Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = single-crystal neutron diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5068 KiB  
Article
Ca-, Li-, and Cu-Salicylatoborates for Potential Applications in Neutron Capture Therapy: A Computational Method for the Preliminary Discrimination of the More Promising Compounds
by Domenica Marabello, Paola Benzi, Carlo Canepa and Alma Cioci
Inorganics 2025, 13(5), 136; https://doi.org/10.3390/inorganics13050136 - 26 Apr 2025
Viewed by 408
Abstract
Boron Neutron Capture Therapy is a re-emerging therapy for the treatment of cancer, and the development of new neutron-reactive nuclei carriers with enhanced efficiency is of great importance. In this work we propose three new boron-based solid compounds, of formulas [Ca(H2O) [...] Read more.
Boron Neutron Capture Therapy is a re-emerging therapy for the treatment of cancer, and the development of new neutron-reactive nuclei carriers with enhanced efficiency is of great importance. In this work we propose three new boron-based solid compounds, of formulas [Ca(H2O)6](C14H8O6B)2 (CaSB), [Cu(C14H8O6B)] (CuSB), and [Li(C14H8O6B)(H2O)] (LiSB), usable as nanoparticles for the carriage of the 10B isotope. The copper atom in CuSB was introduced because it is known that its presence magnifies the effect of the radiation on cells. Furthermore, the lithium atom in LiSB also allows us to include the 6Li isotope, which can take part in the nuclear reactions, enhancing the efficiency of the anti-cancer treatment. The compounds were characterized with single-crystal X-ray diffraction to compare the densities of the reactive isotopes in the materials, a key parameter related to the efficiency of the materials. In this work, we used a computational method to calculate the dose absorbed by a tumor mass treated with nanoparticles of the compounds in order to select the most efficient one for the therapy. The results reported in this work are encouraging. Full article
Show Figures

Graphical abstract

16 pages, 3662 KiB  
Article
Valence Variability Induced in SrMoO₃ Perovskite by Mn Doping: Evaluation of a New Family of Anodes for Solid-Oxide Fuel Cells
by Lucía Sánchez de Bustamante, Romualdo Santos Silva, José Luis Martínez, María Teresa Fernández-Díaz, Ainara Aguadero and José Antonio Alonso
Materials 2025, 18(3), 542; https://doi.org/10.3390/ma18030542 - 24 Jan 2025
Cited by 1 | Viewed by 1218
Abstract
We report on a series of SrMo1−xMnxO3−δ perovskite oxides designed as potential anode materials for solid oxide fuel cells (SOFCs). These materials were synthesized using a citrate method, yielding scheelite-type precursors with nominal SrMo1−xMnxO [...] Read more.
We report on a series of SrMo1−xMnxO3−δ perovskite oxides designed as potential anode materials for solid oxide fuel cells (SOFCs). These materials were synthesized using a citrate method, yielding scheelite-type precursors with nominal SrMo1−xMnxO4 compositions, which were further reduced to obtain the active perovskite oxides. Their structural evolution was examined through X-ray diffraction (XRD) and neutron powder diffraction (NPD). These techniques provided insights into the crystallographic changes upon Mn doping, revealing key factors influencing ionic conductivity. Whereas the oxidized scheelite precursors are tetragonal, space group I41/a, the reduced perovskite specimens are cubic, space group Pm-3m, and show the conspicuous absence of oxygen vacancies, even at the highest temperature of 800 °C. The transport properties were analyzed through electrical conductivity measurements, exhibiting a metallic-like behavior. Thermogravimetric analysis (TGA) and dilatometry give insights into the thermal stability and expansion behavior, essential for SOFC operation. Test single SOFCs were built in an electrolyte-supported configuration, on LSGM pellets of 300 μm thickness, assessing the performance of the title materials as anodes. This work emphasizes the critical relationship between the crystal structure and its electrochemical behavior, providing a deeper understanding of how doping strategies can optimize fuel cell performance. Full article
(This article belongs to the Special Issue Development of Advanced Materials for Energy Conversion)
Show Figures

