Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = single-lap bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3916 KiB  
Article
Bond Behavior Between Fabric-Reinforced Cementitious Matrix (FRCM) Composites and Different Substrates: An Experimental Investigation
by Pengfei Ma, Shangke Yuan and Shuming Jia
J. Compos. Sci. 2025, 9(8), 407; https://doi.org/10.3390/jcs9080407 - 1 Aug 2025
Viewed by 189
Abstract
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM [...] Read more.
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM system, along with single-lap and double-lap shear tests, the interfacial debonding modes, load-slip responses, and composite utilization ratio were evaluated. Key findings reveal that (i) SB and HB substrates predominantly exhibited fabric slippage (FS) or matrix–fabric (MF) debonding, while PB substrates consistently failed at the matrix–substrate (MS) interface, due to their smooth surface texture. (ii) Prism specimens with mortar joints showed enhanced interfacial friction, leading to higher load fluctuations compared to brick units. PB substrates demonstrated the lowest peak stress (69.64–74.33 MPa), while SB and HB achieved comparable peak stresses (133.91–155.95 MPa). (iii) The FRCM system only achieved a utilization rate of 12–30% in fabric and reinforcement systems. The debonding failure at the matrix–substrate interface is one of the reasons that cannot be ignored, and exploring methods to improve the bonding performance between the matrix–substrate interface is the next research direction. HB bricks have excellent bonding properties, and it is recommended to prioritize their use in retrofit applications, followed by SB bricks. These findings provide insights into optimizing the application of FRCM reinforcement systems in masonry structures. Full article
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 387
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

17 pages, 8715 KiB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 - 24 Jul 2025
Viewed by 305
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

28 pages, 7820 KiB  
Review
Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review
by Khishigdorj Davaasambuu, Yu Dong, Alokesh Pramanik and Animesh Kumar Basak
J. Compos. Sci. 2025, 9(7), 359; https://doi.org/10.3390/jcs9070359 - 10 Jul 2025
Viewed by 878
Abstract
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their [...] Read more.
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their geometries and mechanical properties of bonded materials. As such, joint geometry and material properties play a critical role in determining the capability of the joints to withstand high loads, resist fatigue, and absorb energy under impact loading. This paper investigates the effects of geometry and material dissimilarity on the performance of both conventional bonded and interlocking joints under tensile loading based on the information available in the literature. In addition, bonding and load transfer mechanisms were analysed in detail. It was found that stress concentration often occurs at free edges of the adhesive layer due to geometric discontinuities, while most of the load is carried by these regions rather than its centre. Sharp corners further intensify resulting stresses, thereby increasing the risk of joint failure. Adhesives typically resist shear loads better than peel loads, and stiffness mismatches between adherents induce an asymmetric stress distribution. Nonetheless, similar materials promote symmetric load sharing. Among conventional joints, scarf joints provide the most uniform load distribution. In interlocking joints such as dovetail, T-slot, gooseneck, and elliptical types, the outward bending of the female component under tension can lead to mechanical failure. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

20 pages, 18136 KiB  
Article
Effect of Oxidation and Silane Modifications Applied to the Bonded Material and Fibers in Carbon-Fiber-Reinforced Composite Adhesive Joints
by Iclal Avinc Akpinar, Ömer Faruk Koçyiğit and Selcuk Atasoy
Polymers 2025, 17(14), 1893; https://doi.org/10.3390/polym17141893 - 8 Jul 2025
Cited by 1 | Viewed by 447
Abstract
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process [...] Read more.
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process chemically bonds amino and glycidyl groups to the fiber surface, further improving adhesion and thus optimizing the performance of the joint. In light of this, the primary objective of the present study is to optimize the performance of adhesive joints by applying oxidation and silane modifications to the fibers added to the adhesive and the bonded metal materials. In this study, carbon fibers underwent oxidation treatment for 5, 10, and 20 min, followed by silanization with 3-aminopropyltriethoxysilane (APTES) and glycidoxypropyltrimethoxysilane (GPTMS) silane agents. Additionally, the surfaces of the bonded aluminum materials were subjected to a 10 min oxidation process, followed by silanization with APTES and GPTMS silane agents. The tensile test performance of single-lap joints, bonded using chemically surface-treated aluminum and composite adhesives containing 2 wt.% chemically treated carbon fibers, was experimentally investigated. According to the contact angle measurement results obtained in this study, aluminum materials subjected to oxidation treatment exhibited superhydrophilic behavior, whereas materials subjected to silanization displayed hydrophilic behavior. A similar trend was observed in the fibers. The performance of adhesive joints increased by approximately 14% when only the aluminum materials underwent oxidation treatment. Moreover, the addition of 2 wt.% carbon fibers to the adhesive enhanced the joint performance by approximately 31%. However, when oxidation treatments of varying durations were applied to both the aluminum materials and the fibers, the joint performance improved by approximately 35% to 40%. When silanization treatments were applied in addition to the oxidation treatments on aluminum and fiber surfaces, the joint performance increased by approximately 68% to 70%. These findings were corroborated through analyses performed using 3D profilometry and Scanning Electron Microscopy (SEM) imaging. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

