biosensors. SWCNTs can be metallic or semi-conductive, counting on their structural properties. In this study, an atomic force microscope (AFM) was used as a powerful tool to manipulate and disaggregate SWCNTs. By precisely controlling the AFM probe, it was possible to manipulate individual SWCNTs and separate them from the bundle structures. Next, the electrical transport of disaggregated SWCNTs was studied using the conductive atomic force microscope (cAFM) technique. Thus, current-voltage measurements on the unbundled branches of SWCNTs were carried out. Interestingly, these current-voltage measurements have allowed us to unravel the complex electrical characteristics of the nanotube bundle, which is a very crucial issue for gating effects as well as the resistance of the interconnects within carbon nanotube network devices. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 3057 KiB  
Article
A Flexible and Transparent PtNP/SWCNT/PET Electrochemical Sensor for Nonenzymatic Detection of Hydrogen Peroxide Released from Living Cells with Real-Time Monitoring Capability
by Da Eun Oh, Chang-Seuk Lee, Tae Wan Kim, Seob Jeon and Tae Hyun Kim
Biosensors 2023, 13(7), 704; https://doi.org/10.3390/bios13070704 - 3 Jul 2023
Cited by 18 | Viewed by 2726
Abstract
We developed a transparent and flexible electrochemical sensor using a platform based on a network of single-walled carbon nanotubes (SWCNTs) for the non-enzymatic detection of hydrogen peroxide (H2O2) released from living cells. We decorated the SWCNT network on a [...] Read more.
We developed a transparent and flexible electrochemical sensor using a platform based on a network of single-walled carbon nanotubes (SWCNTs) for the non-enzymatic detection of hydrogen peroxide (H2O2) released from living cells. We decorated the SWCNT network on a poly(ethylene terephthalate) (PET) substrate with platinum nanoparticles (PtNPs) using a potentiodynamic method. The PtNP/SWCNT/PET sensor synergized the advantages of a flexible PET substrate, a conducting SWCNT network, and a catalytic PtNP and demonstrated good biocompatibility and flexibility, enabling cell adhesion. The PtNP/SWCNT/PET-based sensor demonstrated enhanced electrocatalytic activity towards H2O2, as well as excellent selectivity, stability, and reproducibility. The sensor exhibited a wide dynamic range of 500 nM to 1 M, with a low detection limit of 228 nM. Furthermore, the PtNP/SWCNT/PET sensor remained operationally stable, even after bending at various angles (15°, 30°, 60°, and 90°), with no noticeable loss of current signal. These outstanding characteristics enabled the PtNP/SWCNT/PET sensor to be practically applied for the direct culture of HeLa cells and the real-time monitoring of H2O2 release by the HeLa cells under drug stimulation. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Biomedical Applications)
Show Figures

Figure 1

13 pages, 3878 KiB  
Article
Electromagnetic Shielding Enhancement of Butyl Rubber/Single-Walled Carbon Nanotube Composites via Water-Induced Modification
by Xin Guo and Guangye Liu
Polymers 2023, 15(9), 2101; https://doi.org/10.3390/polym15092101 - 28 Apr 2023
Cited by 7 | Viewed by 1710
Abstract
Electromagnetic properties of polymer composites strongly depend on the loading amount and the completeness of the filler’s dispersive structure. Improving the compatibility of single-walled carbon nanotubes (SWCNTs) with isobutylene butyl rubber (IIR) is a good solution to mitigate aggregation. The change in configuration [...] Read more.
Electromagnetic properties of polymer composites strongly depend on the loading amount and the completeness of the filler’s dispersive structure. Improving the compatibility of single-walled carbon nanotubes (SWCNTs) with isobutylene butyl rubber (IIR) is a good solution to mitigate aggregation. The change in configuration of poly-oxyethylene octyl phenol ether (OP-10) was induced using water as the exposed hydrophilic groups linking with water molecules. The SWCNT and IIR/SWCNT composites were then prepared via wetly-melt mixing at a relatively high temperature to remove water, and they were then mixed with other agents after vacuum drying and cured. The SWCNTs were dispersed uniformly to form a good network for a lower percolation threshold of the wave-absorbing property to 2 phr from 8 phr. With 8 phr SWCNTs, the tensile strength of the material improved significantly from 7.1 MPa to 15.1 MPa, and the total electromagnetic shielding effectiveness of the material was enhanced to 23.8 dB, a 3-fold increase compared to the melt-mixed material. It was demonstrated that water-induced modification achieved good dispersion of SWCNTs for electromagnetic shielding enhancement while maintaining a wide damping temperature range from −55 °C to 40 °C with a damping factor over 0.2. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