Figure 1

19 pages, 11321 KiB  
Article
Uncovering the Mechanisms of Long-Range Magnetic Order in [Mn(mal)(H2O)]n: Insights from Microscopic and Macroscopic Magnetic Analysis
by Fernando S. Delgado, Laura Cañadillas-Delgado, Juan Rodríguez-Carvajal, Óscar Fabelo and Jorge Pasán
Magnetochemistry 2024, 10(12), 109; https://doi.org/10.3390/magnetochemistry10120109 - 20 Dec 2024
Cited by 1 | Viewed by 1167
Abstract
In this study, we investigate the magnetic properties of the molecular compound [Mn(mal)(H2O)]ₙ (mal = dianion of malonic acid) by integrating microscopic and macroscopic characterization, combining unpolarized neutron diffraction and magnetometry measurements. Neutron diffraction, though non-commonly applied to molecular compounds, proved [...] Read more.
In this study, we investigate the magnetic properties of the molecular compound [Mn(mal)(H2O)]ₙ (mal = dianion of malonic acid) by integrating microscopic and macroscopic characterization, combining unpolarized neutron diffraction and magnetometry measurements. Neutron diffraction, though non-commonly applied to molecular compounds, proved essential for fully resolving the magnetic structure, as well as overcoming challenges such as hydrogen-related incoherent scattering and difficulties in accurately locating light atoms. Our neutron data provided critical structural details, including the precise location of hydrogen atoms, especially those associated with crystallization water molecules. By conducting low-temperature measurements below the magnetic ordering temperature, we identified the correct Shubnikov space group (Pc’a21’) and established a magnetic model consistent with the observed weak ferromagnetism. Our findings reveal that the compound presents a spin-canted structure with a weak ferromagnetic signal along the b-axis. This signal originates primarily from antisymmetric exchange interactions rather than single-ion anisotropy, consistent with the isotropic nature of the Mn(II) (6A1g) ground state. The combined neutron diffraction and magnetometry results provide a comprehensive understanding of how structural and symmetry factors influence the magnetic properties of malonate-based manganese compounds. Full article
Show Figures

Graphical abstract

12 pages, 5507 KiB  
Article
Magnetic Hardening of Heavily Helium-Ion-Irradiated Iron–Chromium Alloys
by Yasuhiro Kamada, Daiki Umeyama, Takeshi Murakami, Kazuyuki Shimizu and Hideo Watanabe
Metals 2024, 14(5), 568; https://doi.org/10.3390/met14050568 - 12 May 2024
Viewed by 1907
Abstract
This study reports on the magnetic hardening phenomenon of heavily helium ion-irradiated iron–chromium alloys. The alloys are important structural materials in next-generation nuclear reactors. In some cases, problems may arise when the magnetic properties of the materials change due to neutron irradiation. Therefore, [...] Read more.
This study reports on the magnetic hardening phenomenon of heavily helium ion-irradiated iron–chromium alloys. The alloys are important structural materials in next-generation nuclear reactors. In some cases, problems may arise when the magnetic properties of the materials change due to neutron irradiation. Therefore, it is necessary to understand the effects of irradiation on magnetism. Helium irradiation was conducted as a simulated irradiation, and the effect of cavity formation on magnetic properties was thoroughly investigated. High-quality single-crystal Fe-x%Cr (x = 0, 10, 20) films, with a thickness of 180–200 nm, were fabricated through ultra-high vacuum evaporation. Subsequently, irradiation of 19 dpa with 30 keV He+ ions was conducted at room temperature. X-ray diffraction measurements and electron microscopy observations confirmed significant lattice expansion and the formation of high-density cavities after irradiation. The magnetization curve of pure iron remained unchanged, while magnetic hardening was noticed in iron–chromium alloys. This phenomenon is believed to be due to the combined effect of cavity formation and changes in the atomic arrangement of chromium. Full article
Show Figures