27 pages, 7468 KiB  
Article
Delamination-Driven Nonlinear Buckling of Metal–Composite Cylindrical Shells with Different Interfacial Strengths
by Chenyang Di, Yunsen Hu, Huifeng Jiao, Sakdirat Kaewunruen and Jian Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1279; https://doi.org/10.3390/jmse13071279 - 30 Jun 2025
Viewed by 409
Abstract
This study delves into the delamination-driven nonlinear buckling characteristics of metal–composite cylindrical shells with different interfacial strengths. Although surface treatments are known to affect bonding performance, their specific influences on the delamination buckling behavior of metal–composite cylindrical shells remain underexplored. Accordingly, sandblasting and [...] Read more.
This study delves into the delamination-driven nonlinear buckling characteristics of metal–composite cylindrical shells with different interfacial strengths. Although surface treatments are known to affect bonding performance, their specific influences on the delamination buckling behavior of metal–composite cylindrical shells remain underexplored. Accordingly, sandblasting and polishing processes were employed to the fabrication of single-lap shear specimens. The topography of the treated surface was then characterized through scanning electron microscopy, optical profilometry, and contact angle measurements. For topography characterization and performance tests, sandblasted and polished metal–composite cylindrical shells were fabricated for hydrostatic tests. A cohesive zone model was used to analyze the influences of interfacial strength on the nonlinear buckling characteristics of metal–composite cylindrical shells, and the modeling results were validated by benchmarking them with experimental results. Subsequently, a detailed parametric study was conducted to investigate the effects of cohesive zone parameters and geometric imperfection on the load-bearing capacity of the shells. The new findings reveal that among the fabricated steel specimens, the specimens subjected to 80-mesh sandblasting exhibited the highest bond strength in single-lap shear tests, with the bond strength being 2.56 times higher than that of polished specimens. Moreover, sandblasted metal–composite cylindrical shells exhibited a 55.0% higher average collapse load than that of polished metal–composite cylindrical shells. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3751 KiB  
Article
Application of XGBoost Model Optimized by Multi-Algorithm Ensemble in Predicting FRP-Concrete Interfacial Bond Strength
by Yuxin Chen, Yulin Zhang, Chuanqi Li and Jian Zhou
Materials 2025, 18(12), 2868; https://doi.org/10.3390/ma18122868 - 17 Jun 2025
Viewed by 423
Abstract
Accurate prediction of fiber-reinforced polymer (FRP)-concrete interfacial bond strength is critical for ensuring the safety of FRP-strengthened structures. This study proposes a predictive model based on extreme gradient boosting (XGBoost), which is enhanced via the Nevergrad optimization framework, to address the limited accuracy [...] Read more.
Accurate prediction of fiber-reinforced polymer (FRP)-concrete interfacial bond strength is critical for ensuring the safety of FRP-strengthened structures. This study proposes a predictive model based on extreme gradient boosting (XGBoost), which is enhanced via the Nevergrad optimization framework, to address the limited accuracy of traditional empirical approaches. By integrating seven optimizers from the Nevergrad platform, the model achieves global hyperparameter optimization, and a five-fold cross-validation strategy is employed to improve generalization. The prediction results based on 855 sets of single-lap shear test data demonstrate that the optimized model exhibits significantly superior performance on the test set (R2 = 0.9726, RMSE = 1.8745, MAE = 1.3857). Compared to the existing best-performing empirical model, the R2 is improved by 22.3%, while the RMSE and MAE are reduced by 63.4% and 61.8%, respectively. SHAP interpretability analysis indicates that the width, thickness, elastic modulus, and bond length of the FRP sheets are the main factors influencing the bond strength prediction. The predictive model developed in this study combines high accuracy with strong interpretability, providing a reliable, intelligent tool for designing FRP-strengthened structures. Full article
Show Figures