16 pages, 11434 KiB  
Article
Island-Type Graphene-Nanotube Hybrid Structures for Flexible and Stretchable Electronics: In Silico Study
by Michael M. Slepchenkov, Pavel V. Barkov and Olga E. Glukhova
Micromachines 2023, 14(3), 671; https://doi.org/10.3390/mi14030671 - 17 Mar 2023
Cited by 4 | Viewed by 2147
Abstract
Using the self-consistent charge density functional tight-binding (SCC-DFTB) method, we study the behavior of graphene-carbon nanotube hybrid films with island topology under axial deformation. Hybrid films are formed by AB-stacked bilayer graphene and horizontally aligned chiral single-walled carbon nanotubes (SWCNTs) with chirality indices [...] Read more.
Using the self-consistent charge density functional tight-binding (SCC-DFTB) method, we study the behavior of graphene-carbon nanotube hybrid films with island topology under axial deformation. Hybrid films are formed by AB-stacked bilayer graphene and horizontally aligned chiral single-walled carbon nanotubes (SWCNTs) with chirality indices (12,6) and 1.2 nm in diameter. In hybrid films, bilayer graphene is located above the nanotube, forming the so-called “islands” of increased carbon density, which correspond to known experimental data on the synthesis of graphene-nanotube composites. Two types of axial deformation are considered: stretching and compression. It has been established that bilayer graphene-SWCNT (12,6) hybrid films are characterized by elastic deformation both in the case of axial stretching and axial compression. At the same time, the resistance of the atomic network of bilayer graphene-SWCNT (12,6) hybrid films to failure is higher in the case of axial compression. Within the framework of the Landauer-Buttiker formalism, the current-voltage characteristics of bilayer graphene-SWCNT (12,6) hybrid films are calculated. It is shown that the slope of the current-voltage characteristic and the maximum values of the current are sensitive to the topological features of the bilayer graphene in the composition of graphene-SWCNT (12,6) hybrid film. Based on the obtained results, the prospects for the use of island-type graphene-nanotube films in flexible and stretchable electronic devices are predicted. Full article
(This article belongs to the Special Issue Structural Analyses and Designs for Flexible/Stretchable Electronics)
Show Figures

Figure 1

15 pages, 3218 KiB  
Article
Hybrid Carbon Nanocomposites Made of Aerospace-Grade Epoxy Showing Synergistic Effects in Electrical Properties and High Processability
by Federica Zaccardi, Elisa Toto, Fabrizio Marra, Maria Gabriella Santonicola and Susanna Laurenzi
Polymers 2023, 15(5), 1163; https://doi.org/10.3390/polym15051163 - 25 Feb 2023
Viewed by 1785
Abstract
In this work, we investigate the processability and the volumetric electrical properties of nanocomposites made of aerospace-grade RTM6, loaded with different carbon nanoparticles. Nanocomposites with graphene nanoplatelets (GNP), single-walled carbon nanotubes (SWCNT) and hybrid GNP/SWCNT in the ratio 2:8 (GNP2SWCNT8 [...] Read more.
In this work, we investigate the processability and the volumetric electrical properties of nanocomposites made of aerospace-grade RTM6, loaded with different carbon nanoparticles. Nanocomposites with graphene nanoplatelets (GNP), single-walled carbon nanotubes (SWCNT) and hybrid GNP/SWCNT in the ratio 2:8 (GNP2SWCNT8), 5:5 (GNP5SWCNT5) and 8:2 (GNP8SWCNT2) were manufactured and analyzed. The hybrid nanofillers are observed to have synergistic properties as epoxy/hybrid mixtures showed better processability than epoxy/SWCNT, while maintaining high values of electrical conductivity. On the other hand, epoxy/SWCNT nanocomposites present the highest electrical conductivities with the formation of a percolating conductive network at lower filler content, but very large viscosity values and filler dispersion issues, which significantly affect the final quality of the samples. Hybrid nanofiller allows us to overcome the manufacturing issues typically associated with the use of SWCNTs. The combination of low viscosity and high electrical conductivity makes the hybrid nanofiller a good candidate for the fabrication of aerospace-grade nanocomposites with multifunctional properties. Full article
Show Figures

Graphical abstract

Back to TopTop