Graphical abstract

14 pages, 3939 KiB  
Article
New Boron Containing Acridines: Synthesis and Preliminary Biological Study
by Anna A. Druzina, Nadezhda V. Dudarova, Ivan V. Ananyev, Anastasia A. Antonets, Dmitry N. Kaluzhny, Alexey A. Nazarov, Igor B. Sivaev and Vladimir I. Bregadze
Molecules 2023, 28(18), 6636; https://doi.org/10.3390/molecules28186636 - 15 Sep 2023
Cited by 2 | Viewed by 1871
Abstract
The synthesis of the first conjugates of acridine with cobalt bis(dicarbollide) are reported. A novel 9-azido derivative of acridine was prepared through the reaction of 9-methoxyacridine with N3CH2CH2NH2, and its solid-state molecular structure was determined [...] Read more.
The synthesis of the first conjugates of acridine with cobalt bis(dicarbollide) are reported. A novel 9-azido derivative of acridine was prepared through the reaction of 9-methoxyacridine with N3CH2CH2NH2, and its solid-state molecular structure was determined via single-crystal X-ray diffraction. The azidoacridine was used in a copper (I)-catalyzed azide-alkyne cycloaddition reaction with cobalt bis(dicarbollide)-based terminal alkynes to give the target 1,2,3-triazoles. DNA interaction studies via absorbance spectroscopy showed the weak binding of the obtained conjugates with DNA. The antiproliferative activity (IC50) of the boronated conjugates against a series of human cell lines was evaluated through an MTT assay. The results suggested that acridine derivatives of cobalt bis(dicarbollide) might serve as a novel scaffold for the future development of new agents for boron neutron capture therapy (BNCT). Full article
Show Figures

Graphical abstract

13 pages, 8460 KiB  
Article
Double-Layer Kagome Metals Pt3Tl2 and Pt3In2
by Michael A. McGuire, Eleanor M. Clements, Qiang Zhang and Satoshi Okamoto
Crystals 2023, 13(5), 833; https://doi.org/10.3390/cryst13050833 - 17 May 2023
Viewed by 2853
Abstract
The connectivity and inherent frustration of the kagome lattice can produce interesting electronic structures and behaviors in compounds containing this structural motif. Here we report the properties of Pt3X2 (X = In and Tl) that adopt a double-layer kagome [...] Read more.
The connectivity and inherent frustration of the kagome lattice can produce interesting electronic structures and behaviors in compounds containing this structural motif. Here we report the properties of Pt3X2 (X = In and Tl) that adopt a double-layer kagome net structure related to that of the topologically nontrivial high-temperature ferromagnet Fe3Sn2 and the density wave hosting compound V3Sb2. We examined the structural and physical properties of single crystal Pt3Tl2 and polycrystalline Pt3In2 using X-ray and neutron diffraction, magnetic susceptibility, heat capacity, and electrical transport measurements, along with density functional theory calculations of the electronic structure. Our calculations show that Fermi levels lie in pseudogaps in the densities of states with several bands contributing to transport, and this is consistent with our Hall effect, magnetic susceptibility, and heat capacity measurements. Although electronic dispersions, characteristic of simple kagome nets with nearest-neighbor hopping, are not clearly seen, likely due to the extended nature of the Pt 5d states, we do observe moderately large and non-saturating magnetoresistance values and quantum oscillations in the magnetoresistance and magnetization associated with the kagome nets of Pt. Full article
(This article belongs to the Special Issue Advances in Intermetallic and Metal-Like Compounds)
Show Figures