Figure 1

36 pages, 12446 KiB  
Article
Investigation of Diffusion Induced Fiber–Matrix Interface Damages in Adhesively Bonded Polymer Composites
by Dudu Mertgenç Yoldaş
Polymers 2025, 17(12), 1672; https://doi.org/10.3390/polym17121672 - 17 Jun 2025
Viewed by 466
Abstract
Composite materials have the advantages of high strength and low weight, and are therefore used in many areas. However, in humid and marine environments, mechanical properties may deteriorate due to moisture diffusion, especially in glass fiber reinforced polymers (GFRP) and carbon fiber reinforced [...] Read more.
Composite materials have the advantages of high strength and low weight, and are therefore used in many areas. However, in humid and marine environments, mechanical properties may deteriorate due to moisture diffusion, especially in glass fiber reinforced polymers (GFRP) and carbon fiber reinforced polymers (CFRP). This study investigated the damage formation and changes in mechanical properties of single-layer adhesive-bonded GFRP and CFRP connections under the effect of sea water. In the experiment, 0/90 orientation, twill-woven GFRP (7 ply) and CFRP (8 ply) plates were produced as prepreg using the hand lay-up method in accordance with ASTM D5868-01 standard. CNC Router was used to cut 36 samples were cut from the plates produced for the experiments. The samples were kept in sea water taken from the Aegean Sea, at 3.3–3.7% salinity and 23.5 °C temperature, for 1, 2, 3, 6, and 15 months. Moisture absorption was monitored by periodic weighings; then, the connections were subjected to three-point bending tests according to the ASTM D790 standard. The damages were analyzed microscopically with SEM (ZEISS GEMINI SEM 560). As a result of 15 months of seawater storage, moisture absorption reached 4.83% in GFRP and 0.96% in CFRP. According to the three-point bending tests, the Young modulus of GFRP connections decreased by 25.23% compared to dry samples; this decrease was 11.13% in CFRP. Moisture diffusion and retention behavior were analyzed according to Fick’s laws, and the moisture transfer mechanism of single-lap adhesively bonded composites under the effect of seawater was evaluated. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 2394 KiB  
Article
Numerical Analysis on Optimal Adhesive Thickness in CFRP Single-Lap Joints Considering Material Properties
by Maruri Takamura, Minori Isozaki, Shin-ichi Takeda and Jun Koyanagi
Materials 2025, 18(11), 2423; https://doi.org/10.3390/ma18112423 - 22 May 2025
Viewed by 513
Abstract
Accurately evaluating the strength of adhesively bonded joints is essential for ensuring structural reliability, but size-dependent effects remain a challenge in consistent strength assessment. This study performs finite element simulations of Single Lap Shear (SLS) tests, focusing on the local stress state at [...] Read more.
Accurately evaluating the strength of adhesively bonded joints is essential for ensuring structural reliability, but size-dependent effects remain a challenge in consistent strength assessment. This study performs finite element simulations of Single Lap Shear (SLS) tests, focusing on the local stress state at fracture initiation. The analysis considers unidirectional and quasi-isotropic carbon fiber reinforced plastic (CFRP) adherends combined with three adhesives: polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and epoxy. Adhesive thicknesses ranging from 0.1 mm to 0.5 mm are evaluated. The results indicate that the optimal thickness ranges between 0.1–0.3 mm to maximize joint strength, while excessively thin or thick layers reduce performance. These findings align with experimental trends and support the development of precise design guidelines for polymer-based joints in structural applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

19 pages, 6984 KiB  
Article
Improvement of Bonding Strength Between Polyphenylene Sulfide/Glass Fiber Composites and Epoxy via Atmospheric-Pressure Plasma Surface Treatment
by Hwan-Gi Do, Pyoung-Chan Lee and Beom-Gon Cho
Polymers 2025, 17(10), 1344; https://doi.org/10.3390/polym17101344 - 14 May 2025
Viewed by 754
Abstract
Polyphenylene sulfide (PPS) is becoming increasingly valuable in the electrical, electronic, and automotive industries. In particular, PPS composites reinforced with glass fiber (GF) have better dimensional stability and mechanical properties than conventional PPS materials and can be used in applications like electric vehicle [...] Read more.
Polyphenylene sulfide (PPS) is becoming increasingly valuable in the electrical, electronic, and automotive industries. In particular, PPS composites reinforced with glass fiber (GF) have better dimensional stability and mechanical properties than conventional PPS materials and can be used in applications like electric vehicle capacitor housing. In the electric vehicle industry, the epoxy-molding process is essential for manufacturing capacitor housings, where the bonding strength between the PPS/GF composites and epoxy significantly affects the durability of the product. However, the inert surface characteristics of polymers like PPS limit their interaction with epoxy, decreasing the bonding strength. This study was aimed at enhancing the bonding strength between PPS/GF composites and epoxy by modifying the PPS surface using atmospheric-pressure plasma treatment. The surface modification resulted in increased surface roughness and the introduction of polar functional groups, which improved both mechanical interlocking and chemical affinity to the epoxy. Surface changes were analyzed using atomic force microscopy and scanning electron microscopy, and chemical characterization was conducted using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Surface energy was determined via contact angle measurements, and bonding strength was evaluated through single-lap shear tests. The results showed a 55% increase in surface energy and a 24.8% improvement in bonding strength due to the surface modification. Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Composites)
Show Figures