Figure 1

13 pages, 6613 KiB  
Article
Impact of Erbium Doping in the Structural and Magnetic Properties of the Anisotropic and Frustrated SrYb2O4 Antiferromagnet
by Diana Lucia Quintero-Castro, Juanita Hincapie, Abhijit Bhat Kademane, Minki Jeong, Matthias Frontzek, Alexandra Franz, Amutha Ramachandran, Fabiano Yokaichiya, J Ross Stewart and Rasmus Toft-Petersen
Crystals 2023, 13(3), 529; https://doi.org/10.3390/cryst13030529 - 20 Mar 2023
Cited by 1 | Viewed by 2533
Abstract
We present a systematic study of the structural and magnetic properties of a series of powder samples of SrYb2xErxO4 with different Yb/Er concentrations. Magnetometry and neutron diffraction have been used to study the magnetic ground states [...] Read more.
We present a systematic study of the structural and magnetic properties of a series of powder samples of SrYb2xErxO4 with different Yb/Er concentrations. Magnetometry and neutron diffraction have been used to study the magnetic ground states of the compound series, while inelastic neutron scattering was used to investigate the crystal field excitations for a chosen concentration. These results show that the crystal structure remains the same for all compositions, while the lattice parameters increase linearly with the Er content. All compounds showed some type of magnetic transition below 1 K, however, both the magnetic structure and nature of the phase transition vary throughout the series. The samples present a non-collinear magnetic structure with the moments lying on the ab plane for low Er content. For high Er content, the magnetic structure is collinear with the moments aligned along the c-axis. A critical concentration is found where there is a bifurcation between zero-field and field-cooled magnetic susceptibility. This irreversible process could be due to the random mixture of single-ion magnetic anisotropies. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (Volume II))
Show Figures

Figure 1

13 pages, 6837 KiB  
Article
Frustrated Magnet Mn3Al2Ge3O12 Garnet: Crystal Growth by the Optical Floating Zone Method
by Manisha Islam, Monica Ciomaga Hatnean, Geetha Balakrishnan and Oleg A. Petrenko
Crystals 2023, 13(3), 397; https://doi.org/10.3390/cryst13030397 - 25 Feb 2023
Cited by 1 | Viewed by 2124
Abstract
Mn3Al2Ge3O12 is a member of the garnet family of compounds, A3B2(CO4)3, whose magnetic properties are affected by a high degree of geometrical frustration. The magnetic frustration [...] Read more.
Mn3Al2Ge3O12 is a member of the garnet family of compounds, A3B2(CO4)3, whose magnetic properties are affected by a high degree of geometrical frustration. The magnetic frustration is at the origin of the intriguing magnetic properties that these materials exhibit, such as a long range hidden order derived from multipoles formed from 10-spin loops in the gadolinium gallium garnet, Gd3Ga5O12. Mn3Al2Ge3O12 garnet is isostructural to the thoroughly investigated Gd garnets, Gd3Ga5O12 and Gd3Al5O12. Moreover, in Mn3Al2Ge3O12, the Heisenberg-like Mn2+ magnetic ions (L= 0) are also arranged in corner sharing triangles that form a hyperkagomé structure. The identical crystallographic structures and similar Heisenberg-like behaviour of the magnetic ions make manganese aluminium germanium garnet the closest compound to the gadolinium garnets in its magnetic properties. Here, we report, for the first time, the growth of a large, high quality single crystal of the Mn3Al2Ge3O12 garnet by the floating zone method. X-ray diffraction techniques were used to characterise and confirm the high crystalline quality of the Mn3Al2Ge3O12 crystal boule. Temperature-dependent magnetic susceptibility measurements reveal an antiferromagnetic ordering of the Mn2+ ions below TN= 6.5 K. The high quality of the single crystal obtained makes it ideal for detailed investigations of the magnetic properties of the system, especially using neutron scattering techniques. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

44 pages, 19950 KiB  
Review
Hybridization of Wide-Angle X-ray and Neutron Diffraction Techniques in the Crystal Structure Analyses of Synthetic Polymers
by Kohji Tashiro, Katsuhiro Kusaka, Hiroko Yamamoto, Takaaki Hosoya, Shuji Okada and Takashi Ohhara
Polymers 2023, 15(2), 465; https://doi.org/10.3390/polym15020465 - 16 Jan 2023
Cited by 4 | Viewed by 3401
Abstract
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, [...] Read more.
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, in which the usage of high-energy synchrotron X-ray source was emphasized for increasing the total number of the observable diffraction peaks, and several examples were introduced. Secondly, the usage of the WAND method was introduced, in which the successful extraction of hydrogen atomic positions was described. The third example is to show the importance for the hybrid combination of these two diffraction methods. The quantitative WAXD data analysis gave the crystal structures of at-poly(vinyl alcohol) (at-PVA) and at-PVA-iodine complex. However, the thus-proposed structure models were found not to reproduce the observed WAND data very much. The reason came from the remarkable difference in the atomic scattering powers of the constituting atomic species between WAXD and WAND phenomena. The introduction of statistical disorder solved this serious problem, which reproduced both of the observed WAXD and WAND data consistently. The more systematic combination of WAXD and WAND methods, or the so-called X-N method, was applied also to the quantitative evaluation of the bonded electron density distribution along the skeletal chains, where the results about polydiacetylene single crystals were presented as the first successful study. Finally, the application of WAND technique in the trace of structural changes induced under the application of external stress or temperature was described. The future perspective is described for the development of structural science of synthetic polymers on the basis of the combined WAXD/WAND techniques. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Figure 1