Figure 1

16 pages, 3292 KiB  
Article
Topology Optimization of Additively Manufactured Adherends for Increased Adhesive Bond Strength
by Michael Ascher and Ralf Späth
Materials 2025, 18(10), 2170; https://doi.org/10.3390/ma18102170 - 8 May 2025
Viewed by 485
Abstract
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet [...] Read more.
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet the requirements by means of a hybrid structure. Adhesive bonding is particularly suitable for such joints, as it imposes no constraints on the joining surface’s geometry or the adherend’s material. To ensure structural integrity, it is conceivable to exploit the design freedom underlying AM processes by optimizing the topology of the AM component to stress the adhesive layer homogeneously. This study explores the feasibility of this concept using the example of an axially loaded single-lap tubular joint between a carbon fiber-reinforced composite tube and an additively manufactured laser-based powder-bed-fusion aluminum alloy sleeve. The sleeve topology was optimized using the finite element method, achieving a 75 %P reduction in adhesive stress increase compared to a non-optimized sleeve. Due to the pronounced ductility of the two-component epoxy-based adhesive, the static bond strength remained unaffected, whereas fatigue life significantly improved. The findings demonstrate the feasibility of leveraging AM design freedom to enhance adhesive joint performance, providing a promising approach for hybrid structures in lightweight applications. Full article
Show Figures

Figure 1

21 pages, 12040 KiB  
Article
Electrically Conductive Nanoparticle-Enhanced Epoxy Adhesives for Localised Joule Heating-Based Curing in Composite Bonding
by Karina Dragasiute, Gediminas Monastyreckis and Daiva Zeleniakiene
Polymers 2025, 17(9), 1176; https://doi.org/10.3390/polym17091176 - 25 Apr 2025
Viewed by 656
Abstract
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed [...] Read more.
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed improved electrical conductivity, greatly reducing the percolation threshold. Transient thermal analysis using finite element modelling of representative volume elements revealed that aligned CNTs led to increased localised temperatures near the CNT clusters. The model was validated with infrared thermal imaging analysis, which also showed similar non-linear heat distribution and more uniform heating under higher CNT loading. Additionally, power distribution mapping was evaluated through inverse modelling techniques, suggesting different conductivity zones and cluster distribution within the single-lap joint. The numerical and experimental results demonstrated that CNT alignment significantly enhanced localised conductivity, thereby improving curing efficiency at lower voltages. The lap shear test results showed a peak shear strength of 10.16 MPa at 0.5 wt% CNT loading, 9% higher than pure epoxy. Scanning electron microscopy analysis confirmed the formation of aligned CNT clusters, and how CNT loading affected the failure modes, transitioning from cohesive to void-rich fracture patterns at a higher wt%. These findings establish CNT-enhanced Joule heating as a viable and scalable alternative for efficient composite bonding in aerospace and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

24 pages, 10743 KiB  
Article
Investigation of Diffusion of Different Composite Materials on the Damage Caused by Axial Impact Adhesive Joints
by Dudu Mertgenç Yoldaş and Mehmet Fatih Yoldaş
J. Compos. Sci. 2025, 9(4), 188; https://doi.org/10.3390/jcs9040188 - 14 Apr 2025
Cited by 1 | Viewed by 657
Abstract
In this study, the effects of exposure to seawater on the material properties of glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) samples were investigated. The samples were stored in seawater with a salinity of 3.3–3.7% and a temperature of 23.5 °C [...] Read more.
In this study, the effects of exposure to seawater on the material properties of glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) samples were investigated. The samples were stored in seawater with a salinity of 3.3–3.7% and a temperature of 23.5 °C taken from the Aegean Sea in September for different periods (1, 2, 3, 6 and 15 months). The samples prepared in accordance with the ASTM D5868-01 standard were subjected to axial impact testing. In the first stage of this study, moisture retention percentages were determined, and, then, axial impact tests were performed. In the tests, a total of 36 samples bonded with single-lap adhesive were subjected to 30 Joule impact energy, and their mechanical strength was evaluated. In line with the experimental results, moisture absorption and axial impact energy values were compared in order to determine the most durable composite material connection, and the most durable connection was selected by evaluating the mechanical properties. Damage analysis on the samples was performed at the DEU Science and Technology Application and Research Center with ZEISS GEMINI SEM 560. (Oberkochen, Germany). The fracture surfaces of the CFRP and GFRP samples after gold coating were examined in detail with a scanning electron microscope, and their interface properties and internal structures were observed. The fracture toughness of GFRP specimens increased from 4.6% in a dry environment to 27.96% after 15 months in seawater. CFRP specimens increased from 4.2% in a dry environment to 11.96% after 15 months in seawater, but the increase was less pronounced compared to GFRP. According to the experimental results, CFRP samples exhibited superior mechanical performance compared to GFRP samples. Full article
Show Figures