20 pages, 4635 KiB  
Article
Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4
by Maria Poienar, Matthias Josef Gutmann, Gheorghe Lucian Pascut, Václav Petříček, Gavin Stenning, Paulina Vlazan, Paula Sfirloaga, Carsten Paulmann, Martin Tolkiehn, Pascal Manuel and Philippe Veber
Materials 2022, 15(22), 8059; https://doi.org/10.3390/ma15228059 - 15 Nov 2022
Viewed by 1938
Abstract
Iron phosphate materials have attracted a lot of attention due to their potential as cathode materials for lithium-ion rechargeable batteries. It has been shown that lithium insertion or extraction depends on the Fe mixed valence and reduction or oxidation of the Fe ions’ [...] Read more.
Iron phosphate materials have attracted a lot of attention due to their potential as cathode materials for lithium-ion rechargeable batteries. It has been shown that lithium insertion or extraction depends on the Fe mixed valence and reduction or oxidation of the Fe ions’ valences. In this paper, we report a new synthesis method for the Fe3(PO3OH)4(H2O)4 mixed valence iron phosphate. In addition, we perform temperature-dependent measurements of structural and physical properties in order to obtain an understanding of electronic–structural interplay in this compound. Scanning electron microscope images show needle-like single crystals of 50 μm to 200 μm length which are stable up to approximately 200 °C, as revealed by thermogravimetric analysis. The crystal structure of Fe3(PO3OH)4(H2O)4 single crystals has been determined in the temperature range of 90 K to 470 K. A monoclinic isostructural phase transition was found at ~213 K, with unit cell volume doubling in the low temperature phase. While the local environment of the Fe2+ ions does not change significantly across the structural phase transition, small antiphase rotations occur for the Fe3+ octahedra, implying some kind of electronic order. These results are corroborated by first principle calculations within density functional theory, which also point to ordering of the electronic degrees of freedom across the transition. The structural phase transition is confirmed by specific heat measurements. Moreover, hints of 3D antiferromagnetic ordering appear below ~11 K in the magnetic susceptibility measurements. Room temperature visible light absorption is consistent with the Fe2+/Fe3+ mixed valence. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 4788 KiB  
Article
New Insights on the Electronic-Structural Interplay in LaPdSb and CePdSb Intermetallic Compounds
by Matthias Josef Gutmann, Gheorghe Lucian Pascut, Kenichi Katoh, Martin von Zimmermann, Keith Refson and Devashibhai Thakarshibhai Adroja
Materials 2022, 15(21), 7678; https://doi.org/10.3390/ma15217678 - 1 Nov 2022
Viewed by 2177
Abstract
Multifunctional physical properties are usually a consequence of a rich electronic-structural interplay. To advance our understanding in this direction, we reinvestigate the structural properties of the LaPdSb and CePdSb intermetallic compounds using single-crystal neutron and X-ray diffraction. We establish that both compounds can [...] Read more.
Multifunctional physical properties are usually a consequence of a rich electronic-structural interplay. To advance our understanding in this direction, we reinvestigate the structural properties of the LaPdSb and CePdSb intermetallic compounds using single-crystal neutron and X-ray diffraction. We establish that both compounds can be described by the non-centrosymmetric space group P63mc, where the Pd/Sb planes are puckered and show ionic order rather than ionic disorder as was previously proposed. In particular, at 300 K, the (h, k, 10)-layer contains diffuse scattering features consistent with the Pd/Sb puckered layers. The experimental results are further rationalized within the framework of DFT and DFT+ embedded DMFT methods, which confirm that a puckered structure is energetically more favorable. We also find strong correspondence between puckering strength and band topology. Namely, strong puckering removes the bands and, consequently, the Fermi surface pockets at the M point. In addition, the Pd-d band character is reduced with puckering strength. Thus, these calculations provide further insights into the microscopic origin of the puckering, especially the correspondence between the band’s character, Fermi surfaces, and the strength of the puckering. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 2700 KiB  
Essay
Combined Experimental and Theoretical Studies: Lattice-Dynamical Studies at High Pressures with the Help of Ab Initio Calculations
by Francisco Javier Manjón, Juan Ángel Sans, Placida Rodríguez-Hernández and Alfonso Muñoz
Minerals 2021, 11(11), 1283; https://doi.org/10.3390/min11111283 - 18 Nov 2021
Cited by 6 | Viewed by 2375
Abstract
Lattice dynamics studies are important for the proper characterization of materials, since these studies provide information on the structure and chemistry of materials via their vibrational properties. These studies are complementary to structural characterization, usually by means of electron, neutron, or X-ray diffraction [...] Read more.
Lattice dynamics studies are important for the proper characterization of materials, since these studies provide information on the structure and chemistry of materials via their vibrational properties. These studies are complementary to structural characterization, usually by means of electron, neutron, or X-ray diffraction measurements. In particular, Raman scattering and infrared absorption measurements are very powerful, and are the most common and easy techniques to obtain information on the vibrational modes at the Brillouin zone center. Unfortunately, many materials, like most minerals, cannot be obtained in a single crystal form, and one cannot play with the different scattering geometries in order to make a complete characterization of the Raman scattering tensor of the material. For this reason, the vibrational properties of many materials, some of them known for millennia, are poorly known even under room conditions. In this paper, we show that, although it seems contradictory, the combination of experimental and theoretical studies, like Raman scattering experiments conducted at high pressure and ab initio calculations, is of great help to obtain information on the vibrational properties of materials at different pressures, including at room pressure. The present paper does not include new experimental or computational results. Its focus is on stressing the importance of combined experimental and computational approaches to understand materials properties. For this purpose, we show examples of materials already studied in different fields, including some hot topic areas such as phase change materials, thermoelectric materials, topological insulators, and new subjects as metavalent bonding. Full article
(This article belongs to the Special Issue First Principles Calculations of Minerals and Related Materials)
Show Figures

Figure 1

10 pages, 1470 KiB  
Article
Synthesis of Zwitter-Ionic Conjugate of Nido-Carborane with Cholesterol
by Anna A. Druzina, Olga B. Zhidkova, Nadezhda V. Dudarova, Natalia A. Nekrasova, Kyrill Yu. Suponitsky, Sergey V. Timofeev and Vladimir I. Bregadze
Molecules 2021, 26(21), 6687; https://doi.org/10.3390/molecules26216687 - 5 Nov 2021
Cited by 7 | Viewed by 2624
Abstract
9-HC≡CCH2Me2N-nido-7,8-C2B9H11, a previously described carboranyl terminal alkyne, was used for the copper(I)-catalyzed azide-alkyne cycloaddition with azido-3β-cholesterol to form a novel zwitter-ionic conjugate of nido-carborane with cholesterol, bearing a 1,2,3-triazol fragment. [...] Read more.
9-HC≡CCH2Me2N-nido-7,8-C2B9H11, a previously described carboranyl terminal alkyne, was used for the copper(I)-catalyzed azide-alkyne cycloaddition with azido-3β-cholesterol to form a novel zwitter-ionic conjugate of nido-carborane with cholesterol, bearing a 1,2,3-triazol fragment. The conjugate of nido-carborane with cholesterol, containing a charge-compensated group in the linker, can be used as a precursor for the preparation of liposomes for BNCT (Boron Neutron Capture Therapy). The solid-state molecular structure of a nido-carborane derivative with the 9-Me2N(CH2)2Me2N-nido-7,8-C2B9H11 terminal dimethylamino group was determined by single-crystal X-ray diffraction. Full article
Show Figures

Graphical abstract

17 pages, 1394 KiB  
Article
Int3D: A Data Reduction Software for Single Crystal Neutron Diffraction
by Nebil A. Katcho, Laura Cañadillas-Delgado, Oscar Fabelo, María Teresa Fernández-Díaz and Juan Rodríguez-Carvajal
Crystals 2021, 11(8), 897; https://doi.org/10.3390/cryst11080897 - 31 Jul 2021
Cited by 10 | Viewed by 3231
Abstract
We describe a new software package for the data reduction of single crystal neutron diffraction using large 2D detectors. The software consists of a graphical user interface from which the user can visualize, interact with and process the data. The data reduction is [...] Read more.
We describe a new software package for the data reduction of single crystal neutron diffraction using large 2D detectors. The software consists of a graphical user interface from which the user can visualize, interact with and process the data. The data reduction is achieved by sequentially executing a series of programs designed for performing the following tasks: peak detection, indexing, refinement of the orientation matrix and motor offsets, and integration. The graphical tools of the software allow visualization of and interaction with the data in two and three dimensions, both in direct and reciprocal spaces. They make it easy to validate the different steps of the data reduction and will be of great help in the treatment of complex problems involving incommensurate structures, twins or diffuse scattering. Full article
Show Figures

Figure 1

10 pages, 3473 KiB  
Article
Validation of a Sapphire Gas-Pressure Cell for Real-Time In Situ Neutron Diffraction Studies of Hydrogenation Reactions
by Raphael Finger, Thomas C. Hansen and Holger Kohlmann
Quantum Beam Sci. 2021, 5(3), 22; https://doi.org/10.3390/qubs5030022 - 15 Jul 2021
Cited by 4 | Viewed by 3250
Abstract
A gas-pressure cell, based on a leuco-sapphire single-crystal, serving as a pressure vessel and sample holder, is presented for real time in situ studies of solid-gas hydrogenation reactions. A stainless steel corpus, coated with neutron absorbing varnish, allows alignment for the single-crystal sample [...] Read more.
A gas-pressure cell, based on a leuco-sapphire single-crystal, serving as a pressure vessel and sample holder, is presented for real time in situ studies of solid-gas hydrogenation reactions. A stainless steel corpus, coated with neutron absorbing varnish, allows alignment for the single-crystal sample holder for minimizing contributions to the diffraction pattern. Openings in the corpus enable neutron scattering as well as contactless temperature surveillance and laser heating. The gas-pressure cell is validated via the deuteration of palladium powder, giving reliable neutron diffraction data at the high-intensity diffractometer D20 at the Institut Laue-Langevin (ILL), Grenoble, France. It was tested up to 15.0 MPa of hydrogen pressure at room temperature, 718 K at ambient pressure and 584 K at 9.5 MPa of hydrogen pressure. Full article
Show Figures

Figure 1

Back to TopTop