Figure 1

21 pages, 78310 KiB  
Article
Effect of Laser Power on Formation and Joining Strength of DP980-CFRP Joint Fabricated by Laser Circle Welding
by Sendong Ren, Yihao Shen, Taowei Wang, Hao Chen, Ninshu Ma and Jianguo Yang
Polymers 2025, 17(7), 997; https://doi.org/10.3390/polym17070997 - 7 Apr 2025
Viewed by 493
Abstract
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap [...] Read more.
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap shear test. Moreover, a numerical model was established based on the in-house finite element (FE) code JWRIAN-Hybrid to reproduce the thermal process of LCW. The results showed that successful bonding was achieved with a laser power higher than 300 W. The largest joining strength increased to about 1353.2 N (12.2 MPa) with 450 W laser power and then decreased under higher heat input. While the welded joint always presented brittle fracture, the joining zone could be divided into a squeezed zone (SZ), molten zone (MZ) and decomposition zone (DZ). The morphology of CFRP and chemical bonding information were distinct in each subregion. The chemical reaction between the O-C=O bond on the CFRP surface and the -OH bond on the DP980 sheet provided the joining force between dissimilar materials. Additionally, the developed FE model was effective in predicting the interfacial maximum temperature distribution of LCW. The influence of laser power on the joining strength of LCW joints was dualistic in character. The joining strength variation reflected the competitive result between joining zone expansion and local bonding quality change. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

22 pages, 10415 KiB  
Article
Forming Process Prediction Model and Application of Laser Cladding for Remanufactured Screw Pump Rotors
by Haiying Zu, Yongpeng Liu, Sihui Chen, Xiang Jin, Weidong Ye, Mingyuan Sun, Zhongmin Xiao and Liming Yao
Materials 2025, 18(7), 1673; https://doi.org/10.3390/ma18071673 - 5 Apr 2025
Cited by 2 | Viewed by 660
Abstract
In order to achieve high-quality repair of complex curved parts, a remanufacturing process method utilizing laser cladding and reverse engineering technology is proposed to be implemented by robots. This study focuses on the oscillating helical surface of a screw pump rotor. A single-pass [...] Read more.
In order to achieve high-quality repair of complex curved parts, a remanufacturing process method utilizing laser cladding and reverse engineering technology is proposed to be implemented by robots. This study focuses on the oscillating helical surface of a screw pump rotor. A single-pass laser cladding test is conducted using Response Surface Methodology (RSM) to construct a predictive model and identify optimal process parameters. The model’s accuracy is validated through analysis of variance (ANOVA) and index verification, while the optimal lap rate is determined through multi-pass laser cladding testing. Using reverse engineering technology, the generation of laser cladding paths for complex surfaces is explored, and the trajectory planning for the laser cladding robot is carried out. Simulations and experiments of robotic laser cladding on complex surfaces are performed, with the optimal process parameters guiding both the experiment and simulation. The optimum single-pass cladding layer, with a lap rate of 25.6%, is achieved when the laser power is 2217 W, the powder feed rate is 2.86 r/min, and the scanning speed is 400 mm/min. The study successfully plans the path for laser cladding on complex curved parts, verifying its feasibility and effectiveness, verifying that there is good metallurgical bonding between the cladding layer and the substrate, and helping to select the appropriate process parameters that are consistent with the requirements of a particular application, thus providing valuable guidance for the remanufacture of failed metal parts. Full article
(This article belongs to the Special Issue Rising Stars in Additive Manufacturing)
Show Figures

Graphical abstract

Back to TopTop